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Abstract 

Background: Drug targets with genetic evidence are expected to increase clini‑
cal success by at least twofold. Yet, translating disease‑associated genetic variants 
into functional knowledge remains a fundamental challenge of drug discovery. A key 
issue is that the vast majority of complex disease associations cannot be cleanly 
mapped to a gene. Immune disease‑associated variants are enriched within regulatory 
elements found in T‑cell‑specific open chromatin regions.

Results: To identify genes and molecular programs modulated by these regulatory 
elements, we develop a CRISPRi‑based single‑cell functional screening approach 
in primary human T cells. Our pipeline enables the interrogation of transcriptomic 
changes induced by the perturbation of regulatory elements at scale. We first optimize 
an efficient CRISPRi protocol in primary  CD4+ T cells via CROPseq vectors. Subsequently, 
we perform a screen targeting 45 non‑coding regulatory elements and 35 transcrip‑
tion start sites and profile approximately 250,000 T ‑cell single‑cell transcriptomes. We 
develop a bespoke analytical pipeline for element‑to‑gene (E2G) mapping and dem‑
onstrate that our method can identify both previously annotated and novel E2G links. 
Lastly, we integrate genetic association data for immune‑related traits and demon‑
strate how our platform can aid in the identification of effector genes for GWAS loci.

Conclusions: We describe “primary T cell crisprQTL” — a scalable, single‑cell functional 
genomics approach for mapping regulatory elements to genes in primary human T 
cells. We show how this framework can facilitate the interrogation of immune disease 
GWAS hits and propose that the combination of experimental and QTL‑based tech‑
niques is likely to address the variant‑to‑function problem.
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Background
Genome-wide association studies (GWAS) have revealed thousands of disease-associ-
ated single-nucleotide polymorphisms (SNPs) [1]. Drug targets supported by human 
genetic evidence are expected to increase clinical success by at least twofold [2–6]. 
Thus, understanding the molecular mechanisms underpinning GWAS hits is key to 
reducing attrition in drug discovery. More than 90% of disease-associated variants are 
located in non-coding genomic regions [7–9], making it challenging to identify the 
causal effector gene(s) they regulate [10–14].

Non-coding disease-associated variants are enriched within cell type-specific open 
chromatin regions, especially regulatory elements such as promoters and enhancers 
[7, 11, 15–21], and they often impact gene expression in a cell type-specific manner 
[22–30]. Hence, several studies have combined genetic fine-mapping with epigenomic 
profiles to prioritize candidate cis-regulatory elements within trait-relevant cell popu-
lations [31–39]. However, identifying the genes and downstream molecular programs 
modulated by disease-associated regulatory elements remains difficult with currently 
available tools.

CD4+ T cells play critical roles in autoimmune and inflammatory disorders, such 
as inflammatory bowel disease, type 1 diabetes, Crohn’s disease, and rheumatoid 
arthritis [40, 41]. These cells are heterogeneous and highly plastic as they differentiate 
and acquire distinct functions to counter pathogens and navigate changing environ-
ments [42]. Fine-mapping of GWAS loci, expression quantitative trait loci (eQTLs), 
and epigenomic studies have shown that immune disease-associated risk variants are 
enriched in  CD4+ T-cell regulatory regions [18, 19, 22, 29, 31, 32, 35, 43, 44].

CRISPR is a powerful tool to functionally characterize and map non-coding regula-
tory elements to genes [45–52]. In recent years, the combination of CRISPR screen-
ing with single-cell RNA sequencing (scRNA-seq) has enabled deep phenotyping of 
genetic perturbations at scale [53–55], providing an unprecedented opportunity to 
disentangle genome regulation. Specifically, high-throughput single-cell CRISPR-
interference (CRISPRi) screens of regulatory regions have been performed to gener-
ate enhancer-gene maps at scale [49, 52]. These studies have so far used immortalized 
cell lines due to their ease of manipulation. However, the epigenetic regulation of 
immortalized, highly passaged cell lines is adapted to their highly proliferative state 
rather than being representative of the tissues from which they were derived [56, 57]. 
Therefore, we sought to establish a method that allowed us to query the function of 
regulatory elements in a physiologically relevant cell context.

Here, we present the method called “primary T cell crisprQTL,” a high-through-
put, single-cell, pooled CRISPRi-based functional screening framework to map non-
coding regulatory elements to genes in primary human  CD4+ T cells. We perturbed 
transcription start sites (TSSs) and putative regulatory elements with ZIM3-dCas9 
and profiled 250,195 high-quality single  CD4+ T-cell transcriptomes. We developed 
an analytical pipeline to robustly assign perturbations to cells and to determine gene 
expression changes. We demonstrate that our method can identify high-confidence 
cis element-to-gene (E2G) pairs and nominate novel E2G links supported by genetic 
evidence.
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Results
Implementation of single‑cell CRISPRi technology in human primary  CD4+ T cells

To enable lentiviral-based CRISPRi perturbations in unexpanded primary  CD4+ T cells, 
we tested a panel of dCas9-KRAB lentiviral constructs targeting the TSS of four cell sur-
face receptors: CD4, CD81, BST2, and ATP1B3. We designed dCas9 constructs using 
two KRAB repressor domains (KOX1 or ZIM3) under the control of two promoters (EFS 
or CBh) (Additional file 1: Fig. S1A). ZIM3 has been shown to improve CRISPRi silenc-
ing efficiency compared to the more widely used KOX1 domain [58]. Briefly, T cells were 
activated and transduced with dCas9-KRAB lentivirus and selected with blasticidin. 
Cells were then reactivated and transduced with TSS-targeting guide RNAs (gRNAs) or 
with a non-targeting (NT) control cloned into a CROPseq backbone [59]. After puromy-
cin selection of cells expressing the gRNA, the effect of the CRISPRi perturbation on the 
expression of the target protein was analyzed by flow cytometry (Fig. 1A). We observed 
variable silencing efficacy for different genes (Fig. 1B, Additional file 1: Fig. S1B), likely 
due to differences in gRNA efficiency, basal gene expression, and local chromatin con-
text, consistent with previous CRISPR modulation studies [60, 61]. Generally, using a 
ZIM3 repressor under a CBh promoter resulted in marginally improved silencing com-
pared to the other constructs across multiple target genes (Additional file 1: Fig. S1B) 
and timepoints (Additional file  1: Fig. S1C). Thus, we selected the CBh-ZIM3-dCas9 
construct for all subsequent experiments. To test the robustness of our method, we per-
formed a CRISPRi experiment targeting the TSSs of CD4, CD81, and BST2 in primary 
T cells derived from four donors, across a time-course series, and achieved up to 85% 
silencing efficiency (Fig. 1C).

Next, we assessed whether we could detect gRNA transcripts and quantify the down-
regulation of targeted genes by single-cell transcriptomics. Following independent trans-
ductions of gRNAs targeting the TSSs of CD4, CD81, BST2, and ATP1B3, we pooled 
all cells and performed a CROPseq experiment using 10X Genomics 3′ scRNA-seq. 
We were able to confidently assign gRNAs to cells and observed significant target gene 
downregulation compared to non-targeting controls (Fig.  1D, Additional file  1: Fig. 
S1D). Additionally, the magnitude of the expression changes measured by scRNA-seq 
was highly correlated with the protein abundance changes detected by flow cytometry 
(Additional file 1: Fig. S1E). These results show high-efficiency CRISPRi-based silencing 
of gene expression in primary  CD4+ T cells and demonstrate that perturbation effects 
can be read out at single-cell resolution using a CROPseq-based approach.

