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Abstract

Contamination from present-day DNA is a fundamental issue when studying ancient
DNA from historical or archaeological material, and quantifying the amount of
contamination is essential for downstream analyses. We present AuthentiCT, a
command-line tool to estimate the proportion of present-day DNA contamination in
ancient DNA datasets generated from single-stranded DNA libraries. The prediction is
based solely on the patterns of post-mortem damage observed on ancient DNA
sequences. The method has the power to quantify contamination from as few as
10,000 mapped sequences, making it particularly useful for analysing specimens that
are poorly preserved or for which little data is available.
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Background
After the death of an organism, its DNA decays and is progressively lost through time

[1, 2]. Under favourable conditions, DNA can preserve for hundreds of thousands of

years and provide valuable information about the evolutionary history of organisms [3,

4]. Yet, only minute amounts of ancient DNA (aDNA) often remain in historical or

archaeological material. In addition, most of the extracted DNA usually comes from

microorganisms that spread in decaying tissues [5, 6]. Whereas microbial sequences

rarely align to the reference genome used for identifying endogenous sequences if ap-

propriate length cut-offs are used [7–9], contamination with DNA from closely related

organisms represents a recurrent problem [10–12]. This is particularly true for the

genomic analyses of ancient humans, as the individuals handling the specimens during

excavation and at later times often leave their DNA behind [13, 14]. Because this con-

tamination can substantially affect the results of population genetic or phylogenetic

analyses, quantifying the level of contamination is crucial for downstream analyses. An

estimate of the level of present-day DNA contamination is also desirable for making

decisions when screening samples to identify those that can be further sequenced with

reasonable effort and expenses.
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Approaches to quantify the level of contamination can be divided into three categor-

ies. Some methods rely on prior knowledge of sequence differences between the con-

taminating and endogenous genomes [15–17]. Alternatively, if these differences are

unknown a priori, other methods evaluate the excess of alleles compared to the ex-

pected ploidy [18–21]. The third set of methods uses patterns of chemical damage that

are characteristic of aDNA [17, 22].

Amongst the approaches that rely on genetic differences, the most common strategy

is to identify diagnostic positions expected to differ between the contaminating and en-

dogenous sequences [16, 20]. The proportion of sequences that carry the contaminant

allele at diagnostic positions represents an estimate of the level of contamination. This

approach is particularly well-tailored for studying the mitochondrial genome, because it

is an extensively studied, non-recombining locus that is often available at high cover-

age. In contrast, local genealogies along the nuclear genome may differ from the overall

population relationship (incomplete lineage sorting), making the identification of diag-

nostic positions difficult. By leveraging differences in allele frequencies between popula-

tions, it is possible to estimate the proportion of present-day human DNA

contamination amongst nuclear sequences from archaic hominins [21–23]. For the ana-

lysis of early modern humans, this approach remains challenging because of the lack of

knowledge about rare sequence variants in the sample of interest that are unlikely to be

shared with the present-day human contaminant. Thus, contamination estimates ob-

tained from mitochondrial sequences are often used as a proxy for the level of nuclear

DNA contamination [24–26]. However, the ratio of mitochondrial DNA to nuclear

DNA may vary between the endogenous and contaminating DNA [27, 28], leading to

potential differences in the level of contamination between the mitochondrial and nu-

clear genomes [29, 30].

Other approaches that compare the nuclear genetic differences between contaminat-

ing and endogenous genomes commonly exploit the ploidy of the sex chromosomes

[18, 19, 31]. For instance, apparent heterozygous sites on the X chromosome of a male

individual or sequences mapping to the Y chromosome for a female individual repre-

sent evidence of DNA contamination. Although these analyses do not rely on a prior

knowledge about the ancestry of the ancient individual, they are either restricted to the

X chromosome of male samples or cannot detect female contamination in female sam-

ples. Another concern is that the level of contamination may differ between the sex

chromosomes and the autosomes if the sexes of the contaminant(s) and the ancient in-

dividual differ. Other approaches for the autosomes exist, e.g. methods using apparent

alternative alleles at homozygous positions or an allelic imbalance at heterozygous posi-

tions [20, 21]. However, such approaches assume that high sequence coverage is

available.

Alternatively, properties of aDNA molecules can be used to estimate contamination.

