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FOCS: a novel method for analyzing
enhancer and gene activity patterns infers
an extensive enhancer–promoter map
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Abstract

Recent sequencing technologies enable joint quantification of promoters and their enhancer regions, allowing
inference of enhancer–promoter links. We show that current enhancer–promoter inference methods produce a
high rate of false positive links. We introduce FOCS, a new inference method, and by benchmarking against ChIA-
PET, HiChIP, and eQTL data show that it results in lower false discovery rates and at the same time higher inference
power. By applying FOCS to 2630 samples taken from ENCODE, Roadmap Epigenomics, FANTOM5, and a new
compendium of GRO-seq samples, we provide extensive enhancer–promotor maps (http://acgt.cs.tau.ac.il/focs). We
illustrate the usability of our maps for deriving biological hypotheses.
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Background
Deciphering the regulatory role of the noncoding part of
the human genome is a major challenge. With the com-
pletion of the sequencing of the genome, efforts have
shifted over the past decade towards understanding the
epigenome. These efforts aim at understanding regula-
tory mechanisms outside the protein-coding sequences
that allow the production of thousands of different cell
types from the same DNA blueprint. Enhancer elements
that distally control the activity of target promoters play
critical roles in this process. Consequently, large-scale
epigenomic projects set out to identify all the cis-regula-
tory elements that are encoded in the genome. Promin-
ent among them is the ENCODE consortium [1, 2],
which applied a variety of epigenomics techniques to a
large panel of human cell lines. Profiling epigenetic
marks of regulatory activity (including DHS-seq profiling
of DNase I hypersensitive sites (DHSs), which is ac-
cepted as a common feature of all active elements), EN-
CODE collectively identified hundreds of thousands of

putative regulatory elements in the genome [2]. As EN-
CODE analyses were mainly applied to cancer cell lines,
a follow-up project, the Roadmap Epigenomics, applied
similar analyses to a large collection of human primary
cells and tissues, in order to establish more physiological
maps of common and cell type-specific putative regula-
tory elements [3]. Given the plethora of candidate en-
hancer regions called by these projects, the next
pressing challenge is to identify which of them is actually
functional and map them to the genes they regulate. A
naïve approach that is still widely used in genomic stud-
ies links enhancers to their nearest genes. Yet, emerging
indications suggest that up to 50% of enhancers cross
over their most proximal gene and control a more distal
one [4]. A common approach that improves this naïve
enhancer–promoter (E–P) mapping is based on pairwise
correlation between activity patterns of promoters (P)
and putative enhancers (E), and identifies E–P pairs, lo-
cated within a distance limit, that show highly correlated
patterns across many samples [2, 3]. However, this ap-
proach does not take into account interactions among
multiple enhancers that control the same target pro-
moter. Furthermore, Pearson correlation, which is typic-
ally applied for this task, is highly sensitive to outliers
and thus prone to false positives.
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Improved detection of functional enhancers is offered
by a recently discovered class of non-coding transcripts,
named enhancer RNAs (eRNAs) [5]. eRNAs are mostly
transcribed bi-directionally from regions of enhancers
that are actively engaged in transcriptional regulation [5]
(reviewed in [6, 7]), and, importantly, changes in eRNA
expression at specific enhancer regions in response to
different stimuli correlate both with changes in the
amount of epigenetic marks at these enhancers and with
the expression of their target genes [8–11]. Most eRNAs
are not polyadenylated and are typically expressed at low
levels due to their instability (reviewed in [12]).
Therefore, eRNAs are not readily detected by standard
RNA-seq protocols, but can be effectively measured by
global run-on sequencing (GRO-seq), a technique that
measures production rates of all nascent RNAs in a cell
[8–10, 13, 14], or by cap-analysis of gene expression
(CAGE) followed by sequencing [4, 15, 16]. Utilizing
eRNA expression as a mark of enhancer activity, the
FANTOM5 consortium recently generated an atlas of
predicted enhancers in a large panel of human cancer
and primary cell lines and tissues [4]. This study too
used pairwise correlation (in this case, calculated be-
tween expression levels of an eRNA and a gene whose
transcription start site (TSS) is within a distance limit
from it) to infer E–P links. Regression analysis was ap-
plied to characterize the configuration of promoter regu-
lation by enhancers [4]. However, since all samples were
used for training the regression models, this analysis is
prone to over-fitting and thus the predictive power of
the derived models on new samples is unclear.
Here, we present FOCS (FDR-corrected OLS with

Cross-validation and Shrinkage), a novel procedure for
inference of E–P links based on correlated activity pat-
terns across many samples from heterogeneous sources.
FOCS uses a cross-validation scheme in which regres-
sion models are learnt on a training set of samples and
then evaluated on left-out samples from other cell
types. The models are subjected to a new statistical
validation scheme that is tailored for zero-inflated data.
Finally, validated models are optimally reduced to de-
rive the most important E–P links. We applied FOCS
on massive genomic datasets recorded by ENCODE,
Roadmap Epigenomics, and FANTOM5, and on a large
compendium of eRNA and gene expression profiles
that we compiled from publicly available GRO-seq
datasets. We demonstrate that FOCS outperforms ex-
tant methods in terms of concordance with E–P inter-
actions identified by ChIA-PET, HiChIP, and eQTL
data. Collectively, applying FOCS to these four data re-
sources, we inferred ~ 300,000 cross-validated E–P in-
teractions spanning ~ 16,000 known genes. FOCS and
our predicted E–P maps are publicly available at http://
acgt.cs.tau.ac.il/focs.