Proof‑of‑concept crisprQTL screen recapitulates previously validated element‑to‑gene 

links

Having established the CRISPRi CROPseq workflow in primary T cells, we sought to 
use this pipeline for E2G mapping. We refer to this method as primary T cell crisprQTL. 
To show proof of concept, we silenced a panel of non-coding elements likely to regu-
late gene expression in primary T cells, alongside technical controls (Fig. 2A). First, we 
selected the CD2 locus control region (LCR), which contains three regulatory elements 
that enhance CD2 gene expression [62, 63]. Second, we identified 28 enhancers that 
overlap open chromatin in primary  CD4+ T cells and were previously paired to a gene 
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in a functional E2G mapping study in the K562 cell line (leukemia bone marrow-iso-
lated lymphoblast cells) [49] (see “Materials and methods”); we refer to these elements as 
Gasperini enhancers (Gasperini_ENH). Third, we selected 14 non-coding elements from 
the ENCODE registry of candidate cis-regulatory elements (cCREs), 5 of which were 
intergenic, while the other 9 overlapped introns. Lastly, we included 35 TSSs of genes 
spanning a wide range of gene expression levels to serve as technical controls (Fig. 2A). 
For most of these perturbations, there is a predicted or expected downregulated gene 

Fig. 1 A Schematic of the CRISPRi protocol in primary  CD4+ T cells. B Histograms showing expression of 
the target gene (CD4, CD81, BST2) 10 days after gRNA transduction into primary  CD4+ T cells expressing 
a CBh‑ZIM3‑dCas9 repressor construct, analyzed by flow cytometry. gRNA #1 and gRNA #2 refer to two 
different gRNA designs for a given TSS. The wild‑type (WT) control are non‑transduced cells stained with the 
same antibody for the corresponding target gene. C Quantification of the percentage of cells retaining cell 
surface expression of CD4, CD81, and BST2 at days 4, 6, 8, or 11 after transduction of a TSS‑targeting gRNA 
(red) or NT control gRNA (gray) into primary  CD4+ T cells expressing CBh‑ZIM3‑dCas9, analyzed by flow 
cytometry. Replicates are cells derived from four donors. Differences between non‑targeting and targeting 
gRNAs are significant for all genes and timepoints (p‑value < 0.00005, Bonferroni‑Dunn test). D Normalized 
expression levels of the same target genes, measured by 10X Genomics 3′ scRNA‑seq, 11 days after the 
corresponding targeting (red) or non‑targeting (gray) gRNAs were transduced into primary  CD4+ T cells 
expressing a CBh‑ZIM3‑dCas9 repressor construct. The dashed line indicates the median expression level in 
cells with non‑targeting controls. The number of cells in each group is indicated at the top. Note gRNA #1 
and #2 for CD81 TSS were analyzed together due to sequence similarity
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based on previous evidence: CD2 for LCR perturbations, the gene linked in K562 cells 
for enhancers selected from Gasperini et al. [49], and the gene immediately downstream 
of the TSS. Thus, we treated these perturbations as positive controls, whereas the cCRE 
perturbations were selected for exploratory E2G mapping.

We designed four gRNAs to target each candidate regulatory element or TSS along 
with 35 non-targeting controls (Additional file 2: Table S1) and cloned the resulting 355 
gRNA library into our CRISPRi CROPseq backbone. This pooled gRNA library was 
transduced at low multiplicity of infection (MOI) into primary  CD4+ T cells previously 
selected for CBh-ZIM3-dCas9 expression. We generated high-quality transcriptional 
profiles and gRNA amplicon libraries for 250,195 single cells using the 3′ scRNA-seq 
10X Genomics platform (Fig. 2B, Additional file 1: Fig. S2A).

To assign gRNAs to cells, we developed a probabilistic framework based on a bino-
mial distribution to assess the likelihood that a gRNA is present in a cell, taking into 
consideration its representation in the initial plasmid library. Unlike the static thresh-
olding methods previously employed [49, 64], we found that our framework allows us 
to control for two important sources of technical noise: biases in the efficiency of gRNA 
transcript recovery between cells and variation in the abundance of each gRNA spe-
cies in the experiment, which influences the quantification noise from ambient RNA 

Fig. 2 A Schematic of the classes of loci targeted in the crisprQTL screen, including the locus control regions 
of CD2, enhancers linked to genes from Gasperini et al. [49], regulatory elements (intronic and intergenic) 
overlapping ENCODE cCREs, and gene transcription start sites (TSS). B Schematic of primary T cell crisprQTL 
experimental approach: CBh‑ZIM3‑dCas9 and the pooled gRNA library were introduced as described in 
Fig. 1A, and perturbed cells were analyzed by 10X Genomics 3′ scRNA‑seq. C Proportion of cells where we 
confidently detected a single gRNA, multiple gRNAs, or none (unassigned, due to insufficient gRNA transcript 
recovery). D Distribution of the number of cells recovered with each gRNA in the pooled library. Numbers 
indicate, from top to bottom, the maximum, 75th, 50th, 25th quantiles, and minimum. E Same as D but for 
the number of cells per target (each target is targeted by four gRNAs)
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and PCR artifacts. After applying this method to our gRNA amplicon data, we confi-
dently assigned at least one gRNA to 152,403 (61%) cells (Fig. 2C, Additional file 1: Fig. 
S2B). Importantly, we verified that these gRNA assignments were consistent with gRNA 
transcripts recovered in the gene expression library, confirming that the PCR enrich-
ment process does not introduce spurious signals (Additional file 1: Fig. S2C). As cells 
were transduced at low MOI, we identified a single gRNA in most cells (95.6% of cells 
assigned) (Fig. 2C). We recovered all 355 gRNAs present in the library, with a median of 
282 cells per gRNA (Fig. 2D). All but 19 gRNAs were identified in more than 50 cells, and 
the numbers of cells assigned to each perturbation were correlated with the gRNA abun-
dances in the plasmid library, indicating no significant adverse effects on cell fitness or 
viability (Additional file 1: Fig. S2D). The gRNAs showing poor recovery corresponded 
to a variety of targets. Thus, we achieved good representation of all perturbations in the 
experiment (median of 1,435 cells per target; Fig. 2E).

To determine the effects of each perturbation on the expression of nearby genes (1 Mb 
up and downstream from the targeting site), we used MAST, an algorithm for scRNA-
seq differential expression analysis [65]. We first looked at the expected gene in the posi-
tive control perturbations and excluded two TSS and two Gasperini enhancer-positive 
control targets with poor expression (detection in fewer than 5% of cells). Cells trans-
duced with gRNAs targeting a TSS showed significant (FDR < 5%) downregulation for 
32 out of the 33 targets (Fig. 3A–C), with an average reduction of 31% from wild-type 
expression levels (effect sizes in the range of 3–97%; Fig. 3B). Similarly, CD2 expression 
was significantly downregulated upon silencing of any of the three LCR regions targeted 
(average 29% reduction; Fig. 3A–C). For the E2G pairs identified by Gasperini et al. in 
K562 cells [49] (Gasperini_ENH), we reproduced 17 out of the 26 associations in our 
primary T cell data, with an average reduction in gene expression levels of 20% (range 
5–50%; Fig. 3A–C).

For gRNAs detected in at least 30 cells, we observed two major limitations in our abil-
ity to detect significant gene expression changes: the magnitude of the effect and the 
expression level of the affected gene (Fig. 3B, D). Since silencing the promoter results 
in strong downregulation of gene expression, we were able to detect the effects from 
TSS perturbations for genes covering the whole dynamic range of expression levels 
detected by single-cell transcriptomics (Fig. 3D). In contrast, silencing non-coding ele-
ments that affect genes expressed at lower levels did not reach statistical significance 
(Fig. 3D). Importantly, targets with significant effects were supported by at least two dif-
ferent gRNAs in 83% of cases, for both promoter and non-coding elements (Fig.  3A). 
Altogether, these results demonstrate that our crisprQTL method efficiently silences 
both gene promoters and distal regulatory elements, and that the effects of these pertur-
bations on gene expression can be detected by single-cell transcriptomics, enabling the 
mapping of regulatory elements to genes in primary human  CD4+ T cells.

