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Abstract 

Background:  Recent state-of-the-art sequencing technologies enable the investiga-
tion of challenging regions in the human genome and expand the scope of variant 
benchmarking datasets. Herein, we sequence a Chinese Quartet, comprising two 
monozygotic twin daughters and their biological parents, using four short and long 
sequencing platforms (Illumina, BGI, PacBio, and Oxford Nanopore Technology).

Results:  The long reads from the monozygotic twin daughters are phased into pater-
nal and maternal haplotypes using the parent–child genetic map and for each 
haplotype. We also use long reads to generate haplotype-resolved whole-genome 
assemblies with completeness and continuity exceeding that of GRCh38. Using this 
Quartet, we comprehensively catalogue the human variant landscape, generating 
a dataset of 3,962,453 SNVs, 886,648 indels (< 50 bp), 9726 large deletions (≥ 50 bp), 
15,600 large insertions (≥ 50 bp), 40 inversions, 31 complex structural variants, and 68 
de novo mutations which are shared between the monozygotic twin daughters. Vari-
ants underrepresented in previous benchmarks owing to their complexity—including 
those located at long repeat regions, complex structural variants, and de novo muta-
tions—are systematically examined in this study.

Conclusions:  In summary, this study provides high-quality haplotype-resolved assem-
blies and a comprehensive set of benchmarking resources for two Chinese monozy-
gotic twin samples which, relative to existing benchmarks, offers expanded genomic 
coverage and insight into complex variant categories.
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Background
Human genomic variants, including single nucleotide variants (SNVs), small insertions/
deletions (indels), and structural variants (SVs), have been extensively characterized and 
contributed to many diseases [1–4]. Authoritative and comprehensive variant bench-
marks are therefore crucial for precisely understanding genetic variation in clinical sam-
ples. During the past decades, many consortiums such as Genome in a Bottle [5–10] 
(GIAB), Sequencing Quality Control [11–19], and Illumina Platinum Genomes [20] 
have established many variant benchmarks and genomic reference materials [19, 21, 22]. 
These resources help the community evaluate their variant detection strategies. Never-
theless, the majority of these studies characterize simple variant types and regions, with 
complex events and regions (such as those which are repetitive) generally underrepre-
sented. Benchmarks for complex structural variants and de novo mutations are simi-
larly underrepresented and of particular value, given the critical role they play in human 
health and disease [23–27].

Advanced sequencing technologies [28–30], including PacBio HiFi and Oxford Nano-
pore ultra-long reads, were recently leveraged to assemble a complete hydatidiform 
mole from telomere to telomere [31] (CHM13-T2T), making it possible to resolve the 
sequences of many medically-related genes and regions excluded by previous bench-
marking resources [32]. Recently, several studies have also demonstrated that high-qual-
ity haplotype-resolved assemblies (HRAs) can detect many more variants than previous 
read-alignment-based strategies [33–38] and resolve those in more complex regions, 
such as simple repeats (SRs), short tandem repeats (STRs), variable number tandem 
repeats (VNTRs), and segmental duplications (SDs). Alongside the growing prevalence 
of longer reads and higher-quality assemblies, novel computational methods such as 
Sniffles [39], cuteSV [40], and SVision [23] have increasingly revealed complex SVs in the 
human genome.

Herein, we present the results of the Chinese Quartet Project, which constructs haplo-
type-resolved assemblies and variant benchmarking resources for the Chinese Han pop-
ulation by sequencing a “Chinese Quartet” of two monozygotic twin daughters (LCL5 
and LCL6) and their biological parents (LCL7 and LCL8). The DNA of the four samples 
has been approved as Certified Reference Materials for whole genome-variant assess-
ment by the State Administration for Market Regulation in China [41]. We sequenced 
four related individuals because with single samples (or even a mother/father/child 
trio) random erroneous or variation may be introduced—and remain uncorrected—by 
contamination in cell line culture and transportation [42]. We sequenced each of four 
samples using four sequencing technologies (Illumina, BGI, PacBio, and ONT) and 
assembled whole-genome and haplotype-resolved genomes for the monozygotic twins 
and collapsed genomes for parents. We demonstrated that the two haplotypes of the 
twins achieved high performance in terms of accuracy, continuity, and completeness, 
typically exceeding that of GRCh38, and used the quartet resources to generated a 
comprehensive catalogue of human variants, including underrepresented categories of 
simple germline variants, complex structural variants, de novo mutations, and putative 
somatic mutations.
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Results
Sample processing and sequencing

To obtain high-quality genome assemblies for the Chinese Quartet, we generated 
approx. 50x HiFi (read length N50 = 13–14 kb), approx. 100x regular ONT (read length 
N50 = 20–25 kb) reads for each of four samples, and in addition approx. 30x ultra-long 
ONT (read length N50 = 77  kb) reads for one twin sample, LCL5 (Additional file  1: 
Table  S1). To establish a robust variant benchmark for the twin daughters, we used 
approx. 160x Illumina NovaSeq (150  bp paired-end) and approx. 100x BGI (100  bp 
paired-end) reads alongside previously described a variety of long reads (Additional 
file 1: Table S1 and Additional file 2: Fig. S1).

Haplotype‑resolved genome assembly

Since monozygotic twins are generally considered genetically identical with limited 
somatic substitutions [43], we merged the reads from these two samples to generate a 
high-quality haplotype-resolved genome. We phased HiFi, regular ONT, and ultra-long 
ONT reads of the monozygotic twins into paternal (CQ-P) and maternal (CQ-M) haplo-
types and assembled each haplotype using a hybrid assembly strategy (Additional file 2: 
Fig. S2). First, 3,249,650 high-quality SNVs and 404,882 indels were obtained from a 
previous study [11] and phased according to parent–child information and each child’s 
HiFi reads [44]. Next, HiFi, regular ONT, and ultra-long ONT reads from the two twin 
daughters were separated into two haplotypes using the phased variants [44]. Overall, we 
phased 76.2% of the HiFi reads, 65.0% of the regular ONT reads, and 72.8% of the ultra-
long ONT reads, with all unmapped or unphased reads assigned to the two haplotypes 
randomly (Additional file  1: Table  S2). For each haplotype of the two twin daughters, 
we obtained coverage of around 53 × HiFi, 95 × regular ONT, and 14 × ultra-long ONT 
reads (Additional file 1: Table S2). We independently assembled the ONT reads using 
shasta [45] and flye [46] and the HiFi reads using hifiasm, hicanu [47], and flye [46], pro-
ducing five haplotype-resolved assemblies, each representing the pairwise combination 
of a different sequencing technology and assembler (Additional file 1: Table S3). After 
that, the hifiasm contigs were scaffolded using ragtag [48] and the other four assemblies 
were used to fill the gaps in the hifiasm scaffolds (see the “Methods” section and Addi-
tional file 3). Finally, the two haplotypes of twin daughters were further polished with 
phased HiFi reads [49].

