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Abstract

Background: Cellular senescence is a stable arrest of proliferation and is considered a key component of processes
associated with carcinogenesis and other ageing-related phenotypes. Here, we perform methylome analysis of
actively dividing and deeply senescent normal human epithelial cells.

Results: We identify senescence-associated differentially methylated positions (senDMPs) from multiple experiments
using cells from one donor. We find that human senDMP epigenetic signatures are positively and significantly
correlated with both cancer and ageing-associated methylation dynamics. We also identify germline genetic
variants, including those associated with the p16INK4A locus, which are associated with the presence of in vivo
senDMP signatures. Importantly, we also demonstrate that a single senDMP signature can be effectively reversed
in a newly-developed protocol of transient senescence reversal.

Conclusions: The senDMP signature has significant potential for understanding some of the key (epi)genetic
etiological factors that may lead to cancer and age-related diseases in humans.
Background
Primary human cells display senescence during prolonged
propagation in vitro [1]. Thus, a culture that might ini-
tially multiply with great rapidity eventually slows and
reaches a state of replicative exhaustion, or deep senes-
cence, during which viability can be retained from weeks
to years (Fig. 1a, Additional file 1: Figure S1). The cell
cycle inhibitor p16INK4A (p16) is hallmark of senescence
both in vitro and in vivo [2]. There has been considerable
interest in establishing the potential role of cellular senes-
cence in ageing and the many diseases for which age is the
primary risk factor [3]. In particular, the pathways that
enforce cellular senescence in vitro, and in which muta-
tion leads to increased lifespan or even immortality, are
invariably disrupted either through epigenetic silencing or
mutation, in cancer [4]. This includes, but is not limited
to, the p16 pathway. However, it is not always possible to
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relate in vitro cellular senescence, in its various manifesta-
tions with potentially related phenomena in ageing or
disease.
Methylation of DNA is an epigenetic modification es-

sential for the regulation of mammalian genome function
[5]. Patterns of DNA methylation are grossly perturbed in
every cancer studied to date [6], and have also been estab-
lished as a highly effective biomarker of age in humans
[7]. DNA methylation thus represents a potentially useful
candidate for genome-scale characterisation of senes-
cence. Here, we describe and characterise genome-wide
methylation dynamics during cellular senescence, and
identify senescence signatures that potentially unite tissue
culture senescence with the biology of cancer, and other
ageing-related phenotypes. We also find that senDMP
signatures can arise in vivo as a result of germline genetic
variation. Finally, we show that the senescent phenotype
and the associated senDMP signatures can be reversed.
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Fig. 1 Genome-wide DNA methylation dynamics during cellular senescence. a HMECs progressively cease proliferation with serial passage. Early
proliferating (EP) and deeply senescent (DS) cells as used throughout are indicated. Error bars = SD of three independent experiments. b DS cells
display increased p16 expression (green, top row) and SA-β-gal staining (blue, bottom row). c A scatter plot of the average beta value differences
between triplicate samples of DS and EP cultures for those sites found significantly differentially methylated (F-test; genome wide corrected P value
<0.01 and a minimum beta value difference of 0.3 between EP and DS cells) in either experiment 1 or experiment 2 (grey points). Those sites which
are senDMPs in experiment 1 which show a beta value difference <0.1 in experiment 2 (926 probes, ‘experiment 1’) are highlighted in blue; those
senDMPs in experiment 2 which show a beta value difference <0.1 in experiment 1 (1,807 probes, ‘experiment 2 only’:) are highlighted in red and
those common senDMPs between experiment 1 and 2 which change in the same direction (725 probes, ‘agree’) are highlighted in green. Those
senDMPs in common between experiments 1 and 2 which show opposite directions are highlighted in red. The number of sites for each quadrant are
shown in the four corners with the appropriate colour. d DS–EP beta value differences of neighbouring Illumina 450K probes within 500 bp of ‘index’
senDMP. The hypermethylated index senDMPs (left) and hypomethylated index senDMPs (right) are shown for both experiment 1 and experiment 2.
Each panel row represents the three different sites (experiment 1 only (blue), experiment 2 only (green) and agree (purple)). e Comparison of DNA
methylation profiles between unsorted EP cells versus each of the three different EP sub-fractionated populations (left, middle and right panels). The
beta values for all 401,915 CpGs are plotted on each axis (black points). senDMPs, as defined in the text, are illustrated in blue (experiment 1 only),
green (experiment 2 only) and purple (agree). No genome-wide statistical significant differences were found between EP and any of the sub-
fractionated populations, or indeed between any of the FACs sorted populations (Additional file 5: Table S8)

Lowe et al. Genome Biology  (2015) 16:194 Page 2 of 15



Lowe et al. Genome Biology  (2015) 16:194 Page 3 of 15
Results
Cellular senescence is associated with extensive DNA
methylome dynamics
Normal human mammary epithelial cells (HMECs) are
known to undergo p16-mediated cellular senescence,
independent of telomere attrition [8, 9]. Here, HMECs
from a healthy 21-year-old female donor were cultured
from passage 6 (termed early proliferating (EP)), to deep
senescence (DS) (Fig. 1a, Methods). The DS cells in our
experiments displayed the key characteristics of cellular
senescence, including elevated expression of p16INK4A
(p16), a key mediator of the phenotype in these cells,
senescence-associated β-galactosidase (SA-β-gal) (Fig. 1b)
[9], majority G1 DNA content (data not shown), and no
expansion upon at least two further serial passages
(Fig. 1a).
To investigate senescence-associated genome-scale

DNA methylation dynamics we used Illumina 450K
arrays, which assess methylation at >450,000 different
cytosine residues associated with the majority of pro-
moters (up to 1.5 kb upstream of the transcriptional
start site), CpG islands (CGIs), gene bodies and a var-
iety of intergenic sites including many enhancers [10].
We profiled two separate experiments, termed experi-
ment 1 and experiment 2, which were performed 1 year
apart under the same conditions (using the same
donor) with the exception of medium/supplement lot
numbers. For each experiment three independent EP
cultures were serially passaged until they reached DS.
As a control for subsequent experiments, EP and DS
cultures were exposed to a siRNA termed ‘siGLO’ (tar-
geting Cyclophilin B). siGLO did not perturb cellular
phenotype (Additional file 1: Figure S2).
DNA methylation profiles revealed excellent correl-

ation among triplicate samples of EP and DS cultures
within each experiment (R2 >0.99, Additional file 1:
Figures S3 and S4). To compare the EP and DS samples
across experiments we called differences between experi-
ment 1 and experiment 2 EP cells, finding 872 probes
(FDR 1 % (F-test), beta value difference >0.3), and be-
tween experiment 1 and experiment 2 DS cells, finding
11,568 probes (FDR 1 % (F-test), beta value difference
>0.3). This suggests that the EP methylation state is
much more consistent across different experiments than
that of the DS methylation state (Additional file 1: Figure
S5). To investigate the cause of these differences be-
tween DS cells between experiments we subdivided the
11,568 probes into four categories (Methods). Of these,
777 (7 %) probes are associated with an unknown batch
effect between the experiments, 6,390 probes (55 %) are
associated with a senescent associated change in one
experiment and not the other, 4,087 (35 %) probes are
associated with a senescent associated change but in the
opposite direction between the two experiments and 314
(3 %) show similar directional differences. Therefore
the majority of these methylation differences in DS be-
tween experiments are due to the different dynamics of
senescence.
Next, we identified senescence-associated differentially