Ancient DNA is typically fragmented into pieces shorter than 100 bp and exhibits mis-

coding base modifications that accumulate over time [32–35]. The most common mis-

coding lesions observed in aDNA are the results of cytosine deamination [36–39] that

converts cytosine (C) into uracil (U), which is then misread as thymine (T), or 5-

methylcytosine into thymine. These apparent C-to-T substitutions occur preferentially

toward the ends of sequences [39], likely because single-stranded overhangs, which are

common in aDNA, exhibit a rate of cytosine deamination about two orders of
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magnitude higher than double-stranded regions [1, 40]. To estimate present-day DNA

contamination, these properties need to be formalised in a model of aDNA damage.

The simplest approach (“conditional substitution analysis”) is based on a model that as-

sumes independence between C-to-T substitutions at both ends of sequences. Testing

whether these substitutions are correlated between ends may reveal a set of undamaged

sequences, which are likely contaminants [3]. This method works even for low se-

quence coverage but is primarily used to indicate the presence of contamination. Other

methods extend this approach by considering the distribution of C-to-T substitutions

along sequences, either assuming a parametric ([39], PMDtools [41] and mapDamage

[42, 43]) or empirical distribution of these substitutions along sequences (contDeam

[17] and aRchaic [44]). Notably, these methods assume that C-to-T substitutions in the

aDNA sequences are independent of each other.

Here, we introduce a novel model for aDNA damage that does not assume independ-

ence between C-to-T substitutions. Our implementation, AuthentiCT, allows both esti-

mation of the present-day DNA contamination rate and deconvolution of endogenous

and contaminating sequences solely based on patterns of aDNA damage, which makes

it applicable to any species, if a suitable reference genome is available for alignment.

Applying this method to both simulated and existing aDNA datasets, we find that

present-day DNA contamination can be estimated from as few as 10,000 sequences,

making it a practical tool in the screening of samples for aDNA preservation.

Results
Method overview

In this section, we first motivate our approach by studying the features of aDNA dam-

age. We then formalise a model of aDNA damage and develop a mixture model to de-

scribe and distinguish endogenous from putative contaminating sequences.

Ancient DNA deamination patterns used in this study

Deamination patterns in aDNA sequences depend on the DNA library preparation

method used [45]. Some methods involve ligation of adapters to double-stranded DNA

(“double-stranded libraries”, [46]) while other methods convert the two DNA strands

into separate library molecules (“single-stranded libraries”, [47]). Here, we focus on the

damage patterns in single-stranded libraries, as they fully preserve the strand orienta-

tion of the sequenced DNA fragments and are widely used in aDNA studies [48–56].

While C-to-T substitutions occur predominantly at the ends of DNA fragments, they

are also common in the internal part [39, 57]. Our model is motivated by the finding

that these internal C-to-Ts are not independent of each other (Fig. 1). Excluding the

first and last five bases to mask potential overhangs, we found that C-to-Ts are particu-

larly common in adjacent positions in many samples, with a significant deviation from

the geometric distribution expected from independent events (p < 10−15, chi-square

goodness-of-fit test; see Additional file 1: Supplementary Note 1 for more details or for

results excluding the first and last ten bases), and from a control using sheared

present-day human DNA that was treated like aDNA [9]. Single-stranded regions inside

aDNA fragments represent a possible cause.
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Model of ancient DNA damage

Motivated by this finding, we developed a model of aDNA damage that jointly models

all C-to-T substitutions, accounting for the observed clustering of C-to-T substitutions

within a sequence. We used a hidden Markov model (HMM), where each potentially

deaminated site in the reference is an informative site, i.e. Cs or Gs for sequences align-

ing to the forward or reverse strand, respectively. Other positions will give the same

likelihood for the endogenous and contaminating DNA models and are therefore ig-

nored in both models. At the C or G positions of the reference genome, we classify

Fig. 1 Excess of directly adjacent C-to-T substitutions inside aDNA sequences. The observed and expected
frequencies of the distance between pairs of C-to-T substitutions are compared amongst sequences that
exhibit two internal C-to-T substitutions (excluding the first and last 5 bases). The colours correspond to
sequence data from different archaic humans (> 500,000 sequences each; Les Cottés Z4-1514, Spy 94a,
Vindija 87, Mezmaiskaya 2, Goyet Q56-1 from [58]; Scladina I-4A and Hohlenstein-Stadel from [23]; Denisova
2 from [59]; Mezmaiskaya 1 from [60]). The present-day human DNA control dataset is represented in black
[9]. All sequences are derived from single-stranded DNA libraries