The final two haplotypes comprised 297 contigs for CQ-P and 276 contigs for CQ-M, 
with both having a length of 3.05  Gb (Table  1). The contig N50 values of two haplo-
types were each approx. 133 M, about twofold that of GRCh38.p13, suggesting a high 
contiguity of the phased assemblies compared to previous reports [50–54] (Table 1 and 
Additional file 1: Table S4). Notably, seven and nine chromosomes from the paternal and 
maternal haplotypes, respectively, were gap-free from telomere to telomere. Similarly, 
20 chromosome arms in CQ-P and 18 chromosome arms in CQ-M were gap-free from 
telomere to centromere (Additional file 1: Table S5 and Additional file 2: Figs. S3, S4). 
Furthermore, CQ-P and CQ-M closed 236 and 251 gaps in GRCh38, respectively (Fig. 1a 
and Additional file  2: Fig. S5). For example, gaps in GRCh38 near the centromere of 
chromosome 17 were filled by both CQ-P and CQ-M haplotypes (Fig. 1b and Additional 
file  2: Figs. S6, S7). In addition, a 4  M polymorphic inversion by CHM13-T2T [55] at 
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chromosome 8p23.1 was also resolved in both haplotypes (Fig. 1c and Additional file 2: 
Figs. S6, S8).

We demonstrated that ten chromosomes (5 paternal and 5 maternal) of our assem-
blies had more than a 3% increase in length compared with GRCh38, while six chro-
mosomes (3 paternal and 3 maternal) had a 3% decrease in length compared to 
CHM13-T2T (Fig.  1d). To further assess the completeness of CQ-P and CQ-M, we 
aligned both haplotypes against GRCh38 and observed that CQ-P and CQ-M covered 
97.59% and 97.55% of the GRCh38 genome, respectively (Additional file 1: Table S6). 
Completeness evaluation by BUSCO [57] (v5.1.3) showed that our phased genomes 
resolved 95.7% of the complete genes from the mammalia_odb10 library, which was 
higher than three previous Chinese assemblies [52–54] and comparable to the recent 
reports of HJ [50] and HPRC [36, 56] (Table 1 and Additional file 1: Table S7).

To comprehensively characterize the assemblies, we annotated genes and novel 
sequences on both haplotypes (Additional file  2: Fig. S9). We found 8172 (8.4  Mb) 
and 8175 (8.8  M) novel sequences in CQ-M and CQ-P, respectively, when com-
pared to GRCh38. The N50 of novel sequences in CQ-M and CQ-P were 16.2 kb and 
13.1 kb, respectively. We also found that only 0.87% (143) and 0.99% (162) of novel 
sequences could be mapped to the CHM13-T2T [31] (v2.0) and HPRC [36] genomes, 
respectively. Most novel sequences were located in centromeric and acrocentric 
regions (Additional file 2: Fig. S10). To annotate our genomes, we converted the gene 

Table 1  Summary statistics and comparison of the haplotype-resolved Chinese Quartet assemblies 
to other assemblies

NA not available
a The average performances of HPRC project were calculated according to 47 assemblies
b GRCh38 without the alternative sequences

Sample Haplotype Genome 
length 
(Gb)

No. of 
contigs

Contig N50 
(Mb)

Completeness 
(BUSCO)

QV Switch error

Chinese 
Quartet

Paternal 3.05 279 132.84 95.7% 50–58 0.050%

Maternal 3.05 276 132.84 95.7% 52–59 0.048%

HJ [50] Paternal 3.07 1330 28.15 94.9% 52–59 0.815%

Maternal 2.91 896 25.90 93.5% 54–58 0.813%

NA12878 [51] Hap1 2.88 4363 18.3 95.5% 51–60 0.449%

Hap2 2.88 4449 21.9 95.4% 51–60 0.435%

HG00733 [51] Hap1 2.92 3728 23.7 94.9% 50–59 0.169%

Hap2 2.92 3795 25.9 95.1% 51–59 0.171%

HG002 [56] Paternal 2.96 631 84.93 93.7% NA NA

Maternal 3.06 464 62.88 95.9% NA NA

HPRC [36]a Paternal 3.00 439 40.36 95.0% NA NA

Maternal 3.04 378 40.90 95.9% NA NA

YH2.0 [54] Collapsed 2.91 361,157 0.02 94.2% NA NA

HX1 [52] Collapsed 2.93 5845 8.33 94.0% NA NA

NH1.0 [53] Collapsed 2.89 11,019 3.6 94.6% NA NA

GRCh38.p13b Collapsed 3.21 685 56.41 94.7% NA NA

CHM13-
T2T(v2.0) [31]

/ 3.12 25 150.6 96.0 NA NA
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coordinates of GRCh38.p13 (chr1-chr22, and chrX) to CQ-P and CQ-M using Liftoff 
[58] (v1.6.1), of which 96.69% (19,221/19878) and 96.62% (19,208/19878) of protein-
coding genes were successfully converted (Additional file  1: Table  S7). To annotate 
genes within novel sequences, we masked repeats and annotated the protein-coding 
genes by Augustus [59] (v3.4.0). Finally, we obtained 45 and 58 novel genes in CQ-P 
and CQ-M, respectively (Additional file 1: Table S8), of which four were successfully 
mapped to the CHM13-T2T [31] (v2.0) and HPRC [36] genomes.
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Fig. 1  An overview of the Chinese Quartet assemblies. a Idiogram depicts the alignments between the 
GRCh38 (gray rectangles) and two Chinese Quartet haplotypes (blue rectangles for CQ-P and orange for 
CQ-M). The red rectangles represent the GRCh38 gaps filled by Chinese Quartet assemblies, while the gray 
rectangles refer to unresolved gaps. b, c Examples of gaps resolved by Chinese Quartet assemblies. The top 
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represents the GRCh38. The depths of HiFi reads on three genomes are shown with gray lines. The repeat 
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rectangles. d The bar plots show the percentage size of Chinese Quartet assembled chromosomes relative to 
CHM13-T2T (top) and GRCh38 chromosomes (bottom), without including Ns. The chromosome with more 
than 3% difference in length is labeled with a star
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Construction of variant benchmarking set

Since each sequencing technology and variant detection pipeline had its own advan-
tages, we utilized short reads, long reads, and haplotype-resolved assemblies to call 
variants for the monozygotic twins (Additional file 2: Figs. S11, S12). To eliminate false 
positives caused by random errors, we implemented a rigorous filter for germline vari-
ants based on Mendelian inheritance laws (Additional file 3). Specifically, we only kept 
those variants supported by both twins and at least one parent in the benchmark. For 
variants which did not adhere to Mendelian inheritance laws or were not present in 
either parent, we considered them as de novo mutations if shared by both twins, and as 
putative somatic mutations if supported by only one daughter.
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SNV and indel benchmark construction

Illumina-based SNV and indel calls were downloaded from a previous study [11]. HiFi 
calls were generated by the minimap2-DeepVariant pipeline [60, 61]. Both the Illumina 
and HiFi calls were filtered by read depth, allele frequency, and the Mendelian rule 
(Additional file 3). Meanwhile, three haplotype-resolved assemblies (generated with HiFi 
reads) were used for variant discovery by PAV [33]. Only variants supported by all three 
assemblies were included in the HRA callset (see the “Methods” section and Additional 
file 2: Fig. S11).