methylated positions (senDMPs) in DS relative to EP
cells, using an F-test (FDR 1 %) and a minimum average
beta value difference of 0.3 (Methods). This analysis
uncovered 3,852 distinct senDMPs for experiment 1
(2,240 hypermethylated and 1,612 hypomethylated) and
8,158 senDMPs for experiment 2 (3,928 hypermethylated
and 4,230 hypomethylated). Seven hundred and fifty-two
probes were found to overlap between experiments 1
and 2, representing a highly significant enrichment of
probes in common across the two experiments (9.00-
fold enrichment; P value <10−4). Despite this high en-
richment this still represents only a 20 % overlap and
hence why the DS state is less consistent than that of
EP. To investigate this further, we defined three separate
senDMP groups; ‘experiment 1 only’: senDMPs in ex-
periment 1 which show a beta value difference <0.1 in
experiment 2 (969 probes, blue, Additional file 2: Table
S1); ‘experiment 2 only’: senDMPs in experiment 2
which show a beta value difference <0.1 in experiment 1
(1,807 probes, green, Additional file 3: Table S2); and
‘agree’: common senDMPs between experiment 1 and 2
which change in the same direction (725 probes, purple;
Fig. 1c, Additional file 4: Table S3). senDMPs in all three
groups showed similar dynamics at neighbouring Illu-
mina 450K probes within 500 bp of the ‘index’ CpG
suggesting that they belonged to larger regions of differ-
ential methylation (ρ = 0.38 (experiment 1 only), ρ = 0.51
(experiment 2 only), ρ = 0.58 (agree), P value <2.2×10−16

(for all), Fig. 1d, Methods [11]). This suggests that agree
sites show similar regional dynamics to that of experiment
1 or experiment 2 only sites, for example, agree sites are
no more likely to be found in regions than the others.
Examination of various genomic properties yielded only
modest fold enrichments across the different senDMP
groups (Additional file 1: Figure S6).
Senescence (DS cells) is associated with a G1 cell cycle

arrest, whereas all phases of the cell cycle are present
during active proliferation (EP cells) (Additional file 1:
Figure S7). It was therefore possible that apparent
senDMPs might simply reflect different fractional per-
centages in each cell cycle phase between DS and EP
cultures, a key unaddressed issue in previous reports
[12, 13]. Thus, we fractionated EP cells generated in ex-
periment 1 into three sub-populations (G1-p16-ve, G2/S-
p16-ve and G1-p16+ve) by flow cytometry (Methods), and
analysed each in biological triplicate by Illumina 450K ar-
rays (Additional file 1: Figure S7, Methods). By contrast
with the well-described changes in gene expression during
the cell cycle, no significant methylation differences were
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observed between unsorted EP cells and any of the
three EP sub-populations, including the EP cells that
express p16 (G1-p16+ve cells) (all R2 >0.99, Fig. 1e,
Additional file 5: Table S8). These data suggest that the
senDMP signature is a product of deep senescence and
not simply p16 status. It also suggests that within the
cell populations used in these experiments there is no
evidence of a regulation of the cell cycle by DNA
methylation-associated changes.

Reversal of senescence
The bypass of senescence typically describes a pro-
tumourigenic escape from senescence (Additional file 1:
Figure S1). The early proliferating cells that initially
give rise to the senescent state are distinct from those
that have overcome senescence [9, 14, 15]. By contrast,
the senescent phenotype of adult human epithelial cells
has long been considered irreversible, and a reversal of
senescence to an EP state has not previously been dem-
onstrated (Discussion). To examine this issue, we devel-
oped a highly efficient and reproducible protocol for
introducing siRNA into DS cells (Additional file 1:
Figure S2, Methods). Thereafter, we ablated p16 mRNA
with a potent siRNA (Additional file 1: Figure S8, [16]),
and assessed the impact on numerous cellular and mo-
lecular markers classically associated with senescence.
A substantial fraction of the ‘DS+p16siRNA’ cells
reverted to a morphology similar to EP cells, stained
negative for SA-β-gal (Fig. 2a), and increased in cell
number by six-fold over the 9-day timecourse. 5-
bromo-2′-deoxyuridine (BrdU) incorporation, illustra-
tive of transition through the S phase, was stimulated
from 2.7 % ± 0.45 in DS cells to 10.8 % ± 0.44 and 44.3
% ± 1.68, at 2 and 5 days, respectively. By contrast,
transfection with siGLO siRNA did not increase cell
number or enhance the BrdU labelling-index over the
time-course of the experiment (Fig. 2b). We also assessed
a proxy marker for reactive oxygen species, 8-oxoguanine,
and observed decreased 8-oxoguanine in the ‘DS
+p16siRNA’ population (24.8 % ± 4.4, day 9), in contrast
with DS cells, the majority of which remained positive.
‘DS+p16siRNA’ cells also displayed downregulation of the
senescence-associated secretory phenotype (SASP) pro-
inflammatory signature, as measured by decreased levels
of the cytokines IL-6 and IL-8 (Additional file 1: Figure
S9). Finally, we observed increased expression of members
of the polycomb group of proteins (CBX7, EED, EZH2
and Suz12) which are typically downregulated during sen-
escence (Additional file 1: Figure S10). Therefore, by every
marker tested, cellular senescence appears to be largely
reversed in ‘DS+p16siRNA’ cells. Although the phenotype
is transient, these experiments appear to provide the first
example of the reversal of senescence of adult human
epithelial cells.
Reversal of senescence-associated methylation dynamics
To examine global methylation dynamics of the senDMPs
following senescence reversal, we established genome-
scale DNA methylation profiles for three independent DS
cultures derived from experiment 1 EP cells at 2 and 5
days post p16 siRNA transfection. Comparison of the
methylation state of DS+p16siRNA (day 2) with the EP
signature revealed that 90 % (656) of the agree sites a
methylation state below the 0.3 threshold and 18 % (127)
of sites are below 0.1. This suggests that the vast majority
of agree sites have undergone some degree of reversal, but
at the day 2 timepoint only 18 % exhibit complete reversal
to the EP state. One hundred percent (969) of experi-
ment 1 only sites have a methylation state below the
0.3 threshold and 86 % (834) are below 0.1 suggesting a
more complete reversal of these sites (Fig. 2c). At day
5, DS+p16siRNA cells began to re-express p16 (mRNA,
Additional file 1: Figure S8), and the methylation signa-
ture began to revert to the former DS pattern (Fig. 2d).
Now only 76 % (553) of the agree sites are below 0.3
and 14 % (102) are below 0.1. For experiment 1 only
sites 99 % (964) methylation state is still below 0.3 but
now 79 % (768) are below 0.1.
The DS+p16 450 K samples were generated by trans-

fecting three independent cultures passaged to DS from
experiment 1 with p16 siRNA. Therefore, by definition,
all of the 1,807 experiment 2 only sites were below the
0.1 threshold in the DS samples prior to senescence re-
versal (Fig. 1c). Interestingly, a number of these experi-
ment 2 only sites displayed methylation dynamics in the
DS+p16siRNA (day 2) samples, with 25 % (459) of sites
above the 0.1 threshold, and show similar directionality
to that found in experiment 2 between EP to DS (Ken-
dall’s Coeffecient = 0.45, P value <2.2×10−16). At day 5,
experiment 2 only sites also continue to move towards a
DS pattern with 34 % (628) above the 0.1 threshold.
During tumourigenesis, overcoming senescence typically
occurs following hypermethylation of the p16 promoter
[8], and this is commonly observed within the cancerous
breast epithelium [17]. However, and importantly, during
the reversal of senescence we observe no change in the
methylation levels of CpG sites at the p16 promoter in EP,
DS or DS+p16siRNA cells (beta value difference >0.3, data
not shown). Overall, these data show that the reversal of
senescence protocol effectively reversed the senDMP
signature, and that senDMPs can indeed be considered as
robust markers for the senescent state per se.

