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Abstract

Benchmarking is an essential step in the development of computational tools. We take this opportunity to pitch in
our opinions on tool benchmarking, in light of two correspondence articles published in Genome Biology.

Technological advances have profoundly changed cancer
research over the past two decades. Increasingly afford-
able, it is now routine to sequence the genome and
transcriptome of a sample. As a result, we are accumu-
lating unprecedented volumes of data. For instance, the
Genomic Data Commons hosted by the National Cancer
Institute contains 14,551 cancer samples totaling a stor-
age space of 5 petabytes as of May 2017 [1]. The sheer
amount suggests data-driven approaches are more viable
than ever to provide new insights in cancer biology.
Computational tools are the bridge between these data

and insight. Algorithms are designed to answer ques-
tions that are either experimentally too laborious or even
infeasible. Consequentially, we have tools to nominate
driver genes by analyzing patterns of genome-wide som-
atic mutations [2]; to discover molecular subtypes with
distinct expression, copy number, and mutational features
[3]; and to predict many fundamental characteristics of
cancer samples, such as the average telomere length [4],
purity [5], and even the abundance of infiltrating stromal
and immune cells [6]. The power of such predictions lies
in the amount of data, as associating these characteristics
with cancer genomic and clinical parameters in thousands
of cases permits the discovery of the subtlest links that
otherwise would be buried deep in the data.
Thanks to a vibrant community, we usually have arrays

of tools developed to address the same sets of questions.
The availability of alternatives is critically important as
no tool is guaranteed to grasp the full complexity of
cancer genomic data. Take mutation calling, for
example: more than a dozen mutation detection tools

are available on the market [7]. The choice of which tool
to use in a project often relies on popularity, ease of use,
and demand for resources. While performance should be
the best measure, it is more often that a tool is suggested
to outperform competitors in benchmarking experiments
conducted by its own developers. In light of this, commu-
nity efforts such as the ICGC-TCGA DREAM challenges
[8] are being established to provide a common benchmark
reference to ensure fair and transparent comparisons.
For less widespread applications a consensus bench-

mark is likely not readily available. This does not suggest
in any way that the object of the research is less signifi-
cant. An example is deconvolution of bulk tumor
expression. Pathologists have long learned that tumors
are admixtures of malignant cells, fibroblasts, blood ves-
sels, and immune cells. Systematic analysis demonstrates
a continuum of tumor impurity, not only within a cancer
type but also across cancer tissues of origin [5]. The
tools discussed in two correspondence articles [9, 10],
CIBERSORT and TIMER, developed by Newman et al.
[11] and Li et al. [12], respectively, both aim to delineate
admixture at the transcriptome level into immune cell
types. While CIBERSORT takes on 22 cell types, TIMER
focuses on 6, arguing that including too many variables
would introduce statistical collinearity and lead to non-
biological associations. Furthermore, Li et al. [12] assert
that CIBERSORT was developed based on microarrays
and is thus unsuitable for the analysis of RNA-seq data.
In response, Newman and colleagues disputed these
arguments and suggested that TIMER failed to
normalize the immune cell estimates for total amount of
leukocytes, which they believe could explain the
observed discrepancies between the results generated by
the two tools [9].
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These correspondence articles clarify important details
of both tools, which in our opinion are beneficial to end
users. Furthermore, they invite discussions on what are
the best strategies and common pitfalls in benchmarking
computational tools. Here we summarize, in our view,
useful sources for benchmarking experiments.

1. Ground truth. A dataset produced by gold standard
experimental approaches is the strongest evidence
for validation. To name a few: fluorescence in situ
hybridization (FISH) for the validation of absolute
copy number predictions, and the quantitative
PCR-based telomeric repeat amplification protocol
(TRAP) assay for the validation of telomerase
activity prediction, etc. In some circumstances the
property of interest is challenging to quantify and
experiments can be designed to create an artificial
reference. For example, a dilution series is able to
provide an artificial sample with known proportions
of mixtures, which can be compared to computational
estimates such as purity. When using an experimental
dataset as the benchmarking reference, it is important
to keep in mind the context in which computational
and experimental data align. As an exaggerated
example, one would be ridiculed to validate a novel
driver mutation found in breast cancer in a glioma
cell line. In reality, however, we are tempted to make
extrapolations based on limited sets of experiments.
Acknowledging that we cannot practically test all
possible scenarios, we stress that context should be
carefully considered when applying or designing
experimental data for benchmarking.

2. Simulation. Often times a gold standard is simply
impossible to get, and this dilemma applies to many
cancer genome analyses. For instance, we do not
have a complete list of bona fide DNA structural
rearrangements (SVs) or somatic mutations that
allow us to evaluate the sensitivity and specificity of
calling tools, albeit it is straightforward to validate
the returned candidate events. In cases like this, we
resort to other means, such as simulation.
Generating a good simulation dataset takes deep
understanding of the simulated object and addition
of appropriate noise levels. Details are important as
to how well the simulated data reflect the real case
scenario. We encourage all authors to share their
code on public platforms such as GitHub or
SourceForge to enhance transparency and
reproducibility regardless of requirements from
publishers.

3. Literature and public resources. Literature
represents a wealth of information. However, it is
not uncommon to find contradictory evidence from
the literature to either prove or disprove a

conclusion. For this reason, citing one or a few
references does not significantly strengthen
benchmarking, in our view. Knowledge bases such as
the Cancer Gene Census [13] are expert curations of
publications and are more reliable sources. The same
rationale might be extended to databases that collect
data through text mining, which replaces human
subjectivity with sematic parsing and machine
learning. Benchmarking carries more weight as long
as it is done with systematically collected data rather
than hand-picked examples.

4. Other tools. Competing tools are usually compared
with rather than benchmarked to. However,
consensus results returned by multiple tools are
presumably more reliable if they diverge in their
premise and technical details. A consensus can be
intuitively defined when two tools are enlisted but
the complexity rises sharply upon inclusion of
multiple tools, in which case careful evaluation is
warranted to ensure proper stringency. In another
setting, a new tool can be benchmarked to an
existing tool addressing the same question but with
different modalities of input data. This is particularly
useful as such comparisons may provide insights
beyond benchmarking.

Despite its importance, benchmarking is only a part of
the tool development cycle. End users should be invited
to the dialogue as they are the ones that apply and test
tools in projects where they possess intimate knowledge
that tool developers may not have. In this sense bench-
marking of a tool occurs not only before but also after
its publication.
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