Evaluation of analytical methods for high‑confidence cis E2G mapping using crisprQTL

Having shown proof of concept based on downregulation of the expected gene for posi-
tive control perturbations, we analyzed expression changes across all genes within 1 
Mb upstream and downstream of the targeted loci. Most positive control perturbations 
(86%) resulted in at least one additional significantly differentially expressed gene (DEG). 
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Fig. 3 A Heatmap of the differential expression significance values (‑log10 adjusted p‑value) for each of the 
four gRNAs targeting each of the positive control perturbations, when comparing the expression of the 
expected gene in perturbed cells versus non‑targeting controls. Different classes of targets are indicated by 
colored bars (TSS — yellow, LCR — blue and Gasperini enhancers — red). The barplots to the right indicate 
how many of the four gRNAs reach statistical significance. B Distributions of the  log2 fold‑change values 
for all expected genes from positive control perturbations, split by target class. C Representative examples 
of targets from each class. Normalized expression values in cells with targeting gRNAs (red) versus NT 
controls (gray) are shown. The title of the plot indicates the gene plotted. D Plot depicting the effect of gene 
expression levels on our ability to detect downregulation effects upon perturbation of TSS and non‑coding 
targets. At the bottom, all genes in the human genome are ranked by decreasing average expression in 
the scRNA‑seq dataset. Only genes detected in at least 5% of the cells (dark gray) were considered in the 
differential expression analyses. Non tested genes (light gray) include both genes not expressed in T cells 
and genes not detected by scRNA‑seq. Then, expected genes in positive control perturbations that were 
significantly differentially expressed (***) are indicated, separately for TSS (yellow triangles) and non‑coding 
control perturbations (red squares for Gasperini_ENH target genes, blue square for CD2). Above, expected 
genes that were detected but not recovered as significantly downregulated upon perturbation (NS)
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However, while expected genes were recovered with two or more independent gRNAs 
in most cases (83%) (Fig. 3A, Additional file 1: Fig. S3A), over two-thirds (68.3%) of all 
additional DEGs were statistically significant with a single gRNA (Additional file 1: Fig. 
S3A). This lack of reproducibility between different gRNAs for the same target could be 
the result of variable on-target efficiencies, off-target effects, and/or a sign of calibration 
issues of the statistical test. It is well recognized that differential gene expression testing 
using single-cell data results in the loss of appropriate false discovery rate (FDR) control 
when the lack of independence between cells from the same sample is not accounted 
for [66]. To assess whether this is the case for our data, we performed differential gene 
expression analysis for cells bearing non-targeting gRNAs, whose expression should not 
result in significant DEGs. Indeed, we observed that p-values were overly significant 
(Additional file 1: Fig. S3B), resulting in an excess of positive DEG calls.

To assess whether this is a problem specific to MAST, we tested two other differen-
tial gene expression algorithms, limma-voom [67] and SCEPTRE [68], along with a 
nonparametric test (Wilcoxon rank-sum test). All algorithms produced inflated p-val-
ues (Additional file  1: Fig. S3C). When comparing the significant gRNA-DEG pairs 
reported by each method, we observed that a large fraction was only identified by one 
of the four methods (Additional file  1: Fig. S3D); these corresponded almost entirely 
(94.2%) to genes other than the expected DEG, supporting that these are likely false posi-
tives. Instead, the expected genes from positive control perturbations were consistently 
detected by all four methods (Additional file  1: Fig. S3D), building confidence in our 
experimental assay. Additionally, we observed that gRNA-DEG pairs reported by two 
or more methods were frequently supported by two or more independent gRNAs, while 
the method-specific pairs were most often identified with a single gRNA (Additional 
file 1: Fig. S3E).

From all the methods considered, MAST showed the best recovery of expected gene 
expression changes along with the fewest method-specific pairs. Thus, we decided to use 
MAST results for all downstream analyses. To increase confidence in this set of DEGs, 
we exploited the evidence provided by independent gRNAs targeting the same element. 
We used Fisher’s method to integrate the p-values from all four gRNAs from each tar-
get into a single statistic — a target-level p-value — which reflects the amount of evi-
dence supporting a gene expression change in perturbed cells (Fig. 4A). After adjusting 
for the multiple tests performed for the whole library, we obtained 378 significant DEGs 
(FDR < 5%; Additional file 3: Table S2). We further classified these DEGs into confidence 
tiers, based on how many gRNAs supported the expression change (see “Materials 
and methods”). Altogether, we identified 87 high-confidence expression changes sup-
ported by 3 or 4 gRNAs for a given target, 140 medium-confidence DEGs supported by 
2 gRNAs, and 151 low-confidence effects supported by a single gRNA (Fig. 4A, Addi-
tional file  3: Table  S2). Since expression differences observed with a single gRNA are 
more likely to be off-target effects and/or false positives, we focused our analyses only 
on medium and high-confidence results.

For perturbations targeting Gasperini enhancers and cCREs (Fig. 2A), we detected 94 
E2G pairs. These included at least one significant DEG for 22 of the 28 Gasperini per-
turbations, 9 of the 11 cCREs overlapping introns, and for all three cCREs in intergenic 
loci (Additional file  3: Table  S2). In general, non-coding perturbations did not induce 
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widespread changes in expression. Almost half of all perturbations (47%) resulted in 
a single DEG within 1 Mb of the target site, and an additional 32% resulted in fewer 
than five DEGs (Fig. 4B). These results suggest that CRISPRi effects are specific to the 
targeted elements. The majority (70.1%) of these non-coding element perturbations 
resulted in dysregulation of the nearest expressed gene, located a median distance of 15 
kb away from the target site (interquartile range (IQR): 5.5–25.8 kb; Fig. 4C–D). How-
ever, we also identified long-range effects affecting other genes, with a median distance 
of 445 kb (IQR IQR135–715 kb; Fig. 4C–D).

crisprQTL E2G links are validated using an orthogonal approach

We next sought to validate the screen results by inducing targeted element deletions 
coupled to bulk RNA-seq. We selected four E2G pairs across various gene expression 
levels and magnitudes of perturbation-induced effects (Fig.  5A). gRNA/Cas9-nuclease 
ribonucleoprotein complexes (RNPs) were used to induce element deletions in primary 
 CD4+ T cells derived from two independent donors (Fig. 5B). Deletions were confirmed 
by PCR and automated electrophoresis (Fig. 5C). Next, we analyzed the perturbation-
induced transcriptomic changes by bulk RNA-seq. Differential expression analysis 
(Additional file  4: Table  S3) confirmed significant downregulation of the same gene 
observed by crisprQTL in three out of the four cases (Fig. 5D). In the fourth case, upon 
deletion of KCNN4_ENH, we observed lower KCNN4 gene expression in cells derived 
from both donors; however, the effect did not reach statistical significance. Taken 
together, these data corroborate the results of the crisprQTL screen.

Primary T cell crisprQTL helps interrogate disease‑associated loci

Next, we focused on three case studies to emphasize how crisprQTL can aid the identi-
fication of effector genes for disease GWAS-associated regions. First, where expression 

Fig. 4 A Distribution of the target‑level adjusted p‑values (FDR) for all significant element‑to‑gene (E2G) pairs 
detected, split by how many gRNAs have raw gRNA‑level p‑values < 0.05. E2G pairs supported by three or four 
gRNAs are high confidence (dark blue), E2G pairs supported by 2 gRNAs are medium confidence (blue), and 
E2G pairs supported by a single gRNA are low confidence (light blue) and were discarded from downstream 
analyses. B Barplot indicating the number of high and medium confidence significant differentially expressed 
genes (DEGs) detected for non‑coding perturbations within 1 Mb up/downstream of the target site. Targets 
from Gasperini enhancers are shown in red; ENCODE cCREs are shown in orange if they lie within a gene 
intron and in yellow if they are intergenic. C Density plot of the distance between the E2G pairs, in kilobases. 
DEGs from targets of different classes are shown separately, as indicated by the same colors used in B. D 
Boxplots of the distance between E2G pairs (as in C) but split by whether the gene is the nearest expressed 
gene to the target. The median is indicated.
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data in the relevant cell type is publicly available, our crisprQTL data replicates colocali-
zations between disease GWAS signals and eQTL signals. For example, when perturbing 
the enhancer linked to GIGYF1, which overlaps SNPs in the 95% credible set for a type 
2 diabetes (T2D) GWAS signal (Fig. 6A) [69], we found that GIGYF1 was significantly 
differentially expressed (FDR = 5.14e−14), with perturbed cells showing approximately a 
10% reduction in expression (Fig. 6B). Furthermore, the T2D GWAS signal colocalized 
with an eQTL signal for GIGYF1 in  CD4+ T cells (Fig. 6C) [33, 70] and increased T2D 
risk colocalized with lower GIGYF1 expression (Fig. 6D).