SenDMPs show significant enrichment with expression
changes in DS cells
We investigated whether senDMPs showed any correl-
ation with expression differences between EP and DS
cells. We performed gene expression arrays in triplicate
(IlluminaHT12) for EP and DS cells and asked whether



Fig. 2 DNA methylation is reversed during the reversal of senescence of DS HMECs. a SA-β-gal staining of EP, DS+siGLO and DS+p16siRNA cells.
b Quantitation of proliferation (top row), BrdU positivity (middle row), 8-oxoguanine negativity (bottom row) in DS+siGLO and DS+p16siRNA cells
at days 2, 5, 7 and 9 post transfection. c A line plot of the beta value difference between each stage of the experiment and the EP cells for each
of the hyper-senDMPs (top row) and hypo-senDMPs (bottom row). The thick coloured line in each plot represents the mean of all the hyper-senDMPs
or hypo-senDMPs
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promoter or gene-body DMPs are more likely to be
associated with genes differentially expressed between
EP and DS cells, regardless of the directionality. We
found an enrichment of differentially expressed genes
with those that were differentially methylated for sites
which agreed between the two experiments (1.28-fold
enrichment, P value = 0.012), while no such enrichment
was observed for sites present in experiment 1 or 2 only
(0.74- and 1.02-fold enrichment; P value = 0.999 and
0.413, Fig. 3a). We performed pathway analysis (Panther
DB) for the agree sites and, although not all changes in
expression were attributed to a particular pathway, this
analysis revealed members of a total of 61 pathways, in-
cluding a number of pathways considered to be hall-
marks of senescence (Additional file 6: Table S7). These
include the Inflammation mediated by chemokine and
cytokine signaling pathway (P00031), and the Wnt Sig-
nalling pathway (P00057). Although the enrichment did
not reach significance for experiment 1 and 2 sites, we
were interested to determine the pathways with which
these sites were associated (Methods, Additional file 7:
Table S5 and Additional file 8: Table S6). Interestingly,
this analysis highlighted a total of 37 common pathways
between all three senDMP signatures, including P00031
and P00057 (37/61 for experiment 1, 37/81 for experi-
ment 2 and 37/60 for agree sites). Finally, we asked if
these 37 pathways had a function role in senescence by
cross-referencing these with the 35 pathways that
emerged from a previous genome-wide siRNA screen
for novel modulators of senescence [16]. This revealed
17 pathways common to all three senDMP signatures as
well as those that emerged from the siRNA screening,
with further signature specific overlap (25/35 for experi-
ment 1, 29/35 for experiment 2 and 25/35 for agree
sites). Once again both P00031 and P00057 are present
among these 17 pathways.

Investigating the senDMP signature in vivo
We then investigated the potential in vivo relevance of
the senDMP signature. As we derived the senDMP sig-
nature in HMECs, we used Illumina 450k data from 73
breast tissue samples labelled as normal in ‘The Cancer
Genome Atlas’ (TCGA) project (Methods). For each
normal breast sample, we calculated the average methyla-
tion observed at CpG sites identified as hypermethylated
senDMPs (hyper-senDMPs) in HMECs, and separately
the CpG sites identified as hypomethylated senDMPs
(hypo-senDMPs). A priori, if there is an underlying bio-
logical process that links these CpG sites in vivo then
methylation states at hyper-senDMPs should be nega-
tively correlated relative to methylation states at hypo-
senDMPs. For all groups of senDMPs we found a strong
negative correlation (Kendall’s Coeffecient = −0.44 (ex-
periment 1 only), −0.42 (experiment 2 only), −0.41 (agree);
P value = 4.334×10−8, 1.988×10−7, 3.654×10−7, Fig. 3b)
meaning that individuals who displayed higher methyla-
tion levels at hyper-senDMPs also displayed lower
methylation levels at hypo-senDMPs. Using a similar
number but randomly chosen probes, however, yields a
strong positive correlation coefficient of 0.61 (Methods,
Additional file 1: Figure S11).
Based on this observation, we defined a ‘senDMP

score’ that conveys the strength of the correlation be-
tween the overall methylation pattern observed at
senDMP-associated CpG sites, in an in vivo setting, with
the senDMP signature we defined in HMECs (Methods).
We next wanted to establish if the in vivo senDMP

scores in these 73 individuals were correlated with inde-
pendent and well-established markers of senescence,
namely expression levels of CDKN2A (p14 and p16) and
CDKN2B (p15) [1]. We observed a non-significant (P
value >0.05) positive correlation for CDKN2A within
each of the three senDMP groups, although this gene
showed considerably low levels of expression in all indi-
viduals. However, we found a striking positive correl-
ation between our senescence score and the expression
of CDKN2B in the normal breast tissue (Kendall’s
correlation coefficient = 0.49 (experiment 1 only), 0.50
(experiment 2 only), 0.49 (agree); P value = 4.75×10−8,
2.82×10−8, 5.11×10−8, Fig. 3c). Importantly, in the ori-
ginal in vitro HMEC experiments, p15 expression was
elevated in DS cells, and knockdown of p16 in DS cells
resulted in reduced expression of p15.
We then investigated the senDMP signature in other

tissues and found varying levels of negative correlation
between hyper- and hypo-senDMPs (Additional file 1:
Figures S13–S15). We acknowledged that this sendDMP
signature was derived from a single tissue from a single
individual and, as such, has inherit limitations. Thyroid
produced the strongest negative correlation across all
groups (Kendall’s correlation coefficient = −0.34 (experi-
ment 1 only), −0.28 (experiment 2 only), −0.49 (agree);
P value = 2.1×10−4, 2.7×10−3, 1.2×10−7) and hence seems
to contain the strongest signal of senescence based on
our senDMPs, while blood and prostate showed a posi-
tive correlation in line with the random sampling across
all groups (Kendall’s correlation coefficient = 0.2 (experi-
ment 1 only), 0.44 (experiment 2 only), 0.24 (agree); and
0.24 (experiment 1 only), 0.27 (experiment 2 only), 0.03
(agree), respectively), suggesting no association with our
senDMP signature.