We obtained 3,962,453 SNVs and 886,648 indels for the monozygotic twins across 
chr1-chr22 and chrX (Fig. 2a), of which 91.9% (3,639,668) of SNVs and 92.1% (816,621) 
of indels were also called using BGI reads (Fig. 2b and Additional file 2: Fig. S13). Nota-
bly, HRA-based variant calling strategies accounted for 98.3% (3,896,863) of SNVs and 
98.6% (873,796) of indels, while long-read HiFi mapping based approaches accounted 
for 93.5% (3,704,386) of SNVs and 70.1% (621,935) of indels. By contrast, Illumina short-
read mapping based variant calling yielded 81.3% (3,222,326) of the total SNVs and 
45.2% (400,388) of the indels.

As expected, the indel length distribution (Fig.  2c) of the twins is largely consistent 
with that of HG002 in GIAB (v4.2.1). Additionally, the sensitivities of the three technolo-
gies for indel detection increase accordingly as their sequence lengths increase (Addi-
tional file 2: Fig. S14). Notably, 25.5% (226,294) of indels could only be detected using 
HRAs, of which 91.8% were found in STR regions. In general, the HiFi and HRA meth-
ods detected more indels in complex regions than that of Illumina approach (Fig. 2d and 
Additional file 2: Figs. S15, S16). For example, a 21-bp heterozygous insertion of a TCC 
repeat in ERICH6 was accurately identified by both HRAs and HiFi reads, but missed by 
Illumina data due to its shorter read length (Fig. 2e). Another example was a heterozy-
gous deletion in a homopolymer region (a 49-bp A repeat) of ZNF302 which was missed 
by both HiFi and Illumina reads but reported as homozygous deletion by HRAs (Fig. 2f 
and Additional file 2: Figs. S17, S18).

Large deletion and insertion benchmark construction

Structural variants affect more nucleotides and are generally more deleterious than 
SNVs and indels [3], although they are relatively rare compared to SNVs and indels. 
However, SV detection and benchmarking remain challenging. To overcome the biases 
of SV detection across different technologies, SVs from Illumina reads, HiFi reads, and 
haplotype-resolved assemblies were discovered, filtered, and merged. Illumina calls were 
generated by four callers, including Manta [62] (v1.6.0), Delly (v0.9.1), Lumpy (v0.2.13), 
and Pindel (v0.3). HiFi calls were produced by pbsv (v2.6.2), Sniffles [39] (v1.0.12), 
cuteSV [40] (v1.0.11), and SVision [23] (v1.3.6). Apart from read-alignment strategies, 
we also used five HRAs to discover SVs, with SVs supported by at least three assemblies 
included in the HRA callset (Additional file 2: Fig. S12).

We obtained, in total, 9726 large (≥ 50 bp) deletions and 15,600 large (≥ 50 bp) inser-
tions (≥ 50 bp) for the monozygotic twins across chr1-chr22 and chrX (Fig. 3a). HRAs 
accounted for 93.3% (9073) of deletions and 90.0% (14,043) of insertions, while HiFi reads 
accounted for 78.2% (7608) of deletions and 69.5% (10,841) of insertions, and Illumina 
calls 38.7% (3763) of deletions and 5.8% (899) of insertions. We found that 80.5% (7831) 
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of deletions and 76.3% (11,908) of insertions could be independently supported by ONT 
reads (Fig. 3b). Similar to HG002 in GIAB (v0.6 in tier 1 regions), the SV length distribu-
tion of the twins displayed about 300 bp and 6 kb peaks related to SINE-Alu and LINE 
elements, respectively, suggesting the effective SV detection of our benchmark (Fig. 3c, 
d and Additional file 2: Fig. S19). When HiFi reads and HRAs were introduced to the 
analysis, we identified more SVs in repeat regions including VNTRs, simple repeats, and 
segmental duplications—and, overall, called a higher proportion of structural variants 
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in the monozygotic twin daughters when compared to HG002 genome in GIAB (using 
the v0.6 tier 1 callset). We observed that SVs called using at least two of the three tech-
nologies (Illumina, HiFi, and HRAs) always achieved a higher validation ratio than those 
called using one technology independently (Fig. 3e, f and Additional file 2: Fig. S20, S21). 
In particular, there were 1931 deletions and 4485 insertions exclusively contributed by 
HRAs, and only 36.9% and 38.0% of those deletions and insertions, respectively, were 
supported by ONT reads. In addition, 91.0% and 85.7% of HRA-specific deletions and 
insertions, respectively, were located in repeat regions, where sequencing errors and 
multiple alignments of reads occur frequently. For example, HRAs identified a 27  kb 
maternal deletion within a segmental duplication of HEATR4, which was not reported 
in HiFi and Illumina read alignment-based callsets (Fig. 3g). To further validate this het-
erozygous deletion, we manually inspected all phased ONT reads. We found that 14 
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maternal and 2 paternal reads fully spanned this region, providing additional evidence 
for this event (Fig. 3g).

Complex Structural Variant (CSV) and inversion benchmark construction

Detection of complex SVs and inversions was more complicated than that of simple vari-
ants due to ambiguous alignments, especially in repetitive regions. To build a bench-
mark for complex structural variants, we generated five callsets of complex SVs and 
inversions with HiFi reads and HRAs as input using Sniffles, SVision, cuteSV, pbsv, and 
PAV. Next, 175 nonredundant candidate variants from the merged callset were manually 
inspected and refined according to IGV snapshots and dotplots (Fig. 4a–c, Additional 
file  1: Table  S9, Additional file  2: Figs. S22-S25, and Additional file  4). In the process 
of manual inspection, some simple variants, such as tandem duplication (Additional 
file 2: Fig. S24), were erroneously reported as CSVs caused by repeat content (Fig. 4d). 
We also found 53.7% of events that appeared in repeated regions, where we cannot con-
firm whether these were true CSVs or false calls due to the poor read mapping quality 
(Additional file 2: Fig. S25). After filtering these unsure events and false calls, we con-
structed a final set of 31 CSVs, of which 90.3% contained an inverted segment (Fig. 4b). 
We found that Sniffles, SVision, and cuteSV called 80.6–87.1% of CSVs, while PAV only 
called 32.3% (Additional file 2: Fig. S26). Only five CSVs were identified by all five callers, 
emphasizing the challenge of CSV detection.