Results
The FOCS procedure for predicting E–P links
We set out to develop an improved statistical framework
for prediction of E–P links based on their correlated ac-
tivity patterns measured over many cell types. As a test
case, we first focused on ENCODE’s DHS profiles [2],
which constitute 208 samples measured in 106 different
cell lines (“Methods”) [2]. This rich resource was
previously used to infer E–P links based on pairwise
correlation between DHS patterns of promoters and en-
hancers located within a distance of ±500 kbp. Out of ~
42 million (M) pairwise comparisons, ~ 1.6 M pairs
showed Pearson’s correlation > 0.7 and were regarded as
putatively functional E–P links [2]. However, Pearson’s
correlation is sensitive to outliers and thus may be prone
to high rates of false positive predictions. This is espe-
cially exacerbated in cases of sparse data (zero inflation),
which are prevalent in enhancer activity patterns, as
many of the enhancers are active only in a limited set of
conditions. In addition, the combinatorial nature of tran-
scriptional regulation in which a promoter is regulated
by multiple enhancers is not considered by such a pair-
wise approach.
To address these points we developed a novel statisti-

cally controlled regression analysis scheme for E–P map-
ping, which we dubbed FOCS. Specifically, FOCS uses
regression analysis to learn predictive models for pro-
moter’s activity from the activity levels of its k closest en-
hancers, located within a window of ±500 kb around the
gene’s TSS. (Throughout our analyses we used k = 10.) Im-
portantly, to avoid over-fitting of the regression models to
the training samples, FOCS implements a leave-cell-type-
out cross-validation (LCTO CV) procedure, as follows. In
a dataset that contains samples from C different cell types,
for each promoter FOCS performs C iterations of model
learning. In each iteration, all samples belonging to one
cell type are left out and the model is trained on the
remaining samples. The trained model is then used to pre-
dict promoter activity in the left-out samples (Fig. 1).
We implemented and evaluated three alternative re-

gression methods: ordinary least squares (OLS), general-
ized linear model with the negative binomial distribution
(GLM.NB) [17], and zero-inflated negative binomial
(ZINB) [18]. GLM.NB accounts for unequal mean-
variance relationships within subpopulations of repli-
cates. ZINB is similar to GLM.NB but also accounts for
excess of samples with zero entries (“Methods”). For
each promoter and regression method, the learning
phase yields an activity vector, containing the promoter’s
activity in each sample as predicted when it was left out.
FOCS applies two non-parametric tests, tailored for
zero-inflated data, to evaluate the ability of the inferred
models (consisting of the k nearest enhancers) to predict
the activity of the target promoter in the left-out
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samples. The first test is a “binary test” in which samples
are divided into two sets, positive and negative, contain-
ing the samples in which the promoter was active or

not, respectively, based on their measured signal (we
used a signal threshold of 1.0 RPKM for this classifica-
tion). Then, the Wilcoxon signed-rank test is used to

Fig. 1 FOCS statistical procedure for inference of E–P links. In a dataset with samples from N different cell types, FOCS starts by performing N
cycles of leave-cell-type-out cross-validation (LCTO CV). In cycle j, the set of samples from cell type Cj is left out as a test set, and a regression
model is trained, based on the remaining samples, to estimate the level of the promoter P (the independent variable) from the levels of its k
closest enhancers (the dependent variables). The model is then used to predict promoter activity in the test set samples. After the N cycles,
FOCS tests the agreement between the predicted (Pmodel) and observed (Pobs) promoter activities using two non-parametric tests. In the
binary test, samples are divided into positive (Pobs ≥ 1 RPKM) and negative (Pobs < 1 RPKM) sets, and the ability of the inferred models to
separate between the sets is examined using Wilcoxon rank-sum test. In the activity level test, the consistency between predicted and
observed activities in the positive set of samples is tested using Spearman correlation. P values are corrected using the BY-FDR procedure,
and promoters that passed the validation tests (FDR ≤ 0.1) are considered validated, and full regression models, this time based on all samples,
are calculated for them. In the last step, FOCS shrinks each promoter model using elastic net to select its most important enhancers
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compare the predicted promoter activities between these
two sets (Fig. 1). The second test is an “activity level
test”, which examines the agreement between the
predicted and observed promoter’s activities using
Spearman’s correlation. In this test, only the positive
samples (that is, samples in which the measured pro-
moter signal is ≥ 1.0 RPKM) are considered. Gene
models with good predictive power should discriminate
well between positive and negative samples (the binary
test) and preserve the original activity ranks of the posi-
tive samples (the activity level test), and models that pass
these tests are regarded as statistically cross-validated.
Of note, these two validation tests evaluate each pro-
moter model non-parametrically without assuming any
underlying distribution on the data when inferring sig-
nificance. Next, FOCS corrects the p values obtained by
these tests for multiple testing using the Benjamini–
Yekutieli (BY) FDR procedure [19] with q-value < 0.1.
The BY FDR procedure takes into account possible posi-
tive dependencies between tests while the more fre-
quently used Benjamini–Hochberg (BH) FDR procedure
[20] assumes the tests are independent.