The senDMP signature is associated with cancer
We then used the senDMP signatures to explore potential
biological links with cancer. We calculated the senescence
score for each of the three senDMP signatures in both
tumour and normal breast samples from TCGA and
found that tumours showed a marked increased measure



Fig. 3 The methylomic signature of cellular senescence shows no association with expression but is shared among methylation signatures of human cancers
and ageing. a The number of genes that are both significantly altered in both expression and methylation for senDMPs (coloured vertical line; blue –
experiment 1 only, green – experiment 2 only, and purple – agree) against the background model. There is a significant enrichment of genes altered in both
gene expression and methylation for those sites that agree while no significant enrichment for those sites which vary in experiment 1 or 2 only. b Scatter plot
of the average methylation in normal breast tissue from TCGA for CpGs that are hypermethylated during senescence against those that are hypomethylated in
senescence. The three different sites are plotted in three different panels going from left to right: blue – experiment 1 only, green – experiment 2 only, and
purple – agree. A negative correlation implies that our senDMP signature is present in these breast samples. c The senescence score was calculated for each of
the 73 normal breast tissues and plotted against the log of the expression for CDKN2A (left) and CDKN2B (right). The three different sites are plotted from
top to bottom: blue – experiment 1 only, green – experiment 2 only, and purple – agree. d The senescence score was derived from senDMPs and
calculated for both normal and tumour breast tissue from TCGA (n = 73). Tumour samples show a much higher senescence score compared to normal
samples for the three different set of sites (blue – experiment 1 only, green – experiment 2 only, and purple – agree). e A boxplot of the senescence
score for the samples from 11 different cancers (coloured boxes) calculated from the TCGA datasets and the corresponding control tissue for each
cancer (white boxes). Each cancer sample shows an increased senescence score compared to the control samples. The three different sites are plotted
from top to bottom: blue – experiment 1 only, green – experiment 2 only, and purple – agree. The 11 different cancers are Thyroid vThyroid Carcinoma
(THCA), Kidney v Kidney renal clear cell Carcinoma (KIRC), Endometrial v Uterine Corpus Endrometrioid Carcinoma (UCEC), Lung v Lung
Adenocarcinoma (LUAD), Head/Neck v Head/Neck Squamous Cell Carcinoma (HNSC), Lung v Lung Squamous Cell Carcinoma (LUSC), Colon v Colon
Adenocarcinoma (COAD), Kidney v Kidney Renal Papillary Cell Carcinoma (KIRP) or Kidney Chromophobe (KICH), Prostate v Prostate Adenocarcinoma
(PRAD), Liver v Liver Hepatocellular Carcinoma (LIHC). f Scatter plot of the senescence score for normal breast tissue against the age of the sample. A
significant correlation between the senescence score and age is observed for all sets of sites, with older samples producing a higher senescence score.
The three different sites are plotted from left to right: blue – experiment 1 only, green – experiment 2 only, and purple – agree
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of senescence (t-test = −20.6 (experiment 1 only), −20.0
(experiment 2 only), −20.0 (agree); P value <2.2×10−16 in
all three, Fig. 3d). We then considered 11 further, very
highly disparate cancers in TCGA for which there exists
sufficient Illumina 450K data (>40 different matched sam-
ples per cancer, Fig. 3e). In all cases, tumour samples
showed a significantly (t-test P value <4×10−6) greater
senDMP score relative to matched healthy tissues.

The senDMP signature is associated with in vivo ageing
Given recent work demonstrating that methylation is a
strong marker for ageing [7], we wondered if our meas-
ure of senescence showed correlation with ageing. We
therefore correlated our senescence score for each indi-
vidual from the 73 breast tissue samples with their anno-
tated age of sampling. We find that our senescence
score shows a significant correlation with age (Kendall’s
correlation coefficient = 0.21 (experiment 1 only), 0.20
(experiment 2 only), 0.22 (agree); P value = 0.011, 0.015,
0.0062, Fig. 3f ), implying that older people have in-
creased methylation changes at senDMPs. While these
correlations are statistically significant, they are weaker
than the correlation between age and CpGs directly
associated with age [7].

Common disease linked SNPs associated with the p16
locus are linked with senDMPs
Based on the importance of p16 in the reversal protocol,
we hypothesised that individuals with SNPs associated
with the p16 locus (INK/ARF locus) should have meas-
urably different DNA methylation profiles at senDMPs.
To investigate this, we extracted methylation (Illumina
450K) and genotype data (Affymetrix Genome-Wide
Human SNP Array 6.0) from TCGA. As our senDMP
signature was originally found in HMECs, we focused on
73 normal samples from individuals with breast invasive
carcinoma (Methods), and those SNPs (2,878) that have
been reported in the GWAS catalogue [18]. For each of
these we extracted the genotype for each of the 73 individ-
uals and calculated the Pearson’s correlation coefficient of
genotype with methylation for each of our 725 agree
senDMPs (Fig. 4a). We then calculated a directional chi-
squared statistic using only those senDMPs which showed
a >0.15 methylation and genotype correlation (Methods).
A minimum threshold of >0.15 was chosen to reduce po-
tential spurious correlations (Additional file 1: Figure S16)
although the results remain relatively unchanged without
this cutoff (data not shown). We found two of the GWAS
SNPs associated with the p16 locus to have significant
(P value <0.1) association of genotype with our senDMP
signature (Permutation P value: rs10811661 = 0.0014 (ex-
periment 1 only), 0.014 (experiment 2 only), 0.033 (agree);
rs2383208 = 0.010 (experiment 1 only), 0.043 (experiment
2 only), 0.081 (agree); rs1333051 = 0.013 (experiment 1
only), 0.040 (experiment 2 only), 0.13 (agree), Fig. 4b).
These are associated with susceptibility to type 2 diabetes.
As these all had similar chi-squared values and associated
traits we investigated their linkage disequilibrium using
the online database GLIDER [19] and found that these
three SNPs were all in tight linkage.
Interestingly, other GWAS SNPs showed an even stron-

ger correlation with the senDMP signature compared with
p16-associated SNPs, suggesting the presence of multiple
genetic variants that can influence the senDMP signature
in vivo (Table 1). To confirm this, we permutated the
labels of the senDMPs and re-calculated the correlations
between GWAS SNPs and these permuted senDMPs
(1,000 different permutations). No SNPs in any of the
permutations showed high levels of correlation (>100 Chi-
squared statistic), whereas the true labels resulted in 471
GWAS SNPs associated with an in vivo senDMP signature
(Fig. 4c). Seven common traits emerged for the three
senDMP sigantures: Type 2 diabetes, ischaemic stroke,
breast cancer, lentiform nucleus volume, fasting glucose-
related traits (interaction with BMI), obesity-related traits
and IgG glycosylation (Fig. 4d).