Second, for some enhancers, we identified E2G pairs in T cells that were different from 
those reported by Gasperini et al. (2019) in K562 cells [49], suggesting cell-type-specific 
regulation. For instance, the perturbation of an enhancer element upstream of PHF19 
(Fig. 6E) that overlaps SNPs in the 95% credible set for a rheumatoid arthritis GWAS 
signal [71] resulted in immune-related DEGs not reported in K562 cells [49], includ-
ing TRAF1 (Fig. 6F). This rheumatoid arthritis GWAS signal colocalized with a TRAF1 

Fig. 5 A Normalized expression values in the crisprQTL screen for cells with targeting (TGT) gRNAs (red) 
versus non‑targeting (NT) controls (gray) for the four E2G links selected for orthogonal validation. B 
Schematic of experimental approach used to induce targeted element deletions in primary CD4.+ T cells, 
using gRNA/Cas9‑nuclease ribonucleoprotein complexes (RNPs). The efficiency of the deletions was analyzed 
by PCR and automated electrophoresis. The perturbation‑induced transcriptomic changes were assessed 
by bulk RNA‑seq. C Automated electrophoresis analysis via TapeStation of the PCR products obtained after 
amplifying the targeted region in non‑targeting (NT) control samples and CRISPR‑deleted samples for four 
enhancer elements, across two donors (D1: donor 1; D2: donor 2). The size of the expected wild‑type band is 
shown in brackets for each enhancer perturbation. D Normalized expression values for the DEG identified in 
the crisprQTL screen (A) in bulk RNA‑seq data from cells with CRISPR deletion of the corresponding enhancer 
or with a NT control, across two donors. All four genes show the expected downregulation of expression, and 
three reach statistical significance (*adjusted p‑value < 0.05)
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eQTL signal in  CD4+ T cells [24, 72] (Fig. 6G) and increased risk for rheumatoid arthri-
tis colocalized with increased expression of TRAF1 (Fig. 6H). This exemplifies how cris-
prQTL can help resolve cell-type-specific putative effector genes at GWAS loci.

Finally, our method can also be used to identify novel E2G links that are missed with 
other approaches. For example, when perturbing an intergenic element upstream of 
CXCR5, we detected differential expression of CD3D, whose TSS is more than 500 kb 
away from the perturbed region (Fig. 6I–J). The protein encoded by CD3D is a key com-
ponent of the CD3 T-cell co-receptor that plays essential roles in the adaptive immune 
response. The target perturbed region overlaps credible set SNPs for various immune-
related traits, including asthma [73], multiple sclerosis [74], atopic dermatitis [75], 
rheumatoid arthritis [71], and rhinitis [73] (Fig. 6I). We found no eQTL colocalization 
evidence supporting this E2G link. Together, our data suggest that crisprQTL can iden-
tify and validate cell-type-specific E2G links supported by genetic evidence as well as 
discover novel associations that are missed in population-based studies.

Discussion
We present a novel methodology called primary T cell crisprQTL — a CRISPRi-based 
single-cell functional screening approach in primary human  CD4+ T cells that enables 
the mapping of regulatory elements to effector genes. Thus far, GWAS has identified a 
plethora of unique immune disease associations, many of which reside in cCREs in T 
cells [18, 19, 22, 29, 31, 32, 35, 43, 44]. Understanding the molecular mechanisms gov-
erned by these immune disease-associated regulatory elements would aid the under-
standing of disease etiology and pave the way towards novel therapeutics [2, 5]. The 
primary challenge, however, is identifying effector genes. Traditionally, eQTL studies 
have been used for this purpose, but eQTLs only clarify the effector gene at a limited 
fraction of GWAS signals [12, 76–80]. Furthermore, systematic studies have shown 

Fig. 6 A GWAS regional association plot for type 2 diabetes (T2D) [69] highlighting the perturbed region 
with the gray line near GIGYF1. B On the left, violin plots showing the normalized expression values of GIGYF1 
in cells expressing GIGYF1 enhancer targeting (TGT) gRNAs (red) versus non‑targeting (NT) controls (gray). 
The number of cells in each group is indicated at the top of the violins. On the right, barplot indicating the 
proportion of cells with TGT or NT gRNAs where expression of GIGYF1 is detected (counts > 0). The number 
of cells in each group is indicated at the top, and an * indicates the perturbation was significant at the 
gRNA level. The target‑level corrected p‑value (FDR) of expression change and a summary  log2 fold‑change 
are indicated at the top. C eQTL regional association plot for GIGYF1 expression in naïve  CD4+ T cells [33, 
70], highlighting the perturbed region in a gray line. D Colocalization plot of the T2D GWAS signal (A) and 
GIGYF1 eQTL in naïve  CD4+ T cells (C), showing that these signals have a 99% posterior probability of being 
shared. T2D risk colocalizes with decreased GIGYF1 transcript expression. E GWAS regional association plot for 
rheumatoid arthritis (RA) [71] highlighting the perturbed region in gray near PHF19 and TRAF1. F Same as B 
but for expression of TRAF1 in cells expressing PHF19 enhancer targeting (TGT) gRNAs (red) versus NT controls 
(gray). G eQTL regional association plot for TRAF1 expression in naïve  CD4+ T cells, highlighting the perturbed 
region with a gray line [24, 72]. H Colocalization of the RA GWAS signal  (E) and TRAF1 eQTL in naïve  CD4+ T 
cells (G), showing that these signals have an 87% posterior probability of being shared. RA risk colocalizes 
with increased TRAF1 transcript expression. I GWAS regional association plot for allergic and chronic rhinitis 
[73] highlighting the perturbed area with a gray line near CXCR5. J Violin plots showing the normalized 
expression values of CD3D in cells expressing targeting (TGT) gRNAs for CXCR5 intergenic element (red) 
versus NT controls (gray). The number of cells in each group is indicated at the top, and an * indicates the 
perturbation  was significant at the gRNA level. The target‑level corrected p‑value (FDR) of expression change 
and a summary  log2 fold change are indicated at the top

(See figure on next page.)
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that GWAS and eQTL methods are biased to identify different types of variants, with 
eQTLs being depleted at functionally important variants [79]. Therefore, the use of 
functional methodologies, such as crisprQTL, provides a complementary approach 
for gene mapping.

Fig. 6 (See legend on previous page.)
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We propose crisprQTL in disease-relevant cell models as a powerful functional 
genomics tool to help refine effector gene mapping at genetically supported target 
loci. In this study, we defined bona fide controls to enable future large-scale crisprQTL 
screens aiming to interrogate immune disease-associated elements in primary T cells. 
Beyond TSSs and locus control regions, we selected enhancer-element pairs previously 
identified in the K562 chronic myelogenous leukemia cell line [49] and applied filters to 
ensure the following: (1) the elements overlapped open chromatin in primary T cells, 
and (2) the gene was expressed in primary T cells. This approach can be applied for the 
development of crisprQTL studies in further disease relevant models. Out of the 28 
prioritized enhancers, 17 mapped to the same effector gene in T cells and K562 cells, 
indicating conserved function. However, 12 showed distinct and/or additional gene tar-
gets, indicating cell-type-specific regulation. For example, we perturbed an enhancer 
upstream of PHF19 that was mapped to PHF19 in crisprQTL studies in K562 cells [49] 
but to TRAF1 in our primary T cell crisprQTL screen. Our observation was corrobo-
rated by colocalization of a rheumatoid arthritis GWAS signal overlapping the enhancer 
with a TRAF1 eQTL signal in  CD4+ T cells (Fig.  6E–H). These findings highlight the 
importance of applying functional E2G mapping approaches in relevant cell models.

Recent advances in single-cell protocols, together with a drop in sequencing costs, are 
facilitating the generation of larger datasets querying cells derived from multiple donors, 
up to whole patient cohorts. The inclusion of higher biological replication will limit false 
discoveries and improve power to detect subtle perturbation effects [81]. Furthermore, 
the single-cell resolution inherent to crisprQTL enables the study of the impact of cell 
subtypes and states on the complex interrelationships between genetic variation, regula-
tory elements, and genes. This will provide a valuable resource for higher-throughput 
crisprQTL screens in primary, dynamic, and complex cell models and will enable delin-
eating cell subtype- or state-specific regulation driven by disease-associated variants 
[22–30, 82–84]. For example, studies modelling eQTLs obtained from single-cell RNA-
seq data from primary T cells helped disentangle cell subtype-specific effects that were 
masked in bulk RNA-seq [84]. Others have identified loci with independent eQTLs that 
have opposing state-dependent effects [83]. Furthermore, using H3K27ac HiChIP data 
in primary human naïve T cells, regulatory T cells (Treg), and T helper 17 cells (Th17), 
Mumbach et al. (2017) identified links between autoimmune disease variants and effec-
tor genes that were present in T effector cell types (Treg and Th17) but not in naïve T 
cells [22].