Fig. 2 Graphical representation of the model (a) and illustration of the posterior decoding (b). a States are
depicted by nodes and transitions by edges. Each state emits a match to the reference M (blue) or a
mismatch, which can either be compatible with cytosine deamination, D (red), or an error (or
polymorphism), E (yellow). Single-stranded states (5’o, 3’o and ss) and the double-stranded state (ds) are in
light and dark green, respectively. b The posterior probability for each state is shown with different colours.
(see Additional file 1: Supplementary Note 2 for an evaluation of the posterior decoding). We show bases
on top for positions in the sequence (grey bar) that align to a C in the reference
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observations either as emitting “M” (matches the reference allele), “D” (differs from the

reference allele; compatible with a deamination) or “E” (other mismatches correspond-

ing to sequencing errors or polymorphisms) (Fig. 2).

The model attempts to infer which parts of the underlying DNA molecule were

single-stranded and double-stranded. It uses four hidden states corresponding to

double-stranded (ds) or single-stranded stretches. We further separate internal single-

stranded regions (ss) from 5′ (5’o) and 3′ (3’o) single-stranded overhangs. At the first

position of the sequence alignment, the chain starts in a 5′ single-stranded overhang

with probability o or in a double-stranded state with probability 1-o. Then, the lengths

of the different regions follow geometric distributions, with parameters lo, lss or lds for

the overhangs, single-stranded and double-stranded regions, respectively. We therefore

assumed the following matrix of transition probabilities:

with d5 representing the distance from the previous observation (set to the current

position for the initial observation), d3 the distance to the end of the sequence and o2
the probability of a 3′ single-stranded overhang. The modelling of the state transitions

between informative sites assumes that only one transition happens between two in-

formative sites.
The chain ends with the following transition probabilities:

For the emission probabilities of the three possible observations mentioned above, we

assumed that all single-stranded states (5’o, 3’o and ss) have the same emissions:

M
D
E

1 − eð Þ 1 − rssð Þ þ e
3
rss

1 − eð Þrss þ e
3

1 − rssð Þ
2e
3

0
BBBB@

1
CCCCA
:

Similarly, the emission vector for the double-stranded state is:

M
D
E

1 − eð Þ 1 − rdsð Þ þ e
3
rds

1 − eð Þrds þ e
3

1 − rdsð Þ
2e
3

0
BBBB@

1
CCCCA
:

Here, rss and rds denote the deamination rates in single-stranded regions (includ-

ing the single-stranded overhangs) and double-stranded regions, respectively. We

model polymorphisms and errors using a single rate, e, as these are
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indistinguishable without prior knowledge of polymorphic sites in the genomes of

the source populations/species. We also note that all types of substitutions are as-

sumed to be equally likely, a simplification that has also been used in previous

work [15, 18].

Model of present-day DNA contamination

To identify contamination, we contrast the aDNA model with a model for DNA with-

out deamination. We assumed that any difference to the reference genome arose from

a constant mismatch rate e along the sequence. Assuming independence between sites,

the probability of the data is simply: ed(1 − e)s where d and s are the number of mis-

matches and matches to the reference at informative positions, respectively. We used

the same rate e for both endogenous and contaminating sequences.

Estimating present-day DNA contamination

We use a mixture model to estimate the overall contamination rate c. We denote the i-th se-

quence as Xi, assuming we have N sequences in total. Using the aDNA sequence model, for

each sequence, we calculate PE (Xi | ϴ, e), the probability of the sequence given that the corre-

sponding DNA fragment is endogenous, conditional on the HMM parameters ϴ. Similarly,

using the model of contaminating DNA outlined above, we calculate PC (Xi | e), the

probability of the sequence given that it originates from a contaminating DNA

fragment. Therefore, we have P (Xi | ϴ, e) = c PC (Xi|e) + (1 − c) PE (Xi | ϴ, e).

Further assuming sequences are independent, the complete likelihood is

PðXjϴ; eÞ ¼ QN
i¼1 ðPE; ðXijϴ; eÞ; ð1 − cÞ;þ; PC ; ðXijeÞ; cÞ . We obtain a maximum like-

lihood estimate of c using the L-BFGS-B algorithm (tolerance: 10−10) imple-

mented in scipy.optimize (version 1.3.1) and estimate standard errors using the

Hessian matrix of the likelihood function, generated using the numdifftools li-

brary (version 0.9.39). Assuming that the maximum likelihood estimates are

normally distributed, the 95% confidence intervals (CI) are approximated as ±

1.96 standard errors.