FOCS results for ENCODE DHS epigenomic data
Applying FOCS to the ENCODE DHS dataset, we only
considered promoters and enhancers that were active
(that is, with signal > 1.0 RPKM) in at least 30 out of the
208 samples (This preprocessing step filtered out from
the analysis 828 genes whose expression was most cell
type-specific.) Overall, this dataset contained 92,909 and
408,802 active promoters and enhancers, respectively
(“Methods”). We first evaluated the performance of the
three alternative regression methods in terms of the
number of validated models each of them yielded. We
found that the OLS method consistently produced more
validated models that passed both the binary and activity
level tests (Fig. 2a, b; Additional file 1: Table S1). Using
OLS, out of the 92,909 analyzed promoters, 52,658 had
models that passed both tests (q-value ≤ 0.1), while for
7007 promoters models passed none of these two tests
(Fig. 2c). As expected, promoters with models that
passed only the activity level test were active in a very
high number of samples while those with models that
passed only the binary test were active in a much
lower number of samples (Fig. 2d; see Additional file
1: Figure S1 for examples of promoters in different
validation categories). To examine the effect of the
leave-cell-type-out cross-validation (CV) procedure we
compared R2 values obtained by OLS models
generated without CV to the values obtained when
CV was applied (Fig. 2e). The results indicate that
without CV, many models are over-fitted to the train-
ing samples and have low predictive power on new
ones. This problem is more severe in other datasets

that we analyzed, as shown in the subsequent section.
Fig. 2f shows an example of a promoter model with
low predictive power on new samples, and demon-
strates the high sensitivity of Pearson’s correlation (or
equivalently, of R2) to outliers. Such promoter models
do not pass our CV tests and are considered to have
low confidence.

The configuration of promoter regulation by enhancers
Next, we sought to characterize the configuration of
promoter regulation by its enhancers, in terms of the
number of regulating enhancers and their relative con-
tribution. For each promoter that passed the validation
tests, we now calculated a final model, this time consid-
ering all samples (Fig. 1), and estimated the relative con-
tribution of each of its k enhancers to this full model. As
in [4], per model, we measured the proportional contri-
bution of each enhancer by calculating the ratio r2/R2

where r is the pairwise Pearson correlation between the
enhancer and promoter activity patterns and R2 is the
coefficient of determination of the entire promoter’s
model. In the analysis of the ENCODE DHS data, we
included in this step the 70,465 promoters that passed
the activity level test (or both tests). In agreement with
previous observation [4], the closest enhancers make
significantly higher contributions than the distal ones
(Fig. 3a). However, the proportional contribution quickly
reaches a plateau, indicating that, above a certain
threshold, distance to promoter is no longer an
important factor, and enhancers 6–10 (ordered
according to their distance from the promoter)
contribute similarly to promoter activity (Fig. 3a).
Second, we examined the distribution of R2 values of
these statistically validated models: 54% of the models
(37,716 out of 70,465) had R2 ≥ 0.5 (Fig. 3b); 61% of the
52,658 models that passed both tests had R2 ≥ 0.5,
compared to 32% of the 17,807 models that passed only
the activity level test (in contrast, only 13% of 15,437
models that passed only the binary test had R2 ≥ 0.5).
We note that models that passed the CV tests but have
low R2 do contain confident and predictive information
on E–P links, though the low R2 suggests that
additional, missing regulatory elements play important
roles in the regulation of the target promoter.
A promoter’s model produced by OLS regression con-

tains all k variables (i.e., enhancers), where each variable
is assigned a significance level (p value) reflecting its
statistical strength. Next, to focus on the most inform-
ative E–P interactions, FOCS seeks the strongest en-
hancers in each model. To this end, FOCS derives, per
promoter, an optimally reduced model by applying
model shrinkage (“Methods”). Lasso-based shrinkage
was previously used for this task [4]. Here, we chose
elastic-net (enet) approach, which combines Lasso and
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Ridge regularizations, since in cases of highly correlated
variables (i.e., the enhancers), Lasso tends to select a sin-
gle variable while Ridge gives them more equal coeffi-
cients (“Methods”). In this analysis too, we included the
70,465 models that passed the activity level test. Figure
3c shows the distribution of the number of enhancers
that were included in the enet-reduced models. On aver-
age, each promoter was linked to 2.4 enhancers. Inclu-
sion frequency decreased with E–P distance: the most
proximal enhancer was included in 63% of the models

while the tenth enhancer was included in only 16% of
them (Fig. 3d). Here too, the graph reaches a plateau
and enhancers 6–10 show very similar inclusion fre-
quencies. Additional file 1: Figure S2A, B show the dis-
tribution of the actual E–P distance for the enhancers
considered by FOCS and Additional file 1: Figure S2C
shows the inclusion frequency as a function of this dis-
tance. Regulatory elements located less than 5 kb from
their target promoter have markedly higher inclusion
frequency. To estimate false positive rate among

Fig. 2 Performance of three alternative regression methods for inferring E–P models. a Performance of ordinary least squares (OLS), generalized
linear model with negative binomial distribution (GLM.NB), and zero-inflated negative binomial (ZINB) regression using the binary test. Point (x,y)
on a plot indicates that a fraction x of the models had − log10[q-value] < y computed by Wilcoxon rank sum test. OLS yields a higher fraction of
validated models at any q-value cutoff. b Same as a but using the activity level validation test, with p values computed by the Spearman correlation
test. Here too, OLS yields a higher fraction of validated models than the other methods. c Number of promoters whose OLS models passed (at q < 0.1)
each of the tests (or none). d The distribution of the number of positive samples (samples in which the promoter is active, i.e., has RPKM≥1) for
promoters in each category. e Comparison between the R2 values with and without cross-validation (CV). Each dot is a promoter model. Blue dots
denote models with R2≥ 0.5 and R2CV ≥0:25. Red dots denote models with and R2 > 0.5