Discussion
Here we have identified CpG sites (senDMPs) that dis-
plays significant methylation dynamics between actively
dividing and deeply senescent human mammary epithe-
lial cells. The senDMP signatures correlates with cancer
and ageing methylomes, are influenced by genetic vari-
ation, and displays inter-individual variation in unaffected
tissues. Crucially, the senDMP signatures can be essen-
tially reversed upon reversal of senescence.
The observation that non-proliferative, deeply senes-

cent cells share a partially common signature of DNA
methylation with diverse cancers is unexpected. Ad-
vanced tumours are highly heterogeneous and include
not only genetically-damaged tumour cells but also in-
duced vasculature, infiltrating fibroblasts and inflam-
matory cells. High levels of p16 expression, and thus
possibly senescent cells, have been widely reported in
such non-tumour cells [20, 21]. However, the strength
of the cancer and senDMP relationship more likely
reflects the properties of the tumour tissue itself. It has
been suggested that senescent cells create an environ-
ment conducive to tumourigenesis [22], and indeed
that tumours may arise directly from cells that had
reached senescence and then overcome this programme
following a pro-tumourigenic event. If so, the senescent
cell DNA methylation signature might simply carry
over into the progressing tumour, and be maintained
through the acquisition of mutations that generate
common tumour hallmarks, such as p16 gene muta-
tions. In support of this, recent work has shown that
senescent fibroblasts also have methylation changes



Fig. 4 Common disease linked SNPs are correlated with senDMP signature. a For each of the senDMPs Pearson’s correlation coefficient was
calculated for each SNP (in this figure rs10811661). We then compared the directionality of senDMPs (DS-EP – in this example the agree sites
have been used) to the correlation with genotype (risk allele–alternative allele) and calculated a chi-squared. b A density plot of the chi-squared
statistic for all (2,862) GWAS SNPs present on the genotype array. Highlighted in colour are those SNPs associated with the p16 locus of which
two show significant directionality with our senDMPs across the three groups of senDMPs. These are plotted left to right: blue – experiment 1 only,
green – experiment 2 only, and purple – agree. c A density plot of the chi-squared statistic for all GWAS SNPs measuring the association with senDMP
signature (blue – experiment 1 only, green – experiment 2 only, and purple – agree) and 100 random shuffled signatures (black). d Venn diagram
illustrating the traits associated with the SNPs which correlated with the senDMP signatures (blue – experiment 1 only, green – experiment 2 only, and
purple – agree)
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similar to those observed in cancer [23]. Import-
antly, the authors show that these changes are
largely retained when cells overcome senescence fol-
lowing expression of SV40 T antigen. An alternative
overall interpretation is that the methylation pattern
may reflect underlying similarities in the molecular
physiology of senescent and tumour cells, that im-
plies no direct lineage relationship, but rather that
each has reached, or exceeded, its natural ‘division
potential’.
As recently demonstrated by several groups, DNA
methylation now represents the single best molecular
predictor of human age. Hannum et al. defined 71 dif-
ferent CpG sites that can predict chronological age to ±4
years and 96 % accuracy [7]. We show a significant and
positive correlation between the senDMPs signature and
age of the sample, but also imply that senescence scores
are not simply related to a person’s age. This idea is sup-
ported by our observation that human individuals dis-
play varying degrees of correlation with the senDMP



Table 1 Top 10 GWAS SNPs which are associated with senDMP signature ordered by absolute chi-squared statistic

SNP ID CHR Position Gene RAL Trait Cor Stat

rs10496584 2 123126479 Intergenic A Lentiform nucleus volume 0.885 −424

rs4848768 2 123141545 Intergenic B Lentiform nucleus volume −0.865 −403

rs12716852 16 78188738 WWOX A Pulmonary function 0.896 −375

rs17041 6 108853493 LACE1 B Obesity-related traits 0.927 369

rs7944584 11 47336320 MADD A Fasting glucose-related traits (interaction with BMI) 0.909 −354

rs2989476 1 61059259 NFIA A Bipolar disorder −0.888 338

rs966423 2 218310340 DIRC3 A Thyroid cancer 0.869 −338

rs4527850 8 134196849 WISP1 A Type 2 diabetes 0.839 −327

rs4432842 5 57172078 Intergenic B Birth weight 0.810 326

rs2479106 9 126525212 NR B Polycystic ovary syndrome 0.860 326

Cor: Pearson’s correlation coefficient between the SNP and the senDMPs; RAL: risk allele for the SNP; Stat: the directional chi-squared statistic
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signature, which in turn correlates well with known in vivo
markers of senescence such as CDKN2A/2B expression
levels. Does this inter-individual variation in senescence
scores imply population-level variation in the proportion of
senescent cells present in different individuals? If so, what
are the relative contributions of ageing, environment and
genetics? Our analysis shows, for the first time, that genetic
variation in the human population could potentially influ-
ence the degree of in vivo senescence. However, this needs
to be explored in more detail in larger sample sets as they
become available. Although p16-associated SNPs showed
significant correlation with in vivo senDMP signatures,
there were other additional SNPs, located throughout the
genome, whose genotype showed an even greater correl-
ation. Among these are a further type 2 diabetes SNP on
Chr8 [24] and two SNPs on Chr2 associated with lentiform
nucleus volume [25], deficits of which having previously
been associated with normal ageing [26]. There is growing
evidence that DNA methylation plays a role in disease sus-
ceptibility, which includes correlations between DNA
methylation and common diseases [27, 28], and the
genotype-dependent effect of allele-specific DNA methyla-
tion [29]. It is tempting to speculate that genetically driven
cellular senescence may be a key factor in the etiopatho-
genesis of various diseases such as diabetes and cancer.
We observed an overall correlation between senescence-

associated DNA methylation and gene expression dynam-
ics for the agree sites. Pathway analysis (Panther DB)
revealed a total of 17 pathways which were common to all
three senDMP signature sets and those that emerged from
a recent genome-wide siRNA screen for modulation of
senescence. These included the Inflammation mediated by
chemokine and cytokine signaling pathway (P00031) and
the Wnt Signalling pathway (P00057). Inflammatory medi-
ators are intimately linked with senescence and the
senescence-associated secretory phenotype [22, 30] and
this finding is in line with a recent work examining the
senescent methylome of human fibroblasts [23]. Likewise
Wnt signalling has an important role in restraining senes-
cence in epithelial [16] pulmonary [31] and mammary
stem cells [32].
In this work, we defined three sets of senDMPs re-

ferred to as experiment 1, experiment 2 and agree sites.
Experiments 1 and 2 were each performed in triplicate
using the same original cell stocks, however, they were
performed 1 year apart using different batches of
medium/supplements. One interpretation of the differ-
ences between experiments 1 and 2 is simply inter-
experimental variation, and that only those sites which
change in both set experiments (the agree sites) are im-
portant for the process. However, both experiments 1 and
2 senDMP signatures have a significant correlation with
ageing and show the same negative correlation in vivo to
that of agree sites. Furthermore, we find that those sites
found in experiment 2 which do not change between DS
and EP state in experiment 1, do change in the expected
direction (hyper and hypo) at 2 days and 5 days after p16
knockdown. This may suggest that there are multiple ways
in which a cell can senescence, and that deviation from a
common starting point may be reflected at the level of the
methylome. Interestingly we do find that those agree sites
are not reversed to the same extent as the other senDMPs
suggesting that these could be part of this initial common
starting point. The finding that tumours from 12 different
tissues show a greater senDMP score relative to healthy
tissue for all three senDMP signatures may also indicate
potential inter-individual variation which is captured by
the full complement of senDMPs.
Finally, we also show that the senescent phenotype