Evaluation of AuthentiCT

We implemented this model in a program called AuthentiCT. In this section, we evalu-

ate how well AuthentiCT is able to estimate the proportion of contaminating sequences

and to separate aDNA from present-day DNA sequences.

Inference of present-day DNA contamination rates

Assessing the accuracy with artificial mixtures of ancient and present-day DNA

To test if AuthentiCT can estimate the proportion of present-day DNA contamination,

we created artificial mixtures of aDNA and present-day DNA sequences in varying pro-

portions, from 5 to 95%, in steps of 5%. As present-day contaminant, we used sequences

generated from present-day human DNA previously sheared to short fragments and

treated like aDNA (mimicking the treatment of a genuine present-day DNA contamin-

ation [9]; these sequences are available in Additional file 2). As aDNA sequences, we used

sequences from archaic datasets generated from single-stranded libraries that exhibit min-

imal amounts of present-day human DNA contamination [58, 60].
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For each dataset, we then compared the contamination rate estimates from

AuthentiCT to the estimates from contDeam [17] and from the conditional substi-

tution analysis ([22], as computed in [23]) (Fig. 3). The conditional substitution

analysis underestimates the contamination proportion (average bias, − 6.73%; root

mean square error (RMSE), 0.0741; based on 100,000 sequences), and contDeam

overestimates it (average bias, 2.36–1.19%; RMSE, 0.0396–0.0320; based on 10,000

and 100,000 sequences, respectively). In contrast, our method yields more accurate

estimates (average bias, 0.05–0.42%; RMSE, 0.0194–0.0191; based on 10,000 and

100,000 sequences, respectively). We note some variability in the results depending

on the dataset used, which may reflect different properties that are not under our

control (e.g. additional contamination in the Neandertal datasets or differences in

error rates between the present-day and ancient DNA sequences).

Exploring the limits of the method with simulations

To further evaluate AuthentiCT in scenarios where we have full control over the pa-

rameters, we simulated aDNA and present-day DNA sequences using the model de-

scribed above, varying deamination rates, error rates, sequence lengths, GC contents,

and numbers of sequences. Unless stated otherwise, each dataset contained 100,000 se-

quences with lengths following a shifted geometric distribution with minimum and

mean lengths of 35 and 45 bp, respectively. By default, we use a GC content of 40%, a

Fig. 3 Contamination estimates on artificial mixtures of Neandertal and present-day human DNA
sequences. Estimates from AuthentiCT are shown with red dots, whereas the estimates from two other
methods are shown in grey [17, 22]. Each point represents the difference between the estimated
proportion of contamination and the proportion of present-day human DNA sequences introduced in the
corresponding Neandertal dataset (different panels). Added contamination (x-axis) ranges from 5 to 95% in
steps of 5% (see Additional file 1: Figure S3 for a narrower range from 1 to 10% in steps of 1%). Error bars
correspond to 95% CI. There were not enough observations with 10,000 sequences for the method relying
only on terminal deamination [3]. We note that the Neandertal datasets, particularly Spy 94a, may contain
some present-day human DNA contamination in addition to the human contamination we introduced (see
Additional file 1: Table S1 for the libraries used and the associated contamination estimates)
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terminal deamination rate of 0.5 and an error/divergence rate of 0.001, and set the

HMM parameters to o = 0.5, o2 = 0.5, lo = 0.34, lss = 0.20 and lds = 0.003.

We found that AuthentiCT performs well for datasets of 10,000 or more se-

quences (RMSE, 0.010 and 0.009; average bias, 0.006 and 0.007; Fig. 4a), and its

performance is consistent over a wide range of deamination rates (from 0.03 to 0.5

in Fig. 4b; RMSE between 0.005 and 0.013), albeit with larger confidence intervals

for lower deamination rates. The least reliable estimates were obtained for very

small datasets (1000 sequences) with low contamination rates (below 10%; RMSE,

0.028; average bias, 0.010; Fig. 4a). We note that AuthentiCT overestimates con-

tamination for low contamination rates (average bias of 0.020 and 0.009 for con-

tamination estimates below 0.25 with a terminal deamination rate of 0.15 and 0.5,

respectively). This likely represents overfitting to short sequences with few inform-

ative sites, as the bias decreases with longer sequences or higher GC contents

(Additional file 1: Figure S1).