We identified 40 inversions, of which 75% had allele frequencies larger than 0.5 in the 
HGSVC [33] callset (Additional file  1: Table  S9). We observed that 26 (65%) of these 
inversions were flanked by inverted repetitive sequences and regarded these as recur-
rent inversions [63] (Fig. 4e and Additional file 2: Fig. S27). Notably, 92.3% (24) of recur-
rent inversions were discovered in more than 50% of HGSVC samples, while 50% (13) 
of recurrent inversions were present in all HGSVC samples. These findings suggest that 
majority of recurrent inversions are probably caused by mis-assembly of the reference 
genome in complex regions (Additional file 2: Fig. S28).

De novo and putative somatic mutation analysis

Compared to the trio design, the quartet samples are better suited to benchmarking de 
novo and somatic mutations that are sensitive to random errors in the experiment. We 
applied DeepVariant (v1.1.0) to the Illumina and HiFi reads of four samples. For each 
sequencing technology, the variant call files (gVCFs) from the four samples were merged 
and genotyped by glnexus (v1.2.7, https://​github.​com/​dnane​xus-​rnd/​GLnex​us). Next, 
we removed variants present in either parent or with an allele frequency greater than 
0.75 in either twin. Then, the variants shared by both twins were included in the can-
didate set for de novo mutations, while the variants specific to one twin daughter were 
included in the candidate set for putative somatic mutations. To further reduce the false 
positives, variants located in repeat regions, including STR, VNTR, SD, and SM, were 
excluded. Finally, we detected 68 de novo and 153 putative somatic mutations (Addi-
tional file 1: Table S10). Among the de novo mutations, 59 (53 SNVs and 6 indels) were 
confirmed through manual curation, while none of the putative somatic mutations were 
validated [64].

https://github.com/dnanexus-rnd/GLnexus
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Application of the variant benchmark

To ensure accurate identification of possible false negatives when using the benchmark, 
we defined the benchmark regions for the twins based on the haplotype-resolved assem-
blies (see the “Methods” section). The benchmark regions covered 92.43% of GRCh38 
(approx. 2.80 Gbp in total, covering chr1-chr22 and chrX), which is comparable with 
HG002 in GIAB (v4.2.1, 2.75 Gbp).

In variant detection pipelines, complex regions like SD, SR, VNTR, and STR usu-
ally result in sequencing errors and multiple read alignments, particularly when using 
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short read sequencing [65]. The long-read length and high base precision of HiFi and 
HRAs facilitated the detection of variants in complex regions that were not accessible 
for other technologies (Additional file 2: Figs. S29-S32). Accordingly, we stratified vari-
ants into tier 1 (high confidence) and tier 2 (relatively lower confidence) categories on 
basis of their supporting evidence (Fig.  5a). In v2.0 of Chinese Quartet, variants sup-
ported by at least two of the three technologies (Illumina, HiFi, and haplotype-resolved 
assemblies) were included in tier 1. For technology-specific variants, we included them 
in tier 1 if they were not located in repeat regions and supported by an orthogonal tech-
nology (BGI or ONT). Otherwise, they were included in tier 2. In v2.0 benchmark, tier 2 
calls account for 10.4% of SNVs, 36.1% of indels, 28.0% of deletions, and 11.9% of inser-
tions. As expected, in tier 2 callsets, 76.2% of SNVs, 97.8% of indels, 94.0% of deletions, 
and 84.1% of insertions were in repeat regions. Compared to tier 1 calls, we found that 
technology-specific calls always had abnormal read depths and low alignment rates as a 
consequence of repetitive regions (Fig. 5b and Additional file 2: Fig. S33). In v2.1 of the 
Chinese Quartet benchmark, similar to GIAB, we defined a more exclusive tier 1 to spe-
cifically address ultra-high-quality benchmarking in simple regions (Additional file 3).

We also found that variants in our benchmark were enriched (Wilcoxon rank-sum 
one-sided test, P < 2.8 × 10−6) in the proximal telomere of metacentric chromosomes 
instead of being randomly distributed about the genome (Additional file  2: Figs. S34, 
S35). Meanwhile, the densities of SNVs and indels were strongly correlated with the den-
sity of STR (SNV: R = 0.68, P = 6.53 × 10−45; indel: R = 0.83, P = 4.22 × 10−82), while the 
densities of large deletions and insertions were strongly correlated with the density of 
VNTR (deletion: R = 0.78, P = 5.14 × 10−67; insertion: R = 0.81, P = 1.21 × 10−73) (Addi-
tional file 2: Fig. S36). In our benchmark, we found that 27,665 SNVs, 1021 indels, 58 
deletions, and 78 insertions affected coding DNA sequence (CDS) regions (Additional 
file 1: Table S11).

To facilitate the use of this benchmark, we provided a script to assess variants across 
various genome regions. Our script integrated hap.py (https://​github.​com/​Illum​ina/​hap.​
py) and truvari [66] and provided an option for users to analyze their methods in terms 
of different regions, such as segmental duplications and short tandem repeat regions. 
By comprehensively evaluating the performance of input variants in various genomic 
regions, developers can purposefully optimize their method, while users can choose the 
most appropriate caller for their needs. We also applied the initial callsets of the twins to 
the script and observed that all callsets achieved higher F-scores in tier 1 regions com-
pared to tier 2 and other repetitive regions in v2.0 of the benchmark (Additional file 2: 
Fig. S37). In addition, manual inspection of the reported false positives and false nega-
tives in tier 1 ensured that our benchmark follows the reliable identification of errors 
(RIDE) principle [5, 10, 64] (Additional file 1: Table S12 and Table S13).