To enable the perturbation of regulatory elements, we established CRISPRi in pri-
mary  CD4+ T cells by lentiviral transduction of both dCas9-repressor and pooled 
gRNA library. A similar approach [85] was used for gene silencing in primary T cells 
using the KOX1 KRAB domain, to enable fluorescence-activated cell sorting (FACS)-
based screens. We envision that our CRISPRi-based E2G methodology can be applied 
to other cell types and tissues amenable to viral transduction. However, this will most 
likely require extensive optimization of transduction conditions, including testing of 
viral pseudotypes that can facilitate efficient infection of the desired cell type. Similarly, 
we found that gRNA detection in scRNA-seq libraries of primary T cells can be particu-
larly challenging, and thus, we anticipate it will require systematic optimization in other 
primary cell models.
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While we and others have shown that pooled CRISPRi screens coupled to scRNA-seq 
enable unbiased interrogation of hundreds of elements in a single assay [49, 52], other 
perturbation methods for the discovery and mechanistic study of E2G associations are 
rapidly evolving and could provide orthogonal means of validation. For example, we 
used targeted CRISPR deletions to validate four E2G links discovered in our screen. 
Others have employed CRISPR/Cas9-directed mutagenesis to interrogate non-coding 
regulatory elements at defined loci [86–92]. Although these methods suffer from limited 
scalability, their application to prioritized loci could uncover regulatory maps at much 
higher precision. CRISPR-activation and other CRISPR epigenetic editing methods have 
also been employed to study non-coding regulation in small-scale studies [45, 93, 94]. 
Moving forward, a systematic comparison and benchmarking of E2G perturbation maps 
generated with multiple CRISPR modifiers and precise edits across multiple tissues 
should help us define robust principles for E2G interrogation and discovery.

Conclusions
We present “primary T cell crisprQTL” — a single-cell functional framework for map-
ping disease-associated elements to genes in primary cells. We identify previously anno-
tated and novel element-to-gene (E2G) links and further validate four E2G links using 
an orthogonal approach. We highlight three case studies to emphasize how crisprQTL 
can aid the identification of effector genes for immune disease GWAS hits. Our experi-
mental perturbation approach coupled to a bespoke analytical pipeline sets the basis for 
future functional interrogation of immune disease-associated distal elements at scale. 
We firmly believe that, together with population-based studies, crisprQTL E2G maps 
across multiple human tissues will aid our understanding of the effector genes and path-
ways driving human disease.

Methods
Locus selection

The 35 TSSs were selected based on the following criteria (Additional file 2: Table S1): 
(1) 15 genes with essential roles in T-cell regulation and (2) 20 genes selected based on 
expression, as assessed from a scRNA-seq dataset from CD3/CD28 stimulated  CD4+ T 
cells [95] (genes were binned into quartiles based on average expression: 11 highly 
expressed genes were selected from the top quartile, 6 from the 3rd expression quartile, 
and 3 from the lowest two expression quartiles).

The genomic coordinates for the three CD2 LCRs were obtained from [62, 63, 96] 
(Additional file 2: Table S1).

We selected enhancers from the set of 470 high-confidence intergenic E2G pairs from 
Gasperini et al. [49] with the following features: (1) the putative enhancer must overlap 
a region of open chromatin in primary  CD4+ T cells as identified in at least one of the 
following datasets: (i) ATAC-seq peaks identified on  CD4+ T naïve or memory cells after 
16 h or 5 days of CD3/CD28  stimulation [35] or (ii) ATAC-seq peaks from multiple 
 CD4+ T cells from [19]; (2) the expected target gene, as defined by Gasperini et al. [49], 
was amongst the top 50% expressed genes in primary T cells, as assessed from a scRNA-
seq dataset of CD3/CD28 stimulated  CD4+ T cells [95]. After applying these filters, a set 
of 28 E2G pairs were selected to include in the screen (Additional file 2: Table S1).
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Additionally, we selected 11 intronic and 3 intergenic cCREs [15] overlapping open chro-
matin regions in primary T cells [19] (Additional file 2: Table S1).

CRISPRi gRNA design

Four gRNAs were included per target in the pooled library. gRNAs targeting TSSs were 
selected from the Dolcetto library [97]. gRNAs targeting non-coding elements (CD2 LCRs, 
enhancers selected from Gasperini et al. (2019) [49], and ENCODE cCREs) were designed 
using the Broad Institute platform CRISPick [97] and selected to target the middle 300-bp 
region of the element (Additional file 2: Table S1). For enhancers selected from Gasperini 
et al. (2019), two out of the four gRNAs overlapped the gRNAs used in the original study 
by Gasperini et al. (2019) [49]. Lastly, 35 non-targeting gRNAs were included in the pooled 
library, selected from the Dolcetto library [97]. gRNA sequences for each element are 
reported in Additional file 2: Table S1.

gRNA cloning and pooled gRNA library construction

Individual gRNAs and the pooled library were cloned into a CROPseq lentiviral backbone 
adapted from [59] with the following modifications: (1) the scaffold sequence was modified 
to include the optimized CRISPRi scaffold described in [98], and (2) a fluorescent ZsGreen 
marker was included downstream of the EF1α promoter and linked through T2A to a puro-
mycin resistance cassette. This backbone is referred to as CRISPRi CROPseq.

Cloning of individual gRNAs

To clone gRNAs into this backbone (GENEWIZ), oligos containing the protospacer 
sequence and recombination arms homologous to the vector backbone were synthesized 
(oligo structure: 5′ tttcttggctttatatatcttgtggaaaggacgaaacacc-protospacer-gtttaagagctatgctg-
gaaacagcatagcaagtttaaat 3′). The CRISPRi-seq backbone was digested with AarI and then 
cloned with the insert by recombination-based cloning. The reaction mixture was trans-
formed into DH5α competent cells, and the colonies were selected at 37 °C. Individual colo-
nies were picked, and plasmid DNA was isolated and verified by Sanger sequencing. The 
sequences of TSS-targeting gRNAs and controls used in Fig. 1 and Additional file 1: Fig. S1 
are detailed in the following table:

gRNA ID Target gRNA sequence

CD4 gRNA_1 CD4 TSS AAC AAA GCA CCC TCC CCA CT

CD81 gRNA_1 CD81 TSS GCC TGG CAG GAT GCG CGG TG

CD81 gRNA_2 CD81 TSS GGC CTG GCA GGA TGC GCG GT

BST2 gRNA_1 BST2 TSS CAG AGT GCC CAT GGA AGA CG

BST2 gRNA_2 BST2 TSS CGC TTA TCC CCG TCT TCC AT

ATP1B3 gRNA_1 ATP1B3 TSS GAG TAC TCC CCG TAA CGA GG

ATP1B3 gRNA_2 ATP1B3 TSS GAC GGC AGT GAA GGG TGG GA

NT gRNA NA AAA ACA GGA CGA TGT GCG GC

Cloning of pooled library (355 gRNAs)

gRNA oligos were synthesized, PCR amplified, and cloned into the CRISPRi CROPseq 
backbone using Gibson assembly, as previously described [99], by VectorBuilder. The 
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pooled gRNA library was built from a total of 7 ×  105 single colonies, which represents 
more than 1000-fold coverage of the designed gRNAs. Library gRNA representation 
was assessed by 150-bp paired-end sequencing (Illumina, NovaSeq). The distribution of 
gRNA representation is shown in Additional file 1: Fig. S2D.

Lentiviral vector production and determination of viral titer

HEK293T suspension-adapted cells (in-house) were cultured in growth media con-
sisting of BalanCD HEK293 medium (Irvine Scientific, 91165) supplemented with 2% 
GlutaMAX (Thermo Fisher Scientific, 35050061) and 1% Pluronic F-68 (Thermo Fisher 
Scientific, 24040032). For lentiviral packaging, cells were seeded at 2 ×  106 cells/ml den-
sity and transfected with a total 190 µg DNA complexed with 450 µg PEIpro (Polyplus-
transfection, 10100,033). The plasmid DNA mix, which included an envelope encoding 
VSVg, two packaging plasmids encoding rev, gag and pol genes, and a transfer DNA plas-
mid vector, was added to pre-warmed OptiMEM (Thermo Fisher Scientific, 31985070), 
followed by addition of PEIpro and incubation for 30 min at room temperature for the 
transfection complexes to form. The transfection mixture was added to the HEK293T 
suspension adapted cells, and the cells were incubated in a shaker cell culture incubator 
(Multitron shaker incubator, Infors HT) at 37 °C with 5%  CO2 at 110 rpm. The next day, 
1.5 mM sodium butyrate (Sigma, 303410) was added to the transfected cell culture. Len-
tiviral vector-containing media from the transfected cells was collected 72 h after trans-
fection, clarified by centrifugation at 500 × g for 10 min, filtered through 0.45 μm filter 
units, and concentrated via high-speed centrifugation at 70,000 × g for 2 h. The viral pel-
let was then resuspended in RPMI media (Gibco, 11534446) at a ~ 350 × concentration. 
The resuspended lentiviral vector solution was aliquoted and stored at − 80 °C.