and R2CV < 0:25 corresponding to over-fitted models with low predictive power on novel samples. f A promoter whose model as computed without
CV has a very high R2 (left plot) but when CV is applied a low R2CV is obtained (right plot). This example demonstrates the sensitivity of R2 (and Pearson
correlation) to outliers. ρs Spearman correlation, Q-value FDR-corrected p value
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enhancers included in our final enet-reduced models, we
randomly selected 10,000 promoter models from the
70,465 models that passed the CV step, and added to
each one of them an additional 11th enhancer randomly
selected from a different chromosome. We then applied
enet on these 10,000 models. Notably, the random enhan-
cer was retained in only seven out of the 10,000 models,
which is significantly lower than the inclusion frequency
we observed for any E–P distance bin (Additional file 1:
Figure S2C), indicating a low false positive rate also
among the long distance E–P links inferred by FOCS.

Comparison of performance of FOCS and extant methods
using external validation resources
After optimally reducing the promoter models, FOCS
predicted in the ENCODE DHS dataset a total of
167,988 E–P links covering 70,465 promoters and
92,603 distinct enhancers (http://acgt.cs.tau.ac.il/focs/
data/encode_interactions.txt). Next, we compared the
performance of FOCS and three alternative methods for
E–P mapping. (1) Pairwise: pairwise Pearson correlation

> 0.7 between E–P pairs located within ±500 kbp, and
accounting for multiple testing using BH (FDR < 10−5;
this was the main method used in [4], and also in [2]
without multiple testing correction). (2) OLS + LASSO:
models are derived by OLS analysis using all samples
without CV, selected based on R2 ≥ 0.5 and reduced
using LASSO shrinkage (“Methods”; this method was
also applied in [4]). (3) OLS + enet: same as (2) but with
enet shrinkage in place of LASSO. Table 1 summarizes
the number of E–P links obtained by each method.
FOCS yielded ~ 75% more models than the other
methods.
To evaluate the validity of E–P mappings predicted by

each method, we used three external omics resources:
physical E–P interactions derived from RNAPII ChIA-
PET data, physical E–P interactions derived from YY1
HiChIP experiments, and functional E–P links indicated
by eQTL analysis (“Methods”). For physical E–P interac-
tions derived from RNAPII ChIA-PET we used data re-
corded in MCF7, HCT-116, K562, and HelaS3 cell lines
(a total of 922,997 interactions). Physical E–P

Fig. 3 Configuration of promoter regulation by enhancers. a The proportional contributions of the ten most proximal enhancers (within ±500 kb
of the target promoter) to models predicting promoter activity. The x-axis indicates the order of the enhancers by their relative distance from the
promoter, with 1 being the closest. b R2 values of the models that passed one or both CV tests. c Distribution of the number of enhancers
included in the validated, optimally reduced models (i.e., after elastic net shrinkage). Most shrunken models contain one to three enhancers.
d Inclusion frequency of enhancers in the shrunken models as a function of their relative proximity to the target promoter
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interactions inferred from HiChIP for YY1 (recently sug-
gested to act as a general structural regulator of E–P
links) were downloaded from [21] (911,190 interactions,
measured in HCT-116, Jurkat, and K562 cell lines).
While 3C-based methods are generally not well
equipped to identify DNA loops below 25 kb, we inter-
sected our results with the best available loop calls for
these data ranges. eQTL data were downloaded from the
GTEx project (2,283,827 unique significant eQTL–gene
pairs) [22]. We defined a 1-kbp interval for each pro-
moter and enhancer and calculated the fraction of E–P
links that were supported by either ChIA-PET, HiChIP,
or eQTL data (“Methods”). Notably, FOCS not only
yielded many more E–P links (15,000–40,000 more), but
also outperformed the alternative methods in terms of
the fraction of predictions supported by either RNAPII
ChIA-PET (Fig. 4a), YY1 HiChIP (Fig. 4b), or eQTL data
(Fig. 4c). Figure 5 shows two FOCS-derived promoter
models that are supported by ChIA-PET and eQTLs.
Note that for the promoter model of CD4 (Fig. 5b) the

R2
CV value was low (~ 0.1) while the Spearman correl-

ation (ρs) was 0.53 after CV. This demonstrates that
FOCS can capture promoter models that exhibit non-linear
relationships between the promoter and enhancer activities.

FOCS performance on additional large-scale datasets
Having demonstrated FOCS proficiency in predicting E–
P links on the ENCODE DHS data, we next wished to
expand the scope of our E–P mapping. We therefore ap-
plied FOCS to three additional large-scale genomic data-
sets: (1) DHS profiles measured by the Roadmap
Epigenomics project, consisting of 350 samples from 73
different cell types and tissues; and (2) FANTOM5
CAGE data that measured expression profiles in 1827
samples from 600 human cell lines and primary cells.
The analysis of FANTOM5 data uses eRNA and TSS ex-
pression levels for estimating the activity of enhancers
and promoters, respectively (“Methods”). (3) A GRO-seq
compendium that we compiled. Building on eRNAs as

Table 1 Number of inferred promoter models obtained by four alternative methods on the ENCODE DHS dataset

Method type Number of promoter models Number of E–P links Number of unique enhancers

Pairwise (r≥ 0.7)+ FDR 39,372 139,170 53,950

OLS-LASSO (R2 ≥ 0.5)a 39,368 122,064 74,104

OLS-enet (R2≥ 0.5)a 39,407 150,158 85,926

FOCS 70,465 167,988 92,603
aThe number of OLS models (R2 ≥ 0.5) was 39,892 before LASSO/enet shrinkage. These methods eliminate models in which no enhancer passed the shrinkage