Assemblies and variant detection at different sequencing depths

Sequencing depth was an important factor for both assembly and variant detection. To 
assess the effect of depth upon assembly and variant detection pipelines, samples with 
different sequencing depths (ranging from 10 × to 100 × coverage) were generated by 

https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
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downsampling the HiFi reads of the monozygotic twins. Initially, samples with differ-
ent sequencing depths were assembled into haplotype-resolved assemblies by hifiasm 
[38]. The contig N50 of the two haplotypes flattened out with increasing sequencing 
depth and was maintained for more than 25  M at 40 × (Fig.  6a and Additional file  2: 
Table S14). The BUSCO completeness also increased rapidly and reached around 94% 
at 30 × (Fig. 6a). The accuracy of assemblies (QV) also increased steadily with increas-
ing depth and remained stable from 60 × (Fig. 6a). To further evaluate the performance 
of variant detection with HRA in diverse sequencing depths, two haplotypes from dif-
ferent depths were used for variant detection with PAV [33]. Like the performance of 
assemblies, the recall, precision, and F1 score of variants also improved with increases 
in depth, reaching a plateau at 30 × (Fig.  6b and Additional file  1: Table  S15). Taken 
together, these results suggest that 30 × HiFi reads could achieve optimal performance 
when used with appropriate assembly and variant detection pipelines.

Decoding HLA regions with haplotype‑resolved assemblies

Human leukocyte antigen (HLA) genes are important in cancer, autoimmune disease, 
infectious disease, and tissue transplantation [67]. To better understand the genetic 
features of human leukocyte antigen genes, we investigated the extended major histo-
compatibility complex [68] (xMHC) region of two twin daughters based on the haplo-
type-resolved assemblies and variant benchmarking set. We observed that both CQ-P 
and CQ-M covered the entire xMHC region in GRCh38 without any gap (Fig. 7a and 
Additional file 2: Fig. S38). In addition, 265 out of 271 protein-coding genes located 
within the xMHC regions were resolved by both CQ-P and CQ-M. We identified 
13.5 kb and 19.0 kb of novel sequence compared to GRCh38 in paternal and maternal 
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haplotypes, respectively. Our benchmarking set included 28,662 SNVs, 3725 indels, 
61 large deletions, and 64 large insertions spanning 7.78 Mbp of the extended MHC 
region, in comparison to GIAB which used linked reads and long reads to call 22,368 
small variants spanning 4.97 Mbp of classical MHC region [8]. Compared to classical 
class III regions, classical class I and II regions had a higher number of variant calls 
(Fig. 7b). We also discovered the difference of variants between two haplotypes in the 
xMHC region is higher than those in other regions (Fig. 7c). Furthermore, we discov-
ered that the heterozygous SNVs and indels in the xMHC regions were significantly 
(P < 2.57 × 10−10) more prevalent than those in other regions, while homozygous vari-
ants showed no significant (P > 0.24) difference in prevalence (Fig. 7d), confirming the 
linkage disequilibrium of HLA regions [69].

Discussion
Here, we report the generation of a Chinese Quartet, using these to construct a com-
prehensive catalogue of human genetic variants. The twin daughters of the Chinese 
Quartet could be regarded as two biological replicates, which facilitates additional cross 
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validation and random error filtering compared to variant calling in a single sample or 
even in a trio. Moreover, the quartet family facilitate the detection of de novo and puta-
tive somatic mutations that are prone to false positives caused by random errors in both 
the trio and single sample designs.

Compared to the complete hydatidiform mole (CHM13), it is more challenging to 
decode the complete genome of a diploid sample. Nevertheless, 76% of the chromo-
some arms in our assemblies of monozygotic twins were gap-free from telomere to 
centromere (Additional file  1: Table  S5). Meanwhile, seven and nine chromosomes of 
CQ-P and CQ-M were assembled at telomere-to-telomere levels, respectively (Addi-
tional file 1: Table S5). Although long-read technologies, including HiFi and ultra-long 
ONT reads, were applied in our assemblies, it was still difficult to distinguish two hap-
lotypes of diploid samples in large repetitive regions, such as higher-order repeats in 
centromeres, original gaps in the assemblies, and novel sequencing regions (Additional 
file 4: Table S16). To obtain a high-quality assembly in these large repetitive regions, we 
randomly assigned the unmapped and unphased reads equally into two haplotypes in 
our assembly pipeline. Regions contributed to the assemblies by these uncertain reads 
are labeled (Additional file  4: Table  S16) such that further validation with longer and 
more advanced reads may be performed in the future.

When including haplotype-resolved assemblies for benchmarking, more large-scale 
variants were detected due to the longer spanning length of HRAs on the genome [33] 
(Additional file  5: Table  S17). Meanwhile, many variants in complex regions such as 
xMHC and segmental duplications were reported, which are difficult to detect using 
read-alignment based variant calling strategies. Another contribution of our bench-
mark is that, compared to previous studies [10, 21, 22, 70], we extend the set of vari-
ant types to include complex structural variants and de novo mutations. Nevertheless, 
our benchmark also has several limitations. Firstly, technology-specific variants should 
be subjected to further validation as it was difficult for current technologies to decode 
all complex regions unbiasedly, such as homopolymer regions and segmental duplica-
tions (Figs. 2f and 3g). Secondly, certain structural variants in our benchmark may be 
reported as multiple records at repetitive regions due to breakpoint shifts. Thirdly, we 
also observe that different methods of variant comparison or different representations 
of the same variant can lead to misjudgments of false positives and false negatives in 
benchmarking. Fourthly, since the samples used in this study are cell lines from healthy 
individuals, somatic and mosaic mutations have not been comprehensively analyzed in 
the benchmarking.

To deal with these limitations, the community should leverage advanced technologies 
to develop novel methods for variant benchmark validation, construction, and com-
parison. For instance, automated and unbiased methods for variant validation should is 
crucial to overcome the inefficiency and subjective factors introduced by manual cura-
tion. Furthermore, utilizing complete T2T assembly and human pangenome as reference 
genomes could effectively address some challenging regions that are ill-represented in 
GRCh37 and GRCh38. Pangenomes and graph-based variant detection, representa-
tion, and comparison methods should be applied in benchmarking processes, which 
will be highly beneficial in addressing challenges posed by highly repetitive regions such 
as the centromere. For the next phase of the Chinese Quartet Project, we will develop 
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new algorithms and generate novel data to improve both the de novo assemblies and 
variant benchmarking set so as to facilitate resequencing projects of the Chinese Han 
population.

Conclusions
The Chinese Quartet Project provides high-quality haplotype-resolved assemblies for 
the two monozygotic twins of the quartet family, each of which exceeds GRCh38 in con-
tiguity and completeness, alongside a comprehensive variant catalogue for the twins. We 
expect these resources to aid in the ongoing improvement of sequencing technologies 
and variant calling pipelines, especially for complex variants, as well as giving insight 
into regions of the human genome technically challenging to assemble.