Another variable that may affect contamination estimates is the rate of C-to-T

substitutions to the reference genome that is not induced by deamination. Al-

though the sequencing error rate would typically not exceed 1% on sequencing

platforms commonly used for ancient DNA sequencing [61, 62], divergence to the

reference genome may be an issue. We therefore tested our method on simulated

sequences with varying substitution rates, assuming the same rate for endogenous

and contaminating sequences (see Additional file 1: Figure S2 for results with dif-

ferent rates). As expected, an increase of the substitution rate leads to a decrease

in accuracy of the contamination estimates (RMSE of 0.006, 0.010 and 0.011 for

substitution rates of 0.001, 0.01 and 0.02, respectively; average bias of 0.005, 0.009

Fig. 4 Contamination estimates on simulated datasets. The datasets differ in the number of sequences (a),
deamination rates (b) and sequencing error/divergence rates (c). Each point corresponds to a set of
simulated sequences with varying proportions of contamination (x-axis) from 0 to 95% in steps of 5%. The
errors (y-axis) correspond to the difference between the estimated and true contamination rates. The bars
correspond to the 95% CI
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and 0.01 for the same substitution rates; Fig. 4c). We note that divergence can also

lead to alignment issues that may further introduce biases in the damage patterns,

as mismatches to the reference may lead to the selective loss of sequences with

additional C-to-T substitutions.

Application to real ancient DNA datasets

To further validate the method, we next applied AuthentiCT to published sequences from

archaic human specimens [22, 23, 58, 60] without introducing sequences from present-

day DNA. We compared our results with a previous approach [23] that relies solely on

the divergence to a present-day African genome (HGDP00456, [45]). This independent

method works well for Neandertals (as the contaminating modern human DNA will be

much more similar to the African genome than the Neandertal genome), but will not

translate to samples genetically close to their contaminant (i.e. early modern humans).

Here, we use the F(A|B) statistic as a measure of divergence, as it varies little between in-

dividuals from the same population [63]. The value of this statistic for a contaminated

sample is simply a linear combination of the values for the endogenous and contaminating

genomes, i.e. Fobserved = c × Fcontaminant + (1 − c) × Fendogenous where c is the contamination

rate. We set Fcontaminant to 0.275 (computed from the genotype calls of a present-day

European genome, HGDP00521 [45]) and Fendogenous to 0.176 (Table S20 in [60]).

We note, however, that the two approaches measure slightly different contamin-

ation proportions. While AuthentiCT relies on every sequence, F(A|B) relies only

on sequences that overlap informative positions. Therefore, AuthentiCT yields con-

tamination estimates corresponding to the proportion of contaminating sequences,

whereas the approach based on F(A|B) provides estimates corresponding to the

proportion of bases that come from contaminating sequences. These estimates can

differ if the length distributions of endogenous and contaminating sequences differ,

as is the case for some datasets (Additional file 1: Supplementary Note 3). To get

comparable estimates of contamination, we ran AuthentiCT on the subset of se-

quences that overlap the informative sites used for quantifying contamination based

on the F(A|B) statistic (Fig. 5a; see Additional file 1: Table S2 for the contamin-

ation estimates per sequences). Using the same sequences may also account for po-

tential differences in the proportion of contamination along the genome. The

contamination estimates from both methods are highly correlated (Pearson’s coeffi-

cient, 0.98; p value < 10−15; Fig. 5a).

Finally, we applied AuthentiCT to ancient modern human DNA sequences generated

by hybridization capture and with minimal amounts of present-day DNA contamination

[48, 56]. We identified 19 DNA libraries derived from male specimens for which we could

estimate contamination based on the proportion of observed alternative alleles on X-

chromosome sequences (using contaminationX [18]), with a minimal coverage depth of 2

sequences, at least 100 informative positions and the HapMap CEU population as refer-

ence panel [64], excluding variants with a minor allele frequency lower than 5%. Both

methods yielded similar low contamination estimates (Fig. 5b), which demonstrate that

AuthentiCT can be applied to datasets generated by hybridization capture and with low

levels of contamination (for estimates with ancient DNA from domesticated species, see

also Additional file 1: Figure S4; these sequences are available in Additional file 2).
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Separating ancient DNA and present-day DNA sequences

As most downstream applications assume the absence of contamination, it is often neces-

sary to identify endogenous sequences in contaminated aDNA samples. A common way

to achieve this is to compare models for each sequence whether it is endogenous or a con-

taminant, as done by PMDtools [41] using a likelihood-ratio test. Here, we investigate

how the likelihoods of AuthentiCT contrasts with the ones from PMDtools (using recom-

mended parameters) on the same artificial mixtures of Neandertal and present-day hu-

man DNA sequences described above. For computational convenience, we fitted the

parameter values of AuthentiCT to datasets of 10,000 sequences. Note that once fitted on

a subset of sequences, AuthentiCT can then be applied to larger datasets with million se-

quences akin to PMDtools.