Fig. 4 Comparison of the performance of different methods for predicting E–P links using ChIA-PET and eQTL data as external validation. The y-axis
shows the total number of predicted E–P links. The x-axis shows the percentage supported by the external source. a Pol-II ChIA-PET. b YY1 HiChIP.
c GTEX eQTLs. In c the y-axis shows the total number of predicted E–P links where the promoter is annotated with a known gene. FOCS (green triangle)
makes more predictions and also manifests the highest support rate by all methods: RNPII ChIA-PET, 59%; YY1 HiChIP, 37%; and eQTL, 38%. For all
methods, the empirical p value by random permutation test was < 0.01 (“Methods”)
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quantitative markers of enhancer activity and the effect-
iveness of the GRO-seq technique in detecting eRNA ex-
pression [23], we compiled a large compendium of
eRNA and gene expression profiles from publicly avail-
able GRO-seq datasets, spanning a total of 245 samples
measured on 23 different human cell lines (“Methods”).

We applied to these datasets the same procedure that
we applied above to the ENCODE data. In the analysis
of these datasets, OLS yielded more validated models
than the other regression methods on the Roadmap
Epigenomics and GRO-seq datasets (as was the case in
the ENCODE DHS data (Fig. 2a, b)), while GLM.NB and
ZINB produced more models on FANTOM5 (Additional
file 1: Figure S3A-C and Table S1). The performance of
GLM.NB and ZINB on the FANTOM5 dataset is prob-
ably due to the high fraction of zero entries in the count
matrix of this dataset (~ 54%) compared to ENCODE,
Roadmap, and GRO-seq data matrices (8, 4, and 19%, re-
spectively). As OLS performed better on most datasets,
all the results reported below are based on OLS. The
numbers of promoter models that passed each validation
test in each dataset are provided in Additional file 1:
Figure S4A–C. The effect of CV is presented in
Additional file 1: Figure S5A–C. In these datasets too,

many of the models with a high coefficient of determin-
ation (R

2 ≥ 0.5) when trained on all samples had low
predictive power on novel samples ( R2

CV < 0:25 )
(Empirical FDR 16, 20, and 22% in Roadmap,
FANTOM5, and GRO-seq, respectively; Additional file
1: Figure S5), demonstrating the utility of CV in alleviat-
ing over-fitting and thus reducing false positive models.
We next examined the relative contribution of each of

the ten participating enhancers to the validated models,
and in these datasets too, the most proximal enhancers
had the highest role, but more distal ones made very
similar contributions (Additional file 1: Figure S6A). In
terms of explained fraction of the observed variability in
promoter activity, 41 and 84% of the models that passed
both tests in the Roadmap Epigenomics and GRO-seq
datasets, respectively, had R2 ≥ 0.5, but only 11% of the
validated models reached this performance in the
FANTOM5 dataset (Additional file 1: Figure S6B),
probably due to its exceptionally sparse data matrix.
Last, FOCS applied enet model shrinkage to the models
that passed the validation tests (the number of validated
models and E–P links derived by FOCS on each dataset
is summarized in Additional file 1: Table S2). In the
optimally reduced models, each promoter was linked, on

a b

c d

Fig. 5 Examples of FOCS-predicted E–P links supported by ChIA-PET/eQTL data. a, b CD4. c, d ESRP1. TSS location is highlighted in light blue.
b, d Heatmaps (log2[RPKM Signal]) for the activity patterns of CD4/ESRP1 promoters and their ten nearest enhancers. Enhancers included in the
shrunken model are denoted by ‘ep’ and those that are not are denoted by ‘e’. For each enhancer, its Pearson and Spearman correlations with
the promoter are reported (left and right values in the parentheses). For each model, the R2; R2CV ; and Spearman correlation after CV (ρs) are listed
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average, to 3.2, 2.8, and 3.6 enhancers in the Roadmap,
FANTOM5, and GRO-seq datasets, respectively
(Additional file 1: Figure S7A), and inclusion frequency
decreased with E–P distance (Additional file 1: Figures
S7B and S8). Finally, benchmarking against RNAPII
ChIA-PET, YY1 HiChIP, and eQTL data, for most com-
parisons, FOCS outperformed the alternative methods
for E–P mapping by yielding many more E–P predic-
tions at similar external validation rates (Additional file
1: Figure S9 and Table S3). Collectively, we provide a
rich resource of predicted E–P mapping that covers
16,349 known genes, 113,653 promoters, 181,236 en-
hancers, and 302,050 cross-validated E–P links.