Methods
Sequencing data

The “Chinese Quartet” family, comprising a 60-year-old father (LCL7), 60-year-
old mother (LCL8), and two 30-year-old monozygotic twin daughters (LCL5 and 
LCL6), was from the Fudan Taizhou cohort, which was approved as Certified Refer-
ence Materials (CRMs) by the State Administration for Market Regulation in China 
(GBW09900-GBW09903). The processes of cell line establishment, DNA extraction, 
and Illumina sequencing were described in prior studies [11, 13]. The four cell lines 
were also sequenced using BGI, PacBio, and ONT technologies (Additional file 3).

Separation of reads by haplotype

To build haplotype-resolved assemblies for the monozygotic twins of the Chinese 
Quartet, we split HiFi and ONT reads into paternal (CQ-P) and maternal (CQ-M) 
haplotypes. Firstly, we obtained 3,249,650 single nucleotide variants (SNVs) and 
404,882 indels of the family from a previous study [11]. The variants of the monozy-
gotic twin daughters were phased using the “phase” command of whatshap [44] (v1.1) 
with parent–child information and each child’s HiFi reads. We then aligned the HiFi, 
ONT, and ultra-long ONT reads from each twin to GRCh38 with minimap2 (v2.20-
r1061). We added haplotype tags to the aligned BAM files using the “haplotag” 
command of whatshap and assigned reads with haplotype tags to their respective 
haplotypes using the “split” command of whatshap. Reads which were either unas-
signed to a haplotype or unmapped to GRCh38 were randomly assigned to the two 
haplotypes.

Genome assembly

As monozygotic twins are in general regarded as genetically identical with limited 
somatic mutations [43], we merged the phased reads from two twin samples for each 
haplotype to obtain high-quality haplotype-resolved genomes. For each haplotype of 
the monozygotic twin daughters, we assembled phased HiFi reads using hifiasm [38] 
(v0.15.5), hicanu [47] (v-r10117), and flye [46] (v2.8.3-b1695). Meanwhile, ONT regu-
lar and ONT ultra-long reads were assembled with flye [46] (v2.8.3-b1695) and shasta 
[45] (v0.7.0). Next, we identified the mis-assemblies and broke chimeric contigs with 
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ragtag [48, 71] (v2.0.1). Then, we scaffolded the hifiasm contigs based on the human 
Telomere-to-Telomere genome [31] (CHM13-T2T v1.0) and closed the gaps of hifi-
asm scaffolds with other contigs [72, 73] (Additional file 3). Finally, the two haplotypes 
were polished with their corresponding HiFi reads using NextPolish [49] (v1.3.1).

Evaluation of assembly accuracy, continuity and completeness

The two haplotype-resolved assemblies of the monozygotic twin daughters were eval-
uated on the basis of accuracy, continuity, and completeness. To assess the accuracy 
of the genome, we calculated the consensus quality value (QV) for each haplotype 
using Merqury [74] (v1.3), taking the Illumina reads of the family as input. Conti-
nuity was calculated on basis of contigs, contig N50, and the number of gaps. Three 
methods were applied to evaluate the completeness of CQ-P and CQ-M. First, we 
used BUSCO [57] (v5.1.3) with the “mammalia_odb10” database to calculate the pro-
portion of complete BUSCO genes included in the assembly. Secondly, Merqury [74] 
(v1.3) was used to estimate the k-mer completeness of HRAs with Illumina sequenc-
ing data. Thirdly, we aligned both haplotypes to GRCh38 with minimap2, considering 
the coverage fraction to be a proxy of completeness.

Genome annotation and identification of novel sequences

We used Liftoff [58] to annotate genes from the Gencode annotation (v38) of GRCh38 
to both haplotypes. To annotate the novel genes, we aligned contigs of two haplotypes 
of the Chinese Quartet twins to GRCh38 with minimap2 [60] (v2.20-r1061) and win-
nowmap2 [75] (v2.03). Thereafter, the sequences labeled by hard-clip (H), soft-clip (S), 
and insertion (I) in BAM files were extracted and aligned to GRCh38 again to remove 
the duplicate or transitional sequences of the genome. Sequences unmapped after this 
second alignment step were considered novel sequences. These novel sequences were 
repeat masked using RepeatMasker (v4.1.2-p1, http://​www.​repea​tmask​er.​org) and anno-
tated by Augustus [59] (v3.4.0).

Variant detection using Illumina reads

We downloaded 3,249,650 SNVs and 404,882 indels (< 50 bp) previously called in Chi-
nese Quartet using the Illumina [11]. To complement this dataset with structural vari-
ants, we aligned these Illumina reads to GRCh38 using bwa [76] (v0.7.17), marking 
duplicated reads with biobambam2 [77] (v2.0.182). Variants were called using Manta 
[62] (v1.6.0), Delly [78] (v0.9.1), Lumpy [79] (v0.2.13), and Pindel [80] (v0.3) with param-
eters as described in the Additional file  3. We retained only those SVs at least 50  bp 
long and supported by at least 30 reads. We retained SVs following the Mendelian rules 
(Additional file  3). High-quality variants from four callers were then compared and 
merged by Jasmine [81] (v1.1.5) for each SV type (deletion and insertion), respectively. 
Finally, variants supported by at least two of the four callers were retained for the final 
benchmarking set.

http://www.repeatmasker.org
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Variant detection of using HiFi reads

We aligned HiFi reads to GRCh38 using minimap2 [60] (v2.20-r1061) and then detected 
small variants for each sample using DeepVariant [61] (v1.1.0). The gVCFs of four sam-
ples were merged and genotyped by glnexus (v1.2.7, https://​github.​com/​dnane​xus-​rnd/​
GLnex​us). SNVs and indels were phased using whatshap [44] (v1.1), taking the par-
ent–child information and children’s HiFi reads as input. To obtain high-quality SNVs 
and indels, we filtered variants to (i) remove those with allele frequencies < 0.2, read 
depth < 25, read depth > 75 or length > 49  bp; (ii) remove those violating the Mende-
lian rule, (Additional file 3), and (iii) retain only those where both twins had identical 
genotypes.

To obtain high-quality SV calls, we utilized four popular callers, pbsv (v2.6.2), Sniffles 
[39] (v1.0.12), cuteSV [40] (v1.0.11), and SVision [23] (v1.3.6), to independently identify 
SV events. Similar to Illumina reads, we retained only those SVs at least 50 bp long and 
supported by at least 15 reads. We retained only those SVs following the Mendelian rule 
and supported by at least two of four callers for the final benchmarking set.