A strict filter for sequences with at least one C-to-T substitution within the first

or last three positions leads to about 30% of endogenous sequences being detected,

with 0.4% of false positives (Fig. 6a; see Additional file 1: Figure S5 for comparison

with a filter based on the number of C-to-T substitutions anywhere along the se-

quences). At the same false-positive rate, both PMDtools and AuthentiCT detect

Fig. 5 Contamination estimates in archaic and modern human DNA datasets. a Estimates from AuthentiCT (in
red) and a method based on the proportion of shared derived alleles with a present-day human genome (in
black; see Material and Methods). When available, we used 10,000 sequences from public archaic human DNA
datasets generated by shotgun sequencing of single-stranded DNA libraries [22, 23, 58, 60]. For more details
about the libraries (identifiers on the x-axis), see Additional file 1: Table S2. Bars represent 95% CI. b Estimates
from AuthentiCT (in red; using 10,000 sequences) and contaminationX (in black [18];) for public DNA datasets
generated by hybridization capture of single-stranded DNA libraries prepared from ancient modern human
samples [48, 56]. For the Villabruna samples, the numbers after the identifiers correspond to the number of
target sites in the corresponding hybridization capture experiment. Bars represent 95% CI
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around 50% of ancient sequences, and the likelihood models allow fine-tuning of

precision with recall (see Additional file 1: Figure S6 for the performance on other

datasets). The performance of AuthentiCT and PMDtools is similar at low false-

positive rates (< 0.02), which are most important for classifying sequences. How-

ever, AuthentiCT performs better for more ambiguous sequences and yields higher

likelihoods for a contaminant origin for present-day DNA sequences (Add-

itional file 1: Figure S7), which explains why it performs well for estimating con-

tamination (Fig. 3). The two methods mostly differ in their classification of

sequences that exhibit only one C-to-T substitution (Fig. 6b) in the internal part of

sequences (Fig. 6c). Compared to AuthentiCT’s classification, there is an excess of

sequences classified as ancient by PMDtools that exhibit non-deaminated bases ad-

jacent to the C-to-T substitution (Fig. 6d). Some of these are therefore likely to

represent polymorphisms or sequencing errors rather than deamination, indicating

that AuthentiCT is more conservative when classifying these sequences as

endogenous.

Discussion
Estimating present-day DNA contamination in aDNA datasets remains a difficult

task, particularly if the contaminating DNA is closely related to the DNA of the

studied organism. Most approaches rely on genetic differences between the en-

dogenous and contaminating genomes, which are often unknown a priori. Be-

sides, the dependence on the same information used in downstream analyses is

Fig. 6 Classification of aDNA and present-day DNA sequences. a The receiver operating characteristic (ROC)
curves illustrate the performance of AuthentiCT (solid) and PMDtools (dashed) to identify aDNA sequences.
A sequence is considered ancient if the log-likelihood ratio (score) of an ancient versus present-day origin is
equal to or higher than a threshold (different colours). Each point represents the average performance over
19 datasets (of 10,000 sequences each) with varying proportions of ancient and present-day DNA
sequences (5 to 95% in steps of 5%) for AuthentiCT (circles), PMDtools (squares) and a filter for sequences
exhibiting at least one C-to-T substitution within the first or last three positions (deam. filter; triangles).
Sequences are from Mezmaiskaya 2 (libraries A9180, A9288, A9289 and R1917 [58]) and the present-day
human control. The bars correspond to two standard errors. b–d The distributions illustrate the number of
C-to-T substitutions per sequences (b), the distance between a C-to-T substitution and the closest end of
the sequence (c) or the closest non-deaminated base (d) in sequences classified as ancient only by
AuthentiCT (left), only by PMDtools (middle) or both (right), using a score threshold of 3 as recommended
for PMDtools [41]
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not desirable as contamination may confound signals of interest (e.g. modern hu-

man ancestry in a Neandertal genome may look like present-day human DNA

contamination). Here, we developed an alternative method to estimate the pro-

portion of present-day DNA contamination based solely on a model of aDNA

damage.