Discussion
In this study we present FOCS, a novel statistical frame-
work for predicting E–P interactions based on activity
patterns derived from large-scale omic datasets. Apply-
ing FOCS to four different genomic data sources, we de-
rived an extensive resource of statistically cross-validated
E–P links. Our E–P mapping resource further illumi-
nates different facets of transcriptional regulation. First,
a common naïve practice is to map enhancers to their
nearest promoters. In FOCS predicted E–P links, ~ 26%
of the enhancers are mapped to a promoter that is not
the closest one (Additional file 1: Figure S10). Second,
intronic enhancers are very common; 70% of the
predicted E–P links involve an intronic enhancer
(Additional file 1: Table S2). Third, while in the
shrunken models each promoter was linked to, on aver-
age, ~ 3 enhancers, many promoters were linked to a

single dominant enhancer and some were linked to a
very high number of enhancers (8–10).
As an initial step in exploring relationships between

the configuration of E–P interactions and gene function,
we examined the set of housekeeping genes taken from
[24]. These genes are ubiquitously expressed across dif-
ferent cell types, suggesting that they are likely to have a
simple regulation logic. Indeed, the promoters of these
genes were involved in a significantly lower number of
E–P links compared to all other genes (p value < 0.001
in all data types; Additional file 1: Figure S11). To fur-
ther explore a possible relationship between the breadth
of gene expression across tissues and the complexity of
transcriptional regulation, we calculated the Shannon
entropy for each gene promoter (higher entropy indi-
cates larger expression breadth). Interestingly, we ob-
served a strong negative relationship where promoters
with more restricted activity profiles (that is, lower en-
tropy) are associated with a larger number of enhancers
(Fig. 6, Additional file 1: Figure S12). As a set, the genes
associated with higher numbers of enhancers were
enriched for Gene Ontology (GO) categories related to
cell adhesion, signal transduction, and differentiation
(Additional file 2).
We also observed that while the vast majority (~ 90%)

of enhancers in FOCS-derived models had positive Pear-
son and Spearman correlation with the activity pattern
of their target promoters, the models also included cases
of negative correlation, suggesting that the regulatory
element functions as a repressor (Additional file 1: Fig-
ure S13). Finally, the activity level test in FOCS,

Fig. 6 Inverse relationship between breadth of promoter activity and complexity of transcriptional regulation. We quantified the breadth of
promoter activity over different cell types by Shannon entropy. Promoters were divided into bins according to the number of enhancers included
in their optimally reduced models and the distribution of Shannon entropy was calculated for each bin (the number of promoters assigned to
each bin is indicated in parentheses). A marked inverse relationship is observed. The results shown here are based on ENCODE DHS data (see
Additional file 1: Figure S12 for the same analysis applied to FANTOM5 CAGE data)
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computed using the Spearman correlation, can also ac-
count for promoter models where the relationship be-
tween the enhancer and promoter activity patterns is
not linear, perhaps explaining the R2 < 0.5 values
observed in the majority of FANTOM5 and Roadmap
models (Additional file 1: Figure S6B).
An aspect that we did not consider in our analysis is the

constraints imposed on transcriptional regulation by the
3D organization of the genome. Recent findings indicate
that most E–P interactions are limited by chromosomal
territories called topologically associated domains [25, 26].
Further research is needed to better elucidate this connec-
tion between 3D organization and E–P links and to better
understand to what extent such constraints are universally
or differentially imposed in different cell types.
Biological interpretation of our analysis of DHS data

(ENCODE and Roadmap Epigenomics datasets) impli-
citly assumes that transcription rate at promoters is
positively related with promoter DHS signal. We there-
fore examined DHS–expression correlations in cell lines
for which both DHS and RNA-seq data were available in
the ENCODE project (17 cell lines in total). In all cases,
we observed high Spearman but low Pearson correla-
tions (Additional file 1: Figure S14), indicating a strong
monotonic but non-linear relationship.
The leave-cell-type-out scheme applied by FOCS is con-

servative and ensures that the inferred models have pre-
dictive power in diverse cellular contexts. However, it will
not infer models for genes whose expression is strictly cell
type-specific. Analyzing larger numbers of diverse cell
types containing related cell types, we expect a lower
chance of missing gene models that are cell type-specific.
While our manuscript was under review another novel

method for inference of E–P interactions, called JEME,
was introduced [27]. Unlike FOCS, JEME (and the previ-
ously published TargetFinder [28]) makes cell type-
specific predictions and combines different omic data
types within the same model.
Our broad compendium of E–P interactions can greatly

assist the functional interpretation of genetic variants that
are associated with disease susceptibility, as the majority
(~ 90%) of the variants detected by genome-wide associ-
ation studies are located in noncoding sequences [29].
Similarly, it can help in the interpretation of recurrent
noncoding somatic mutations (SMs) in cancer genomes.
SM hotspots in regulatory regions are detected at an ac-
celerated pace with the rapid accumulation of whole-
genome sequencing (WGS) of tumor samples [30, 31].
Additionally, the predicted E–P links can be integrated
into and boost bioinformatics pipelines that seek DNA
motifs in regulatory elements that putatively regulate sets
of co-expressed genes. Overall, the FOCS method and the
compendium we provide hold promise for advancing our
understanding of the noncoding regulatory genome.

Conclusions

� FOCS predicts ~ 1.5-fold more E–P links (n = 302,050)
compared to the standard pairwise method with
Pearson coefficient r > 0.7 (n = 204,276). On average
over all datasets, FOCS E–P links show a higher
support rate by external validation resources
compared to the commonly used pairwise method
(r > 0.7). These results demonstrate the improved
prediction power and control of false positive E–P
links.

� FOCS uses two non-parametric tests to examine the
robustness of each promoter model. Using these
tests we can correct for multiple promoter models
and use them when it is suspected that there is no
linear relationship between the E–P activity patterns.
Previous methods used the Pearson correlation test
(or, equivalently R2 values) assuming linearity
between enhancer and promoter activity patterns.

� FOCS is capable of detecting repressor–promoter
(R-P) links, which result from negative Spearman
correlation between R–P activity patterns. R–P links
are less known and are also of high interest.