Variant detection using haplotype‑resolved assemblies

We aligned echo of the five HRAs to GRCh38 using minimap2 [60] (v2.20-r1061) and 
called variants using the PAV [33] (v1.1.0) pipeline with default parameters. SNVs and 
indels were called using the three HiFi assemblies, with only variants identically called in 
all three retained for the final benchmarking set. SVs were called using both the HiFi and 
ONT assemblies. We retained for the final benchmarking set only those variants which 
were identically called in at least two assemblies.

Curation of complex structural variants

In the initial SV callsets generated by HiFi and haplotype-resolved assemblies, SVs label 
as either “INV,” “complex SV,” or multiple SV types were extracted as candidate CSVs. 
To manually curate these candidates, the sequencing alignments of Illumina reads, 
HiFi reads, and HRAs in candidate regions were first visualized by IGV [82]. Dotplots 
between the HRAs and the reference genome in candidate regions were also generated 
by Gepard [83]. For a given candidate locus, we then manually inspected its IGV snap-
shots and the associated dotplots to determine the presence of the variant and its type 
[64] (Additional file 1: Table S9).

Detection of de novo and putative somatic mutations

We utilized the Illumina and HiFi reads of four samples to detect de novo and somatic 
mutations of the monozygotic twin daughters relative to their parents. To obtain de novo 
and putative somatic calls, the variants that violated the Mendelian rule were extracted 
and the variants shared by both twins included in the candidate set for de novo muta-
tion. Variants specific to one twin daughter were included in the candidate set for puta-
tive somatic mutation. To further reduce the false positives, variants located in repeat 
regions, including STR, VNTR, SD, and SM, were excluded. All candidate mutations 
were manually inspected according to the IGV snapshots of the Illumina and HiFi reads 
(Additional file 1: Table S10).

https://github.com/dnanexus-rnd/GLnexus
https://github.com/dnanexus-rnd/GLnexus
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Definition of benchmark regions

To define the benchmark regions, we first mapped the two haplotypes from different 
assemblers to GRCh38, retaining only those regions covered by both haplotypes. The gap 
regions of GRCh38, low confidence regions (LowConfidenceFilter.bed.gz, downloaded 
from HGSVC ftp), and regions with abnormal read depth (exclude.cnvnator_100bp.
GRCh38.20170403.bed, downloaded from HGSVC ftp) were removed.

Construction of variant call benchmarking set

SNVs and indels (< 50  bp) called using Illumina, HiFi, and HRAs were normalized 
and merged with bcftools (v1.13) and large deletions and insertions (≥ 50  bp) were 
compared and merged using Jasmine [81] (v1.1.5). Variants at centromeres, low con-
fidence regions, copy number abnormal regions, and Y chromosomes were excluded 
in the final benchmark. Centromere regions were obtained from UCSC Table Browser 
(https://​genome.​ucsc.​edu/​cgi-​bin/​hgTab​les). The BED file of low confidence regions 
was downloaded from http://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​data_​colle​ctions/​
HGSVC2/​techn​ical/​filter/​20210​127_​LowCo​nfide​nceFi​lter/​LowCo​nfide​nceFi​lter.​bed.​
gz. The BED file containing copy number abnormal regions was downloaded from 
http://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​data_​colle​ctions/​HGSVC2/​techn​ical/​tech-​
suppo​rt-​files/​exclu​de.​cnvna​tor_​100bp.​GRCh38.​20170​403.​bed.

To evaluate the quality of SNVs and indels in our benchmark, BGI reads were aligned 
to GRCh38 with bwa (v0.7.17-r1188), and DeepVariant [61] used to call SNVs and indels. 
ONT reads were aligned to the reference genome and four callers—pbsv (v2.6.2), Snif-
fles [39] (v1.0.12), cuteSV [40] (v1.0.11), and SVision [23] (v1.3.6)—were used to call 
variants. We retained only those SVs supported by at least 15 reads and 2 callers. In the 
v2.0 benchmarking set, variants that were supported by at least two of Illumina, HiFi, 
and haplotype-resolved assemblies were included in the tier 1 callset. For technology-
specific variants, we included them in tier 1 if they were not located in repeat regions 
(STR, VNTR, SM, and SD) and supported by either BGI or ONT reads. Otherwise, they 
were included in tier 2 callset (Fig. 5a). In addition, to facilitate accurate benchmarking 
in simple regions, we have also defined a more conservative tier 1 in v2.1 of the bench-
mark (Additional file 3).

Variant annotation

Repeat regions of GRCh38, including segmental duplications (SDs), simple repeats 
(SRs), and variable number tandem repeats (VNTRs), were downloaded from the UCSC 
table browser (https://​genome.​ucsc.​edu/​cgi-​bin/​hgTab​les). Short tandem repeats (STRs) 
of GRCh38 were generated using the “scan” command in msisensor-pro [84], taking the 
GRCh38 genome as input. A variant was annotated to a repeat region if it overlapped 
(by at least 1 bp) with a repeat region. Variants were also annotated by the Ensembl Vari-
ant Effect Predictor [85] (v104.3).

Utility of Chinese Quartet benchmarking set

To facilitate the utility of this benchmark, we provided a snakemake workflow (https://​
github.​com/​xjtu-​omics/​Chine​seQua​rtetG​enome/​tree/​main/​bench​marks) for evaluating 
variants across various genomic regions. The workflow combines hap.py (https://​github.​

https://genome.ucsc.edu/cgi-bin/hgTables
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/LowConfidenceFilter.bed.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/LowConfidenceFilter.bed.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/LowConfidenceFilter.bed.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/tech-support-files/exclude.cnvnator_100bp.GRCh38.20170403.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/tech-support-files/exclude.cnvnator_100bp.GRCh38.20170403.bed
https://genome.ucsc.edu/cgi-bin/hgTables
https://github.com/xjtu-omics/ChineseQuartetGenome/tree/main/benchmarks
https://github.com/xjtu-omics/ChineseQuartetGenome/tree/main/benchmarks
https://github.com/Illumina/hap.py
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com/​Illum​ina/​hap.​py) and truvari [66] to provide an evaluation report for each input 
VCF, quantifying precision, recall and F-score relative to the Chinese Quartet variants. 
Users can customize the workflow by amending the config file to implement their own 
programs as well as evaluating their input VCFs not only across the entire benchmarking 
region but in custom regions. For instance, users can evaluate a tool tailored to variant 
calling in challenging regions or particular variant types.