should not be considered irreversible. The reversibility
of p16-mediated cellular senescence, and the associated
pattern of DNA methylation, is unequivocal. The dis-
tinction between reversal and overcoming senescence is
critical, the latter being associated with a hypermethyla-
tion of the p16 promoter [8]. Upon reversal, the
senDMP signature essentially reverts to that seen in EP
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cells. It is important to note that this occurs in the
absence of any significant changes in the methylation
status of the p16 promoter. Reversal of senescence has
been described in embryonic murine fibroblasts [33, 34],
and in human fibroblasts of fetal origin [35, 36] that are
arrested by p53 rather than p16. However, rescue of
adult human cells from senescence has not been de-
scribed previously. Given that transgenic mice in which
p16 is specifically inactivated in particular tissues (for
example, pancreatic β-cells [37] and haemopoetic stem
cells [38]) display improved regenerative capacity in aged
animals, the tissue culture model of reversal of senes-
cence that we describe here may be used as a starting
point for elaboration of pathways of cellular rejuvenation
(see Fig. 5, model) and as more 450 K data from differ-
ent tissues becomes available to further explore and
refine the pan-tissue signatures.
Conclusions
This work identified senDMPs that display significant
methylation dynamics during senescence and our newly
developed senescence reversal protocol. This senescent
methylome correlated with in vivo cancer and ageing,
and with the expression of senescence markers. Finally,
we provide evidence indicating that the in vivo senescent
methylome may be influenced by germline genetic vari-
ation. In summary, we propose that senDMPs represent
a highly relevant signature that will enable novel in vivo
investigations into the role of cellular senescence in
Fig. 5 Model of reversal of senescence. Following serial passage, normal H
and enter a state of deep senescence (DS). In this work, we have identified
state and not the p16 status of the cells per se. Human senDMP signatures
tissues as well as ageing-associated methylomic dynamics. Senescence acts
programme, in combination with additional mutations, is believed to give
which overcome senescence retain this senDMP signature as they progress
which the senDMP signature essentially reverts to that seen in early prolife
the potential to be dynamic
human ageing-related phenotypes and diseases, includ-
ing cancers.

Materials and methods
Cells and reagents
Normal finite life span HMECs were obtained from re-
duction mammoplasty tissue of a 21-year-old individual,
specimen 184, and were cultured as previously described
(Garbe et al. [9]). The HMEC specimen (Specimen 184)
was obtained in 1980. This was before the current IRB
regulations were in place, and consent at that time was
covered by the hospitals’ consent forms which allowed
the pathologists to use or distribute discard surgical
material (which is what we obtained) at their discretion.
Independent cultures from this individual were serially
passaged from passage 6 (early proliferating, EP cells)
through to deep senescence (DS cells). DS cultures
underwent no further expansion upon at least two serial
passages.

siRNA transfections
A panel of scrambled siRNAs were tested as negative con-
trols in the HMECs, however, each of these induced some
degree of toxicity or phenotypic change in the EP cultures.
The fluorescently labelled siRNA targeting cyclophilin B
(siGLO) was selected for the experiments presented as
this did not influence the phenotype of either EP or DS
cultures. HMECs were transfected with 60 nM siGLO
siRNA (Dharmacon) or p16 siRNA (Qiagen) in 384-well
or 6-well plates using Dharmafect3 (Dharmacon). EP
MEC cultures eventually undergo p16-mediated cellular senescence
senDMP signatures and demonstrate that these are specific to the DS
shows strong positive correlations with cancers from a broad range of
as an essential barrier to tumour progression. Overcoming this cellular

rise to cancer. One possible interpretation of these findings is that cells
towards cancer. We also describe the reversal of senescence, during

rating (EP) cultures. This demonstrates that the senDMP signature has
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+siGLO, DS+siGLO or DS+p16siRNA cells were har-
vested for flow cytometry, DNA extraction or immuno-
fluorescence as detailed below.

Flow cytometry
EP+siGLO cells were harvested by trypsinisation 48 h
post transfection. Cells were fixed using 4 % paraformal-
dehyde + 5 mM EDTA, followed by permeabilisation
with 0.1 % Triton-X 5 mM EDTA. Cells were blocked in
0.25 % BSA 5 mM EDTA 0.25 % saponin, and then incu-
bated on ice with mouseαp16 JC2 (1:1,000), goatαmouse
AlexaFlur-647 (1:500, Invitrogen) and finally DAPI. Cells
were sorted into G1-p16–ve, G2/S-p16–ve and G1-p16+ve

fractions based on DNA content and isoform-matched
control antibodies conjugated to goatαmouse AlexaFlur-
647 using the ARIA II (Becton Dickinson).

Immunofluorescence
Standard fixation with 3.7 % paraformaldehyde, followed
by 0.1 % Triton X permeabilisation and blocking with 0.25
% BSA was performed prior to antibody incubations.
Primary antibodies used were mouseαp16 JC2 (1:1,000) or
mouseα8-Oxoguanine (1:100, MAB3560 Millipore),
followed by goatαmouse AlexaFlur-488 (1:500, Invitro-
gen), DAPI and Cell Mask Deep Red (1:10,000, Invitro-
gen). For 5-bromo-2′-deoxyuridine (BrdU) assays, cells
were cultured in 0.4 μM BrdU for 16 h prior to fixation.
An additional DNA denaturation step with 4 M HCl
for 10 min was performed following permeabilisation,
and a conjugated mouseαBrdU-AlexaFlur-488 antibody
(1:100, B35130 Invitrogen) used. Images were collected
at 10× using the IN Cell 1000 microscope (GE) and the
Developer Analysis software (GE) was used for image
analysis as described previously (Bishop et al. [16]).

Processing of arrays
For Illumina 450K methylation arrays IDAT files were
processed using the R package minfi [39]. Quantile nor-
malisation was performed on the intensity values of the
red and green channels of the type I and type II probes
separately. Probes with a detection P value <0.01 or
those mapping to more than one location (with 90 %
similarity) or to the X or Y chromosome were removed
from further analysis, leaving 401,915 probes (experi-
ment 1) and 431,909 probes (experiment 2). The X
chromosome was removed to allow for consistent ana-
lysis across a large number of datasets. Intensities were
combined into a single beta value. We also performed
the analysis and called senDMPs only removing the Y
chromosome and those DMPs found to be significantly
changed with >0.3 beta value difference and located on
chrX are included in Additional file 9: Table S4. For Illu-
minaHT12 RNA arrays, the samples were processed
using the lumi package. Arrays were first transformed
using the Variance Stabilizing Transform and then
normalised using robust spline normalisation. All
further analysis was performed on the normalised
transformed data.
Identification of senDMPs
DMPs were called using the dmpFinder function avail-
able in the R package minfi using the categorical vari-
able method. This function uses an F-Test to calculate
a P value between two or more groups and then calcu-
lates a corrected P value (q-value). For all differential
methylated positions we filtered first by q-value <0.01
and then by an absolute beta difference >0.3 unless
otherwise stated in the manuscript.
SNP analysis
We focused on those SNPs (2,878) that have been re-
ported in the GWAS catalogue [18] downloaded on 2
December 2013. For each SNP we extracted the geno-
type from the birdseed files downloaded from TCGA for
each of the 73 individuals. We then calculated for each
SNP the Pearson’s correlation coefficient of the genotype
of the 73 individuals with the methylation for each of
our 3,852 senDMPs (for example, we calculated 3,852
correlations for each SNP). We then set a minimum
threshold of >0.15 correlation (Additional file 1: Figure
S12) and calculated a chi-squared statistic by assigning
each senDMP to a bin of either hypermethylated or hypo-
methylated between DS and EP cells and either positively
correlated or negatively correlation of the methylation
with the risk allele of the SNP. Then those SNPs in which
the risk allele showed a methylation signature similar to
DS cells we assigned as a positive chi-squared and those
that the risk allele showed a methylation signature similar
to EP a negative chi-squared.
Defining differences in DS across experiments
To investigate the differences of the DS cells across ex-
periments, we characterised the differential probes into
four categories: (1) Batch effect defined by an absolute
beta value difference of less than 0.1 between EP and DS
within an experiment (777); (2) Unique changes between
DS and EP within an experiment defined as an absolute
beta value difference between DS and EP in one experi-
ment greater than 0.1 and in the other less than 0.1
(6,390); (3) Those changes between DS and EP in com-
mon between experiments defined as an absolute beta
vale difference >0.1 in both experiments and in the same
direction (314); and (4) Those changes between DS and
EP in common between experiments but in opposite
direction defined as beta value difference >0.1 in both
experiments and in the opposite direction (4,087).
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TCGA data
Methylation and expression data were downloaded from
the TCGA public repository [40] using custom scripts.
For methylation arrays idat files were downloaded and
samples were removed which showed low (<80 %) bisul-
fite conversion efficiencies. The remaining samples were
then processed in the same manner as above. For ex-
pression data, processed data termed level 3 were used
for all analysis. SNP array data were accessed using the
private repository and birdseed files were downloaded
for each of the individuals. All normal samples used in
this analysis from TCGA data are matched normal sam-
ples, for example, the healthy tissue from the same
individual.