� We provide a new compendium of eRNA and gene
expression patterns based on 245 GRO-seq profiles
from 23 different cell types. This compendium can
be used as a genome-wide resource of enhancer
activity in a diverse panel of cell lines.

Methods
ENCODE DHS data preprocessing
DHS peak locations of enhancers and promoters were
taken from a master list of 2,890,742 unique, non-
overlapping DHS segments [2] (ftp://ftp.ebi.ac.uk/pub/data
bases/ensembl/encode/integration_data_jan2011/byDataTy
pe/openchrom/jan2011/combined_peaks/multi-tissue.mast
er.ntypes.simple.hg19.bed).
We extracted from the master list the set of known

(n = 68,762) and novel (n = 44,853) promoter–DHS
peaks taken from ftp://ftp.ebi.ac.uk/pub/databases/
ensembl/encode/integration_data_jan2011/byDataType/
openchrom/jan2011/promoter_predictions.
The remaining (n = 2,777,127) non-promoter–DHS

peaks in the master list were considered as putative
regulatory elements, collectively referred to here as en-
hancer elements. To create enhancer/promoter signal
matrices, we used the BAM files of 208 UW DNase-seq
samples (106 cell types) from the Gene Expression
Omnibus (GEO) dataset GSE29692 [2, 29, 32]. The
number of reads mapped within each DHS peak was
counted using BEDTools utilities [33]. To reduce our
FOCS running time we focused only on promoters/en-
hancers with signal ≥ 1 RPKM in at least 30 samples,
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resulting in 92,909 promoters and 408,802 putative
enhancers.
We defined for each promoter the set of k = 10 candidate

enhancers located within a window of 1 Mb (±500 kb up-
stream/downstream of the promoter’s center position). We
mapped promoters to annotated genes using GencodeV10
TSS annotations (ftp://genome.crg.es/pub/Encode/data_
analysis/TSS/Gencodev10_TSS_May2012.gff.gz); 54,650
promoters (out of 92,909) were linked to annotated TSSs.

Roadmap epigenomic DHS data preprocessing
DHS peak positions for 474,004 putative enhancer and
33,086 promoter non-overlapping DHS segments [3]
were taken from:

� https://personal.broadinstitute.org/meuleman/
reg2map/HoneyBadger2-intersect_release/DNase/
p10/prom/25/state_calls.RData

� https://personal.broadinstitute.org/meuleman/
reg2map/HoneyBadger2-intersect_release/DNase/
p10/enh/25/state_calls.RData

To create enhancer/promoter signal matrices, we
used the aligned reads (BED files) of 350 UW DNase-
seq samples (73 cell types) from GEO dataset
GSE18927 [29, 32, 34–36]. The number of reads
mapped within each DHS peak was counted using the
BEDTools utilities [33]. We focused only on pro-
moters/enhancers with signal ≥ 1 RPKM in at least one
sample, resulting in 32,629 promoters and 470,549 pu-
tative enhancers.
We defined for each promoter the set of k = 10 candi-

date enhancers located within a window of ±500 kb. We
mapped promoters to annotated genes using Genco-
deV10 TSS annotations (ftp://genome.crg.es/pub/Enco
de/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz)
[37]; 17,941 (out of 32,629) promoters were linked to an-
notated TSSs.

FANTOM5 data preprocessing
Promoter (CAGE tags peak phase 1 and 2) and enhancer
(human permissive enhancers phase 1 and 2; n = 65,423)
expression matrices (counts and normalized) covering
1827 samples (600 cell types) were downloaded from
FANTOM5 DB (http://fantom.gsc.riken.jp/). As in the
FANTOM5 paper [4] we focused on promoters with ex-
pression ≥ 1 TPM (tags per million) in at least one sam-
ple, resulting in 56,290 promoters annotated with 26,489
RefSeq TSSs within ±500 bp. We defined for each pro-
moter the set of k = 10 candidate enhancers located
within a window of ±250 kb from the promoter’s TSS.
The choice of smaller window here was done for
consistency with the FANTOM5 choices.

GRO-seq data preprocessing
We downloaded raw sequence data of 245 GRO-seq sam-
ples from the Gene Expression Omnibus (GEO) database
(Additional file 3: Table S5). See Additional file 1: Supple-
mental Methods for further processing details. We defined
for each gene the set of k = 10 candidate enhancers
located within a window of ±500 kb from its TSS.

FOCS model implementation
The input to FOCS is two activity matrices, one for en-
hancers (Me) and the other for promoters (Mp), mea-
sured across the same samples. Activity is measured by
DHS signal in ENCODE and Roadmap data, and by ex-
pression level in FANTOM5 and GRO-seq data. Samples
were labeled with a cell-type label out of C cell types.
The output of FOCS is predicted E–P links.
First, FOCS builds for each promoter an OLS regres-

sion model based on the k enhancers whose center posi-
tions are closest to the promoter’s center position (in
ENCODE, Roadmap, and FANTOM5) or TSS (in GRO-
seq). Formally, let yp be the promoter p normalized ac-
tivity pattern (measured in counts per million (CPM); yp
is a row from Mp) and let Xp be the normalized activity
matrix of the corresponding k enhancers (CPM; k rows
from Me). We build an OLS linear regression model yp
= Xpβp + εp, where εp is a vector that denotes the errors
of the model and βp is the (k + 1) x 1 vector of coeffi-
cients (including the intercept) to be estimated.
Second, FOCS performs leave-cell-type-out cross-