Evaluating assembly and variant calling performance at different sequencing depths

To assess the quality of genome assembly step and subsequent variant calling at dif-
ferent sequencing depths, we randomly downsampled the HiFi reads of both monozy-
gotic twins to depths of 10 to 100-fold coverage with increments of 10-fold. Seqtk 
(v1.3, https://​github.​com/​lh3/​seqtk) was used to downsample the sequences. We then 
assembled the simulated samples at each sequencing depth with hifiasm [38] (v0.15.5). 
Each assembly was evaluated for accuracy, completeness, and continuity, as detailed 
above. The variants at each sequencing depth were called using PAV [33] (v1.1.0) with 
two aligners, LRA [86] and minimap2. To evaluate variant calls, only those calls sup-
ported by both aligners in the PAV pipeline were retained for analysis. We considered 
variants supported by both the benchmark and simulated sample as “true positive” (TP) 
calls. Variants only supported by the simulated sample or benchmark were labeled as 
“false positive” (FP) and “false negative” (FN) calls, respectively. Finally, variant call-
ing was evaluated on the basis of recall, precision, and F1 scores as given by Eqs. 1, 2, 
3, respectively.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03116-3.

Additional file 1: Table S1. Sequencing summary of the Chinese Quartet. Table S2. Summary of phased reads from 
two haplotypes. Table S3. Summary statistics of the Chinese Quartet assemblies. Table S4. Assembly summary of 
the Chinese Quartet and other samples. Table S5. Distribution of contigs in Chinese Quartet assemblies. Table S6. 
The aligned fraction to GRCh38 of the Chinese Quartet haplotypes. Table S7. Completeness summary of our 
assemblies and other public papers. Table S8. Annotations of novel genes in Chinese Quartet. Table S9. Summary 
of Complex SVs and inversion of Chinese Quartet. Table S10. Information of de novo and putative somatic mutation. 
Table S11. Summary of VEP annotations for benchmarks. Table S12. Manual inspection result of 20 random false 
positives and false negatives for each variant type. Table S13. Detailed results of manual curations in Table S12. 
Table S14. Assembly performance at different sequencing depths of the Chinese Quartet. Table S15. Variant detec-
tion performance at different sequencing depths of the Chinese Quartet.

Additional file 2: Fig. S1. Length distribution of ONT reads in this study. Fig. S2. Haplotype-resolved assembly 
pipeline for the Chinese Quartet twins. Fig. S3. Alignments of paternal (top) and maternal (bottom) haplotypes 
to GRCh38. Fig. S4. Comparison between haplotype-resolved assemblies of the Chinese Quartet twin daugh-
ters and GRCh38 as well as CHM13. Fig. S5. Overview of the gaps in the assemblies of Chinese Quartet twin 

(1)Recall =
TP

TP + FP

(2)Precision =
TP

TP + FN

(3)F1 score = 2 ∗
Recall × Precision

Recall + Precision

https://github.com/Illumina/hap.py
https://github.com/lh3/seqtk
https://doi.org/10.1186/s13059-023-03116-3
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daughters. Fig. S6. Bar plots show the ratio of the number of abnormal bins to total the number of bins at both (a) 
chr17:21,523,754–22,371,820 (the regions covered in Fig. 1b) and (b) chr8: 6,281,267–13,968,020 (the region covered 
in Fig. 1c). Fig. S7. Dotplots between the Chinese Quartet twins assemblies and both the GRCh38 and CHM13-T2T 
(v2.0) at a region near the centromere of chromosome 17 (chr17:21,523,754-22,371,820). Fig. S8. Dotplots between 
the twins of the Chinese Quartet assemblies and both GRCh38 and T2T genomes at chromosome 8p23.1. Fig. S9. 
Circos plots show the characteristics of the paternal (A) and maternal (B) haplotypes of the Chinese Quartet twin 
daughters. Fig. S10. Distribution of novel sequence distribution in CQ-P (left) and CQ-M (right). Fig. S11. SNV and 
indel detection and validation pipelines. Fig. S12. Structural variant detection and validation pipelines. Fig. S13. 
Validated percentage of SNVs and indels across seven different combinations of three technologies. Fig. S14. Indel 
length distributions of HG002 and three technologies calls of Chinese Quartet twin daughters. Fig. S15. SNV rate in 
repeat regions across different combinations of three technologies. Fig. S16. Indel rate in repeat regions across dif-
ferent combinations of three technologies. Fig. S17. IGV show the alignment of HRAs, HiFi reads, and Illumina reads 
to the reference genome (GRCh38) in a 49bp homopolymer region. Fig. S18. Distribution analysis in homopolymer 
regions. Fig. S19. SV length distributions of HG002 and three callsets of Chinese Quartet twin daughters. Fig. S20. 
Large deletion rate in repeat regions across different combinations of three technologies. Fig. S21. Large insertion 
rate in repeat regions across different combinations of three technologies. Fig. S22. True CSV (DEL+INV) example 
at chr5:148,170,966-148,177,603 a-c, Dotplots show the comparisons of sequence between GRCh38 and GRCh38, 
GRCh38 and paternal haplotype, as well as GRCh38 and maternal haplotype at this locus. d, IGV snapshot shows the 
alignments of haplotype-resolved assemblies, HiFi reads, and Illumina reads at this locus. Fig. S23. True inversion 
example at chr4:87,913,966-87,950,107. Fig. S24. Tandem duplication were reported as CSV at chr1:206,046,625-
206,065,379. Fig. S25. Unsure CSV in repeat regions at chr16:1,222,853, 1,261,292. Fig. S26. Complex SVs and 
inversions in benchmarks. Fig. S27. Recurrent inversion at chr7:40,838,845-40,841,845. Fig. S28. Violin plot shows the 
frequency of inversion in the HGSVC dataset. Fig. S29. F-scores of initial variants compared to the v2.0 benchmark 
of Chinese Quartet twin daughters. ILM_GB means the Illumina callset of the Chinese Quartet twin we obtain from 
the published paper (10.1186/s13059-021-02569-8). Fig. S30. Bar plots show the percentage of technology specific 
calls in v2.0 benchmark. Fig. S31. Variant features in different types of regions. Fig. S32. Benchmark evaluation of 
Chinese Quartet twin daughters. Fig. S33. The density plots show the difference in variant characteristics between 
high-confidence and technology-specific calls. Fig. S34. Variant distribution of Chinese Quartet at the telomere. Fig. 
S35. Variant distribution of Chinese Quartet at telomere and centromere. Fig. S36. STR/VNTR distribution and variant 
breakpoint correlation. Fig. S37. Diagram for benchmark utility. Fig. S38. IGV snapshot shows Chinese Quartet twins’ 
assemblies to GRCH38 in xMHC regions.

Additional file 3: Supplementary notes. In this additional file, we provide detailed processes of data generation, 
genome assembly, and construction of variant benchmarks [100, 101].

Additional file 4: Table S16. Known potentially problematic regions in our genome.

Additional file 5: Table S17. Summary of repeats in the benchmark regions.
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