Genomic feature analysis
Average methylation was calculated as the average of the
beta values for the triplicate EP cells for each of the
probes. The CpG density was calculated by taking a 400
bp window around the probe and calculating the num-
ber of Cs, Gs and CpGs contained in that window using
reference genome hg19. The fold enrichment or back-
ground models were always performed by randomly
selecting the same number of probes as the DMPs in
question and repeatedly re-sampling 1,000 times. Gen-
omic location of the Illumina 450K probes was extracted
using the annotation as provided by Illumina. For histone
enrichment a number of histone marks for HMEC were
downloaded from [41] in BED format and overlapped
using BEDTools with DMPs.

Panther DB analysis
The unique gene names associated with the experiment
1 only, experiment 2 only and agree senDMPs were used
as the input gene list and the unique gene names associ-
ated with the 401,915 (experiment 1 only), 431,909
probes (experiment 2) and 391,341 (agree) probes ana-
lysed in this experiment were used as the background
gene list. These lists were uploaded to Panther DB [42]
and pathway analysis was performed (Additional file 7:
Table S5, Additional file 8: Table S6 and Additional file
6: Table S7).

Co-methylation analysis
To calculate the co-methylation of each of the DMPs we
first calculated the nearest probe to each of the called
DMPs. We then calculated the beta difference for the
nearest probes for each original probe called either
hypermethylated or hypomethylated. This means that a
called probe may actually be the closest neighbour to
another called probe and in this case will be used as the
neighbouring probe. Removing such probes would cause
a bias and underestimation of the co-methylation. To
create a background model we randomly sampled the
same number of probes as were originally called and
repeated the exact same process for these probes. We
repeated this a number of times, each time re-sampling
the originally chosen probes.

Defining an in vivo senescence score
We used our initial cell line experiment to derive 969 (ex-
periment 1 only), 1,807 (experiment 2 only) or 725 (agree)
distinct senescence-associated DMPs of which 679, 1,067
and 313 were hypermethylated (hyper-senDMPs), respect-
ively, and 290, 740 and 412 were hypomethylated (hypo-
senDMPs), respectively. To investigate this signature of
these senDMPs in vivo we extracted the matched normal
breast tissue samples of 73 individuals from ‘The Cancer
Genome Atlas’ (TCGA) and investigated the relationship
between the hyper-senDMPs and hypo-senDMPs in these
samples. We hypothesised that if this signature was a
measure of senescence then an individual sample with a
higher level of senescence would show increased methyla-
tion at hyper-senDMPs, conversely they should also show
decreased methylation at hypo-senDMPs compared to an
individual with a lower level of senescence. It is highly
likely that not all the senDMPs derived in vitro will be a
strong measure of senescence in vivo and hence we used
the mean beta value of hyper-senDMPs and hypo-
senDMPs to reduce this potential noise. Additional file
1: Figure S12 shows that this mean beta value captures
the shift in distributions of the beta values of both the
hyper-senDMPs and hypo-senDMPs across our sam-
ples. We found a highly significant and strong negative
correlation of the mean beta values of hyper and hypo-
senDMPs and hence we defined a ‘senDMP score’ (S)
by combing these two values for each individual using
the equation below:

S ¼ 1
nhyper

Xnhyper

i¼1

Bhyperi−
1

nhypo

Xnhypo

i¼1

Bhypoi þ 0:35

Where Bhyperik represents the beta value of the ith
hyper-senDMP of the kth individual, nhyper represents
the number of hyper-senDMPs, Bhypoik represents the
beta value of the ith hypo-senDMP of the kth individual
and nhypo represents the number of hypo-senDMPs. The
value of 0.35 is added to produce a senescence score
close to 0 for the lowest score of the 73 individuals. A
higher score of senescence implies that an individual
shows higher methylation at hyper-senDMPs and lower
methylation at hypo-senDMPs.

Data accessibility
The complete methylation and expression profiles are
available at the Gene Expression Omnibus (GSE58035).
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Additional file 1: Figure S1. Model of senescence barriers in cultured
HMECs. Figure S2. Morphology of DS cells following transfection. Figure S3.
Comparison of the methylation state between EP and DS technical replicates
for experiment 1. Figure S4. Comparison of the methylation state between
EP and DS technical replicates for experiment 2. Figure S5. Comparison of
average methylation between experiment 1 and 2 for EP and DS cells.
Figure S6. Genomic feature analysis of senDMPs. Figure S7. The FACs
sorting protocol. Figure S8. Decreased expression of p16 following reversal.
Figure S9. Decreased expression of IL-6 and IL-8 following reversal.
Figure S10. Increased expression of Polycomb proteins following reversal.
Figure S11. Random permutation tests for hyper and hypo methylated Cpg
sites. Figure S12. Average beta values for senDMPs in normal breast tissue
samples. Figure S13. Average beta values for experiment 1 only senDMPs in
eight different tissues. Figure S14. Average beta values for experiment 2 only
senDMPs in eight different tissues. Figure S15. Average beta values for agree
only senDMPs in eight different tissues. Figure S16. Plot showing the fraction
of hypersenDMPs that showed a positive methylation and genotype
correlation and hypo-senDMPs that showed a negative methylation
genotype correlation (red) for different correlation cut offs. (DOC 2.43 mb)

Additional file 2: Table S1. Table containing the annotated
information of the 969 experiment 1 only senDMPs. (CSV 290 kb)

Additional file 3: Table S2. Table containing the annotated
information of the 1,807 experiment 2 only senDMPs. (CSV 539 kb)

Additional file 4: Table S3. Table containing the annotated
information of the 725 agree senDMPs. (CSV 244 kb)

Additional file 5: Table S8. Table containing the P values for the
difference in methylation between the EP cells and each of the FACs
sorted populations as well as the FACs sorted populations against each
other. (CSV 89758 kb)

Additional file 6: Table S7. Panther DB pathway analysis of the 725
agree senDMPs. (XLSX 11 kb)

Additional file 7: Table S5. Panther DB pathway analysis of the 969
experiment 1 only senDMPs. (XLSX 11 kb)

Additional file 8: Table S6. Panther DB pathway analysis of the 1,807
experiment 2 only senDMPs. (XLSX 12 kb)

Additional file 9: Table S4. Table containing the annotated
information of the senescence associated probes reaching 0.01 FDR and
beta value difference >0.3 in both experiment 1 and experiment 2 which
are located on chrX. (CSV 1 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RL carried out all the bioinformatics analyses presented, assisted with the
design of the study and drafted the manuscript. MGO and CLB performed
the cell biology experiments. SVR and JK contributed reagents and materials.
JCG, JK and MRS participated in drafting the manuscript. DHB participated in
the design of the study and helped draft the manuscript. VKR and CLB
conceived the study, participated in its design and drafted the manuscript.