validation (LCTO CV) by training the promoter model
based on samples from C − 1 cell types and testing the
predicted promoter activity of the samples from the left-
out cell type. This step is repeated C times. The result is
a vector of predicted activity values ymodel

p for all

samples.
FOCS tests the predicted activity values using two val-

idation tests. (1) The binary test examines whether ymodel
p

discriminates between the samples in which p was active
(observed activity yp ≥ 1 RPKM) and the samples in
which p was inactive (yp < 1 RPKM). (2) The activity
level test calculates, for the active samples, the signifi-
cance of the Spearman correlation between ymodel

p and

yp. Spearman correlation compares the ranks of the ori-
ginal and predicted activities. We obtain two vectors of
p values, one for each test, of length n (the number of
promoter models).
Third, to correct for multiple testing, FOCS applies

on each p value vector the Benjamini–Yekutieli (BY)
FDR procedure [19]. Promoter models with q-value ≤0.
1 in either both tests or in the activity level test were
included in further analyses. In GRO-seq analysis, we
also included models that passed only the binary test
(m = 2580) since 57% of them had R2 ≥ 0.5 (Additional
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file 1: Figure S6B). For promoters that passed these CV
tests final models are trained again using all samples.
FOCS next selects informative enhancers for each final

promoter model. The enhancer selection step is de-
scribed in Additional file 1: Supplemental Methods.

Alternative regression methods
We compared the performance of the OLS method with
GLM.NB and ZINB regression methods. We repeated
the FOCS steps but in the first step, instead of OLS we
applied the GLM.NB or ZINB method (see Additional
file 1: Supplemental Methods for details).
FANTOM5 E–P linking using OLS regression was

followed by Lasso shrinkage (defined as OLS-LASSO) as
described in [4] (see Additional file 1: Supplemental
Methods for details).

GO enrichment analysis
GO enrichments were calculated using topGO R pack-
age [38] (algorithm = “classic”, statistic = “fisher”, mini-
mum GO set size = 10). We split the genes into target
and background sets using their enhancer bin sets.
Genes belonging to bins with 1–3/1–4/4–10/5–10 en-
hancers were considered as the target set and compared
to all genes from all bins as the background set. Correc-
tion for multiple testing was performed using the BH
procedure [20].

External validation of predicted E–P links
We used three external data resources for validating
FOCS E–P link predictions: (1) RNAPII ChIA–PET inter-
actions; (2) YY1-HiChIP interactions; and (3) eQTL SNPs.
We downloaded 922,997 ChIA-PET interactions

(assayed with RNAPІІ, on four cell lines: MCF7, HCT-
116, K562, and HelaS3) from the Chromatin–Chromatin
Spatial Interaction (CCSI) database [39] (GEO accession
numbers of the original ChIA-PET samples are provided
in Additional file 3: Table S6). We used the liftOver tool
(from Kent utils package provided by UCSC) to trans-
form the genomic coordinates of the interactions from
hg38 to hg19. HiChIP interactions mediated by YY1 TF
(HCT116, Jurkat, and K562 cell types) were taken from
[21] (GEO accession id GSE99521). As done in [21], we
retained 911,190 YY1-HiChIP high-confidence interac-
tions (Origami probability> 0.9). For eQTL SNPs, we
used the significant SNP–gene pairs from GTEx analysis
V6 and V6p builds; 2,283,827 unique eQTL SNPs cover-
ing 44 different tissues were downloaded from the GTEx
portal [22].
We used 1-kbp intervals (±500 bp upstream/down-

stream) for the promoters (relative to the center position
in ENCODE/Roadmap/FNATOM5 or to the TSS pos-
ition in GRO-seq) and the enhancers (±500 bp from the
enhancer center). An E–P pair is considered supported

by a particular capture interaction if both the promoter
and enhancer intervals overlap different anchors of an
interaction. An E–P pair is considered supported by an
eQTL SNP if the SNP is located within the enhancer’s
interval and is associated with the expression of the pro-
moter’s gene. For each predicted E–P pair we checked if
the promoter and enhancer intervals are supported by
capture interactions and eQTL data. We then measured
the fraction of E–P pairs supported by these data re-
sources. See Additional file 1: Supplemental Methods for
the significance calculation of the empirical p value.

Statistical tests, visualization, and tools used
All computational analyses and visualizations were done
in the R statistical language environment [40]. We used
the two-sided Wilcoxon rank-sum test implemented in
wilcox.test() function to compute the significance of the
binary test. We used the cor.test() function to compute
the significance of the Spearman correlation in the activ-
ity level test. Spearman/Pearson correlations were com-
puted using the cor() function. To correct for multiple
testing we used the p.adjust() function (method = ‘BY’).
We used the GenomicRanges package [41] for finding
overlaps between genomic positions. We used rtrack-
layer [42] and GenomicInteractions [43] packages to im-
port/export genomic positions. Counting reads in
genomic positions was calculated using BEDTools [33].
OLS models were created using the lm() function in the
stat package [40]. GLM.NB models were created using
the glm.nb() function in the MASS package [44]. ZINB
models were created using the zeroinfl() function in the
pscl package [45]. Graphs were made using graphics
[40], ggplot2 [46], gplots [47], and the UCSC genome
browser (https://genome.ucsc.edu/).
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Additional file 1: Figures S1–S14, Tables S1–S3, and Supplemental
Methods. (PDF 3127 kb)

Additional file 2: Table S4 GO enrichment analyses. (XLSX 29 kb)

Additional file 3: Tables S5–S6 GRO-seq and ChIA-PET samples. (XLSX 25 kb)
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