Functional viral titer was determined by transducing 1 ×  105 HEK293T adherent cells 
(Lenti-X™ 293 T Cell Line, 632180) with serial dilutions of the lentiviral solution in a 
total volume of 100 μL per well of a 96-well plate and incubated at 37 °C in 5%  CO2. 
For lentiviral vectors containing the fluorescent marker ZsGreen, including the pooled 
gRNA library, the titration was also performed in primary  CD4+ T cells, and the per-
centage of cells expressing ZsGreen was quantified 2 to 3 days post-transduction by flow 
cytometry using CytoFLEX S (Beckman) flow cytometer and normalized to the starting 
cell number and dilution factor to obtain the titer in transduction units per mL (TU/
mL).

Isolation and culture of primary human  CD4+ T cells

The human biological samples used in this study were sourced ethically, and their 
research use was in accord with the terms of the informed consent under an IRB/
EC-approved protocol (IRB approval number 20190318) and reviewed by the WIRB 
(Western Institutional Review Board). Briefly, mononuclear cells from circulating 
blood were removed by apheresis. From these leukopaks, primary human  CD4+ T 
cells were enriched using CliniMACS Prodigy setup and human CD4 MicroBeads 
(Miltenyi, 130–045-101). Following positive selection, cells were aliquoted and cry-
opreserved. Primary  CD4+ T-cell vials were thawed at the time of the experiments 
and cells cultured in RPMI 1640 (Gibco, 11340892) supplemented with 10% heat-
inactivated FBS, 1 × GlutaMAX (Thermo Fisher Scientific, 35050061), 1 mM sodium 
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pyruvate (Thermo Fisher Scientific, 11360088), 5 mM HEPES (Thermo Fisher Scien-
tific, 15630080), 1 × nonessential amino acids (Thermo Fisher Scientific, 11140035), 
1 × penicillin/streptomycin (Thermo Fisher Scientific, 15070063), 55 µM 2-mercap-
toethanol (Thermo Fisher Scientific, 21985023), and 15 ng/mL of recombinant human 
interleukin 2 (IL-2) (PeproTech, 200–02). Cells were kept in a humidified 5%  CO2 
atmosphere at 37 °C.

dCas9‑KRAB transduction and selection

Primary human  CD4+ T cells were thawed and cultured as described above at a den-
sity of ~ 1 ×  106 cells per mL. The next day,  cells were activated using Dynabeads 
Human T-Activator CD3/CD28 (Thermo Fisher Scientific, 11131D), at 1:1 cell:bead 
ratio, according to manufacturer’s guidelines. Sixteen to 20 h after activation, cells 
were transduced with the corresponding lentiviral vector encoding a KRAB-dCas9 
fusion under different promoters and a blasticidin resistance gene. Lentiviral trans-
ductions were performed in growth media supplemented with 5 mM HEPES (Thermo 
Fisher Scientific, 15630,080), and spinoculation was carried out at 800 × g for 1 h at 37 
°C. Seventy-two hours after transduction, blasticidin selection was carried out at 20 
µg/mL for 2 days, followed by an additional 5 days at 12.5 µg/mL. Media was replen-
ished, and cells were expanded as necessary based on confluency.

KRAB-dCas9 lentiviral constructs tested in this study include the following: EFS-
ZIM3-dCas9-P2A-Bsd, EFS-KOX1-dCas9-P2A-Bsd, CBh-ZIM3-dCas9-P2A-Bsd, and 
CBh-KOX1-dCas9-P2A-Bsd (Additional file 1: Fig. S1A).

gRNA transduction and flow cytometry analysis of CRISPRi efficiency

Following 1 day of rest after blasticidin selection, KRAB-dCas9 expressing cells were 
activated with Dynabeads Human T-Activator CD3/CD28 (Thermo Fisher Scientific, 
11131D), at 1:1 cell:bead ratio. Sixteen to 20 h after activation, cells were transduced 
with a CRISPRi CROPseq lentivirus encoding gRNAs targeting either CD4, CD81, 
BST2, or ATP1B3 or a non-targeting control (NT) gRNA, at a MOI of 0.1, in growth 
media supplemented with 5 mM of HEPES (Thermo Fisher Scientific, 15,630080). Spi-
noculation was carried out at 800 × g for 1 h at 37 °C. Forty-eight hours after gRNA 
transduction, cells were selected with 2 µg/mL puromycin for 4 days, and selection 
was verified by ZsGreen expression in > 95% of the cells by flow cytometry (CytoFLEX 
S, Beckman Coulter).

Flow cytometry was performed at different timepoints to estimate CRISPRi effi-
ciency by measuring protein downregulation of the target genes (CD4, CD81, BST2, 
and ATP1B3) compared to a NT gRNA. Briefly, ~ 100,000 cells were washed with 
PBS and stained for 1 h at 4 °C with an antibody targeting the corresponding pro-
tein. Next, cells were washed with PBS and analyzed by flow cytometer (CytoFLEX S, 
Beckman Coulter), recording 30,000–50,000 events. Antibodies used were APC anti-
human CD4 clone RPA-T4 (BioLegend, 300514), APC anti-human CD81 clone 5A6 
(BioLegend, 349510), APC anti-human CD317 (BST2, tetherin) clone RS38E (BioLeg-
end, 348410), and APC anti-human CD298 clone LNH-94 (BioLegend, 341706).
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Pooled CRISPRi screen

Primary human  CD4+ T cells expressing CBh-ZIM3-dCas9-Bsd (transduced and 
selected as described above) were activated with Dynabeads Human T-Activator CD3/
CD28 (Thermo Fisher Scientific, 11131D) at 1:1 cell:bead ratio, and, 16–20 h later, 
two million cells were transduced with the pooled CRISPRi CROPseq gRNA library 
(described above) at a < 0.3 MOI. The transduction was performed in growth media sup-
plemented with 5 mM HEPES (Thermo Fisher Scientific, 15630080), and spinoculation 
was carried out at 800 × g for 1 h at 37 °C. Forty-eight hours later, cells were selected 
with 2 µg/mL puromycin for 4 days, and selection was verified by ZsGreen expression 
in > 95% of the cells by flow cytometry (CytoFLEX S, Beckman Coulter). Cells were cul-
tured in growth media for an additional 6 days before processing for scRNA-seq.

Preparation of 10X Genomics scRNA‑seq libraries and sequencing

The pooled CRISPRi CROPseq screen was read out using the 3’ 10X Genomics plat-
form (10X Genomics, PN-1000075). The screen dataset contains two different scRNA-
seq runs: the first one (eight channels of a 10X Genomics chip B, PN-1000073) was 
performed with fresh cells at the end of the CRISPRi experiment, 10 days post gRNA 
library transduction; the second one (32 channels across four 10X Genomics chips B, 
PN-1000073) was performed using cells from the same experiment that were cryopre-
served 10 days after gRNA transduction and thawed in puromycin-containing media (2 
µg/ml) 3 days before the 10X Genomics run. To remove dead cells and debris, the cell 
suspension was treated with Lymphoprep (Axis-Shield, 12HHS09) the day before load-
ing the cells into the 10X Chromium Controller. Each channel from a 10X Genomics 
chip B (PN-1000073) was loaded with 16,000 cells into a Chromium Controller, follow-
ing manufacturer’s guidelines. 3′ gene expression libraries (v3) were prepared follow-
ing manufacturer’s instructions (10X Genomics, PN-1000075). gRNA amplicon libraries 
were generated from amplified cDNA following the protocol described in [100]. Gene 
expression and gRNA libraries were QCed by TapeStation 4200 (Agilent Technologies) 
and quantified by Qubit (Thermo Fisher, Q32851) and KAPA qPCR (Kapa Biosystems, 
KK4824). Multiplexed gene expression libraries were pooled at a 5:1 ratio with multi-
plexed gRNA libraries. The pool of gene expression and gRNA libraries were sequenced 
across two S4 and one S2 flow cells of a NovaSeq 6000 with 28 cycles for read 1, 91 
cycles for read 2, and 8 cycles for i7 index.