AuthentiCT overcomes several shortcomings of previous methods for estimating

contamination that are based on aDNA damage. Most notably, it uses every pos-

ition that is potentially informative, irrespective of whether it is close to the end of

a sequence or not, and accounts for clusters of C-to-T substitutions in the internal

part of aDNA sequences. The latter represent a feature of aDNA deamination pat-

terns that, to our knowledge, has not been described or exploited before. We dem-

onstrated that this more detailed modelling of the distribution of C-to-T

substitutions along aDNA sequences leads to more accurate estimates of the pro-

portion of present-day DNA contamination than previous approaches. However,

the performance of AuthentiCT and PMDtools to classify sequences with multiple

C-to-T substitutions were almost identical, and filtering for aDNA sequences will

yield very similar results for both methods. Thus, the improvement stems largely

from a more confident detection of contaminant sequences. In contrast to

PMDtools, a sequence with many non-deaminated bases is considered to be more

likely a contaminant under the AuthentiCT model (Additional file 1: Figure S6).

It is important to note potential caveats. First, we assume the absence of significant

levels of deamination in the contaminating DNA. This assumption does not always

hold true (e.g. [13, 23, 59]) and would lead to an underestimate of the proportion of

contamination (Additional file 1: Figure S8). One could test this by first identifying se-

quences that carry contaminant alleles at diagnostic positions in the mitochondrial gen-

ome and then checking for the presence of C-to-T substitutions [65]. Second, there

may be populations of DNA fragments with different rates of damaged bases, even

within a single sample, because of microstructural differences in DNA preservation, or

because of different treatments [66]. These differences may lead to an overestimate of

the proportion of present-day DNA contamination, as it would lead to an excess of se-

quences without C-to-T substitutions. Yet, amongst the 50 libraries that we tested

(from 19 specimens), the confidence intervals of the contamination estimates from

AuthentiCT and another independent method diverge only twice (library A9349 from

the Goyet Q56-1 Neandertal, Fig. 5a, and library A0201 of Taforalt 14, Fig. 5b). As

AuthentiCT can run on as few as 10,000 sequences (in 3–10min, see Additional file 1:

Figures S9 and S10 for evaluations of the run time), one could split the data by sequen-

cing run, sequence length or other covariates to obtain stratified contamination esti-

mates. Finally, AuthentiCT is not applicable to libraries generated after treatments that

alter deamination patterns, e.g. uracil selection or treatment with a uracil-DNA-

glycosylase (UDG) [67, 68].

In the future, it will be useful to extend its application to data where patterns

of DNA damage differ, such as in double-stranded aDNA libraries [46]. In

addition, contamination estimates might be further improved if additional fea-

tures typical of aDNA are incorporated into the model, such as fragment length

or the frequency of purines in the reference genome at positions flanking the

sequence alignments [39].
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Conclusions
AuthentiCT is useful for estimating contamination in small datasets, e.g. when screen-

ing ancient specimens with shallow sequencing depth or when the samples are badly

preserved. The independence of the contamination estimates from genetic differences

between the contaminating and endogenous genomes makes this method both particu-

larly valuable for the study of ancient human samples and broadly applicable to other

species.

Specimen Archive Accession number

Denisova 2 European Nucleotide Archive PRJEB20653

Goyet Q56–1 European Nucleotide Archive PRJEB21870

Hohlenstein-Stadel European Nucleotide Archive PRJEB29475

Les Cottés Z4–1514 European Nucleotide Archive PRJEB21875

Mezmaiskaya 1 European Nucleotide Archive PRJEB21195

Mezmaiskaya 2 European Nucleotide Archive PRJEB21881

Sima de los Huesos specimens European Nucleotide Archive PRJEB10597

Scladina I-4A European Nucleotide Archive PRJEB29475

Spy 94a European Nucleotide Archive PRJEB21883

Taforalt specimens Sequence Read Archive SRP132033

Villabruna European Nucleotide Archive PRJEB13123

Vindija 33.19 European Nucleotide Archive PRJEB21157

Vindija 87 European Nucleotide Archive PRJEB21882
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Figure S5: Comparison of AuthentiCT, PMDtools and simple filters (based on the observed number of C-to-T sub-
stitutions) to identify ancient DNA sequences. Figure S6: Comparison of AuthentiCT and PMDtools to classify an-
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