CROP‑seq data processing

Sequencing data were processed using cellranger count v4.0 with default parameters. 
We used the human reference genome provided by 10X Genomics (hg38, Ensembl 
annotation version 98; https:// cf. 10xge nomics. com/ supp/ cell- exp/ refda ta- gex- GRCh38- 
2020-A. tar. gz), supplemented with artificial chromosomes containing the sequences for 
all gRNAs present in the library to enable recovery of gRNA-derived transcripts from 
the cDNA library. Additionally, a feature reference file containing all gRNA sequences 
present in the library was supplied to quantify UMI counts for each gRNA in the gRNA 
library. The barcode-rank plots for all samples were concordant with good-quality data 
and appropriate distinction of cell containing from empty droplets. A median of 7,218 

https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz
https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz
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cells (s.d. 1,445 cells) were recovered from each technical replicate. For downstream 
analyses, the filtered count matrices produced by cellranger were imported into R using 
the dropletUtils package [101, 102].

Quality control

To remove cells of poor quality, we used scater [103] to compute QC metrics. For each 
barcode, we assessed the total UMI counts, total number of genes detected, and the 
proportion of counts mapping to mitochondrial genes (Additional file 1: Fig. S2A). We 
removed any barcodes that deviated by more than three median absolute deviations 
(MAD) from the median for any of the three metrics’ distributions. To account for slight 
differences in sequencing depth between 10X chips, thresholds were defined indepen-
dently for each sample (Additional file 1: Fig. S2A). Overall, we removed 4.07% of the 
barcodes. We further identified outlier barcodes with very small fraction of mitochon-
drial reads (deviating by more than three MADs), as these are likely to correspond to 
stripped nuclei, instead of cells. We confirmed that these barcodes had a substantially 
lower number of genes detected and were thus removed from downstream analyses.

Doublet detection

To identify putative doublets, we used the method implemented in the scDblFinder 
package [104] with default parameters. Barcodes identified as doublets had higher total 
UMI counts, number of detected genes, and were more likely to have more than one 
gRNA and were thus discarded. A total of 250,195 barcodes were retained, representing 
singlet, good-quality cells.

gRNA assignment

To determine which gRNAs were present in each cell, we applied a binomial test to the 
UMI counts obtained from the gRNA library (see above). The probability of success of 
each gRNA was determined from the initial representation of each gRNA in the len-
tiviral library, assessed by DNA sequencing. The binomial test takes into account the 
total library size of each cell, together with the expected proportions of each gRNA, to 
determine the minimum UMI count required to consider a gRNA present above back-
ground noise levels. Any gRNAs with a Bonferroni-adjusted p-value smaller than 0.001 
were considered present in that cell. We additionally discarded any significant gRNA 
assignments that were supported by 3 UMI counts or fewer. Overall, we were able to 
confidently assign gRNA calls to 152,403 cells (60.91%). From these, almost all (95.62%) 
had a single gRNA assigned, consistent with experiments carried out at low multiplicity 
of infection.

Normalization and batch effects assessment

Gene expression counts were normalized using the deconvolution method implemented 
in scran [105]. Highly variable genes were inferred with the modelGeneVar function, and 
the top 2000 most variable genes were used for dimensionality reduction (PCA followed 
by UMAP, as implemented in scater). Data visualization indicated strong separation of 
the two experiments performed. Thus, the experiment was included as a covariate in all 
differential expression analyses.
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Differential expression analysis

To determine the effects from each perturbation, we used MAST [65] to test for gene 
expression differences between all cells containing a particular gRNA compared to a set 
of randomly selected 5,000 cells containing only a non-targeting gRNA (referred to as 
NT cells). We restricted the analysis to genes that were detected in at least 5% of cells 
(10,047 genes). The model fit was done using all cells containing any of the four gRNAs 
for the same target, plus the background set of NT cells. We added as covariates the 
experiment of each sample and the detection rate as defined by MAST’s authors. Then, 
the fitted model was used to test the effect of each gRNA, by specifying the correspond-
ing contrast. Results were filtered to include only genes that fall within 1 Mb up/down-
stream of the target (defined from Ensembl’s v98 annotation, with the BiomaRt package 
[106, 107]). p-values were adjusted for multiple testing with the Benjamini–Hochberg 
method.

To assess p-value calibration, we followed the same strategy as Barry et al. (2021) [68]. 
Briefly, the 35 non-targeting (NT) gRNAs were grouped into nine groups of four, to 
emulate the library structure of targeting perturbations. MAST was run in the same way 
as described above. Since NT gRNAs do not have a genomic location, we considered all 
genes tested against any targeting gRNA (i.e., any gene within 1 Mb of a targeted locus). 
The p-values reported by MAST were compared to expected p-values under the null 
(Additional file 1: Fig. S3B).

The same strategy was used to test for changes in expression for both targeting and 
non-targeting gRNAs using limma-voom [67] or SCEPTRE [68]. For the Wilcoxon rank-
sum test, we used the implementation from the pairwiseWilcox function from the scran 
package [105], blocking on the experiment of each sample to account for the observed 
batch effect.

Target‑level perturbation effects

To integrate the results from the four gRNAs targeting the same genomic locus, we used 
Fisher’s method (as implemented in the combineGroupedPValues function from the 
metapod package [108]) to integrate the raw p-values from all four gRNAs into a sin-
gle p-value. These target-level p-values were corrected for multiple testing to account 
for all the tests performed for the complete library (considering genes within 1 Mb of 
the target, accounting for 1,336 tests), using the Benjamini–Hochberg method. Genes 
with an adjusted target-level p-value < 0.05 were considered significantly differentially 
expressed (DEGs). DEGs were assigned to confidence tiers depending on the number of 
raw gRNA-level p-value < 0.05 with concordant effects. These are: high-confidence tier 
(3 or 4 gRNAs), medium-confidence tier (2 gRNAs), and low-confidence tier (1 gRNA). 
Additional file 3: Table S2 includes all significant E2G links identified by MAST analysis.

CRISPR‑deletions, editing assessment, and bulk RNA‑seq

Primary human  CD4+ T cells from two independent donors were activated using 
Dynabeads Human T-Activator CD3/CD28 (Thermo Fisher Scientific, 11131D) at 
1:1 cell:bead ratio. Seventy-two hours after activation, cells were electroporated 
with gRNA/Cas9-nuclease RNP complexes targeting the enhancer, in independent 
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reactions for each element. For elements smaller than 400 bp (HPCAL ENH and 
PKM ENH), three gRNAs were used (one in each flanking region and one inside the 
enhancer), and for elements larger than 400 bp (CTSC ENH1 and KCNN4 ENH), 
four gRNAs were used (one in each flanking region and two inside the enhancer) (see 
Table below). gRNAs were designed using the Broad Institute platform CRISPick [97, 
109]. To electroporate the cells, (1) RNP complexes were prepared with 143 pmol of 
gRNAs (synthesized by IDT) and 47 pmol of Cas9-nuclease (IDT, 1081059) in duplex 
buffer (IDT, 1072570) and incubated at room temperature for 5–10 min; (2) 2 million 
cells per reaction were washed with PBS, Dynabeads were removed and cells were 
resuspended in P3 nucleofector solution (Lonza, V4XP-3024); (3) cells resuspended 
in P3 buffer were mixed with RNP complexes and electroporated using the EH-115 
program of the Amaxa 4D Nucleofector X Unit (Lonza, AAF-1002X); and (4) elec-
troporated cells were recovered in T cell media and returned to the incubator. After 
culturing and expanding electroporated cells for 10 days, 0.5–1 million cell pellets 
were harvested for genomic DNA and RNA extraction.

Genomic DNA was extracted using QuickExtract lysis buffer (Qiagen, SS000035-P) 
following manufacturer’s recommendations. PCRs were performed for each sample 
using the corresponding primers to amplify the edited region (see table below) and 
AmpliTaq Gold Mastermix (Thermo Fisher, 10289234). PCR products were analyzed 
by automated electrophoresis using TapeStation 4200 High Sensitivity D5000 rea-
gents ScreenTape system (Agilent Technologies) (Fig. 5C).

Enhancer gRNA sequences Primers for gDNA PCR

CTSC ENH1 1: TTT ATT ACT ACT AAA CTG AG
2: AAG AGA AAC TGA CTT AGG TA
3: GGG CTT TCT CAA TGA CCC AA
4: CAC CAC CTA TAA AGA TGC TA

F: TCT CAC CTT AAA GAG CTG TTGT 
R: CGC GTA TTT TGT TAC AGT TCTC 

HPCAL1 ENH 1: GGG CTT CAA CAA AGG AAT TG
2: ACA CTT CCT GGA TGA GCC AT
3: TCC ATC TAC AGA TTT GAG GC

F: GCA TGG AGA GGG AGA AAG ATTT 
R: TGA CGC TGA CTT AGG GTA GAG 

PKM ENH 1: TGG GGT AGG AGG GCT CTA CA
2: GAT GTG GCC ATC CAT TGG GG
3: AAC GGA AGG TTA AAC TCC AG

F: GAG GAG AGG TCT GAT GCA TTTG 
R: TGA TAC AGG CAT GGA ATG AACA 

KCNN4 ENG 1: CTG GAC TGC TGG TCT GAG GG
2: GAA AGA ACC CAG GTG CCT CG
3: CAA GGT CCC AGA GAT GGC GG
4: CCA GGC ACT GCT CAA GGA GT

F: TGG GTC TGA AGG AGG AGG AT
R: ACT GAG AGC AAA GAA GAG ACTG 

Total RNA was extracted from frozen cell pellet samples using RNeasy Plus Mini 
kit (Quiagen, 74134) following manufacturer’s instructions. RNA samples were 
quantified using Qubit 2.0 Fluorometer (ThermoFisher Scientific), and RNA integ-
rity was checked using TapeStation 4200 (Agilent Technologies). Strand-specific 
RNA-sequencing libraries were prepared using NEBNext Ultra II Directional RNA 
Library Prep Kit for Illumina following manufacturer’s instructions (NEB, E7760L). 
The sequencing library was validated on TapeStation 4200 (Agilent Technologies) and 
quantified using Qubit 2.0 Fluorometer (ThermoFisher Scientific) and quantitative 
PCR (KAPA Biosystems). The RNA sequencing libraries were sequenced on the Illu-
mina NovaSeq instrument according to manufacturer’s instructions, using a 2 × 150-
bp paired end (PE) configuration.
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Bulk RNA‑seq data processing and differential expression analysis

RNA-seq paired-end fragments were trimmed with Trimmomatic v0.39 [110] using 
the Illumina adapter sequences ILLUMINACLIP:adapters.fa:2:30:10 and the options 
SLIDINGWINDOW:4:15 MINLEN:36. Trimmed fragments were aligned to the human 
reference genome (GRCh38) using STAR [111] with options –alignSJoverhangMin 8 –
outSAMunmapped Within –outSAMattributes NH HI AS NM MD –outSAMstrand-
Field intronMotif. Mapped fragments were quantified using featureCounts [112] and 
Ensembl’s genome annotation version 96 (http:// apr20 19. archi ve. ensem bl. org/ index. 
html).

To identify significantly differentially expressed genes in perturbed cells, we used 
edgeR 3.34.0 [113, 114]. We removed lowly expressed genes with the filterByExpr func-
tion and considered 16,752 genes in downstream analyses. Dispersion was estimated 
with the estimateDisp function, and model fit was performed with glmQLFit, setting 
robust to TRUE. For each perturbed element, we tested for changes in expression against 
the NT controls with the glmQLFTest function. p-values were corrected for multiple 
testing with the Benjamini–Hochberg method. A gene is considered significantly differ-
entially expressed if its adjusted p-value is smaller than 0.05. Results from the differential 
expression analysis are available in Additional file 4: Table S3. For plotting, normalized 
expression estimates were computed with the cpm function having prior calculated nor-
malisation factors with the TMM method (calcNormFactors).

GWAS credible set intersections

For a wide range of publicly available GWAS, we generated conditional test statistics 
[115, 116] and conditional 95% credible sets from GWAS summary statistics using an 
established Bayesian fine-mapping approach [117, 118]. For each GWAS signal which 
overlapped the perturbed target region + / − 1 kb, we also checked for colocalization of 
eQTL signals for the DEGs using the coloc software with default parameters [10, 119].

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03176‑z.

Additional file 1: Fig. S1. A) Schematic of dCas9‑KRAB lentiviral constructs tested. B) Bar plot showing the percent‑
age of cells retaining protein expression for different target genes (CD4, CD81, BST2, ATP1B3) 10 days after TSS‑
targeting gRNA transduction into primary CD4+ T cells expressing different dCas9‑repressor constructs, analysed 
by flow cytometry and normalised to the corresponding non‑targeting gRNA control sample. gRNA #1 and #2 refer 
to two different gRNA designs for a given TSS. C) Bar plots for the same experiment as B), showing flow cytometry 
data for days 6, 10 and 16 post‑gRNA transduction. D) Normalised expression levels of ATP1B3, measured by 10X 
Genomics 3’ scRNA‑seq 11 days after the corresponding targeting (red) or non‑targeting (grey) gRNAs were trans‑
duced into primary CD4+ T cells expressing a CBh‑ZIM3‑dCas9 repressor construct. Dashed line indicates median 
expression level in cells with non‑targeting controls. E) Percentage of cells showing protein downregulation of the 
target gene after CRISPRi by flow cytometry (x‑axis) versus significance (‑log10 FDR) of downregulation of the target 
gene (mRNA) by 3’ scRNA‑seq analysis (y‑axis), normalised to the corresponding NT control. Pearson r2 = 0.98. Fig. 
S2. A) Distributions of the total UMIs per cell, number of detected genes per cell, and fraction of reads mapping to 
mitochondrial genes, used for quality control of the scRNA‑seq data. Each violin corresponds to a technical replicate 
(channel in a 10X chip); colours indicate different 10X chips. The dotted lines indicate the thresholds used for each 
replicate to exclude poor‑quality cells. B) Same as Fig. 2C but split per technical replicate. C) Barplot showing the 
number of cells where the same gRNA is the most abundant in both the cDNA and gRNA libraries (concordant, 
blue); the most abundant gRNA is different between libraries (discordant, orange); or no gRNA information was 
recovered from the cDNA library (yellow) D) Scatter plot of the relative abundance of each gRNA in the plasmid 
library (x‑axis, assessed by DNA sequencing of the library) versus the number of cells positive for each gRNA (y‑axis, 
assessed from the scRNA‑seq data). Fig. S3. A) Barplots of the fraction of significant differentially expressed genes 
(DEGs) from positive control perturbations that are supported by different numbers of gRNAs (raw gRNA‑level 

http://apr2019.archive.ensembl.org/index.html
http://apr2019.archive.ensembl.org/index.html
https://doi.org/10.1186/s13059-024-03176-z
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p‑value < 0.05). The expected genes are shown separately from all other DEGs. B) QQ plot of the expected vs 
observed p‑values reported by MAST when testing for expression changes from non‑targeting gRNAs, which should 
not induce any significant changes in expression. Deviation from the diagonal indicates inflated p‑values. C) Same 
as B) but for results from SCEPTRE, limma‑voom or a Wilcoxon rank sum test. D) Upset plot indicating the number of 
DEGs for positive control targets that are identified by any of the four methods. The height of the bar indicates the 
number of DEGs, split by target class (indicated by different colours). Under each bar, the methods that called the 
gene as significant are indicated. The expected genes are shown separately from all other DEGs. E) Same as D) but 
with the colours indicating the number of gRNAs supporting each DEG (raw gRNA‑level p‑value < 0.05).

Additional file 2: Table S1. Target selecion and gRNA library information. Coordinates are based on the human 
reference genome (GRCh38). For positive control targets, the expected gene is indicated.

Additional file 3: Table S2. MAST differential expression results for all genes within 1Mb of a perturbation and 
detected in at least 5% of cells. Results are aggregated at the target level.

Additional file 4: Table S3. Differential gene expression analysis of bulk RNA‑seq data from the E2G validation 
experiments.

Additional file 5. Review history.
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