Acknowledgements
This research utilised Queen Mary’s MidPlus computational facilities,
supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1.
RL and VK are supported by the EU-FP7 “BLUEPRINT” program (282510).

Author details
1The Blizard Institute, Barts and The London School of Medicine and
Dentistry, Queen Mary University of London, 4 Newark Street, London E1
2AT, UK. 2Life Science Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA. 3Division of Surgical Sciences, Department of
Surgery, Duke University Medical School, Durham, NC 27710, USA.

Received: 20 May 2015 Accepted: 10 August 2015
References
1. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence.

Genes Dev. 2010;24:2463–79.
2. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev

Cancer. 2015;15:397–408.
3. Newgard CB, Sharpless NE. Coming of age: molecular drivers of aging and

therapeutic opportunities. J Clin Invest. 2013;123:946–50.
4. Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends

Cell Biol. 2001;11:S27–31.
5. Smith ZD, Meissner A. DNA methylation: roles in mammalian development.

Nat Rev Genet. 2013;14:204–20.
6. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies

and beyond. Nat Rev Genet. 2012;13:484–92.
7. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-

wide methylation profiles reveal quantitative views of human aging rates.
Mol Cell. 2013;49:359–67.

8. Brenner AJ, Stampfer MR, Aldaz CM. Increased p16 expression with first
senescence arrest in human mammary epithelial cells and extended growth
capacity with p16 inactivation. Oncogene. 1998;17:199–205.

9. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, et al.
Molecular distinctions between stasis and telomere attrition senescence
barriers shown by long-term culture of normal human mammary epithelial
cells. Cancer Res. 2009;69:7557–68.

10. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al.
Validation of a DNA methylation microarray for 450,000 CpG sites in the
human genome. Epigenetics. 2013;6:692–702.

11. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA
methylation profiling of human chromosomes 6, 20 and 22. Nat Genet.
2006;38:1378–85.

12. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, et al. DNA methylation
pattern changes upon long-term culture and aging of human
mesenchymal stromal cells. Aging Cell. 2010;9:54–63.

13. Koch CM, Wagner W. Epigenetic biomarker to determine replicative
senescence of cultured cells. Methods Mol Biol. 2013;1048:309–21.

14. Garbe JC, Vrba L, Sputova K, Fuchs L, Novak P, Brothman AR, et al.
Immortalization of normal human mammary epithelial cells in two steps by
direct targeting of senescence barriers does not require gross genomic
alterations. Cell Cycle. 2014;13:3423–35.

15. Lee JK, Garbe JC, Vrba L, Miyano M, Futscher BW, Stampfer MR, et al. Age and
the means of bypassing stasis influence the intrinsic subtype of immortalized
human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13.

16. Bishop CL, Bergin AM, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC,
et al. Primary cilium-dependent and -independent Hedgehog signaling
inhibits p16(INK4A). Mol Cell. 2010;40:533–47.

17. Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H.
Quantitative assessment of promoter hypermethylation during breast
cancer development. Am J Pathol. 2002;160:605–12.

18. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014;42:D1001–1006.

19. Lawrence R, Day-Williams AG, Mott R, Broxholme J, Cardon LR, Zeggini E.
GLIDERS–a web-based search engine for genome-wide linkage
disequilibrium between HapMap SNPs. BMC Bioinformatics. 2009;10:367.

20. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al.
Tumour biology: senescence in premalignant tumours. Nature. 2005;436:642.

21. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der
Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of
human naevi. Nature. 2005;436:720–4.

22. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory
phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

23. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van
Tuyn J, et al. Senescent cells harbour features of the cancer epigenome.
Nat Cell Biol. 2013;15:1495–506.

24. Saxena R, Saleheen D, Been LF, Garavito ML, Braun T, Bjonnes A, et al.
Genome-wide association study identifies a novel locus contributing to
type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes.
2013;62:1746–55.

25. Hibar DP, Stein JL, Ryles AB, Kohannim O, Jahanshad N, Medland SE, et al.
Genome-wide association identifies genetic variants associated with
lentiform nucleus volume in N = 1345 young and elderly subjects. Brain
Imaging Behav. 2013;7:102–15.

http://genomebiology.com/content/supplementary/s13059-015-0748-4-s1.doc
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s2.csv
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s3.csv
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s4.csv
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s5.csv
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s6.xlsx
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s7.xlsx
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s8.xlsx
http://genomebiology.com/content/supplementary/s13059-015-0748-4-s9.csv


Lowe et al. Genome Biology  (2015) 16:194 Page 15 of 15
26. Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD.
Differential aging of the human striatum: longitudinal evidence. AJNR Am J
Neuroradiol. 2003;24:1849–56.

27. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013;31:142–7.

28. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al.
Epigenomic analysis detects widespread gene-body DNA hypomethylation
in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42.

29. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, et al. Genomic surveys
by methylation-sensitive SNP analysis identify sequence-dependent allele-specific
DNA methylation. Nat Genet. 2008;40:904–8.

30. Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging
and cancer perspectives. Trends Immunol. 2015;36:217–28.

31. Kovacs T, Csongei V, Feller D, Ernszt D, Smuk G, Sarosi V, et al. Alteration in
the Wnt microenvironment directly regulates molecular events leading to
pulmonary senescence. Aging Cell. 2014;13:838–49.

32. Harburg G, Compton J, Liu W, Iwai N, Zada S, Marlow R, et al. SLIT/ROBO2
signaling promotes mammary stem cell senescence by inhibiting Wnt
signaling. Stem Cell Rep. 2014;3:385–93.

33. Dirac AM, Bernards R. Reversal of senescence in mouse fibroblasts through
lentiviral suppression of p53. J Biol Chem. 2003;278:11731–4.

34. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of
retinoblastoma gene function is sufficient for cell cycle re-entry. Nature.
2003;424:223–8.

35. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al.
Reversal of human cellular senescence: roles of the p53 and p16 pathways.
EMBO J. 2003;22:4212–22.

36. Gire V, Wynford-Thomas D. Reinitiation of DNA synthesis and cell division in
senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol
Cell Biol. 1998;18:1611–21.

37. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S,
et al. p16INK4a induces an age-dependent decline in islet regenerative
potential. Nature. 2006;443:453–7.

38. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, et al.
Stem-cell ageing modified by the cyclin-dependent kinase inhibitor
p16INK4a. Nature. 2006;443:421–6.

39. R package minfi. Available at: http://bioconductor.org/packages/release/
bioc/html/minfi.html.

40. TCGA public repository. Available at: http://cancergenome.nih.gov.
41. Epigenome Browser. Available at: www.broadinstitute.org/pubs/

epigenomicsresource/browser.
42. Panther DB. Available at: http://pantherdb.org.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://bioconductor.org/packages/release/bioc/html/minfi.html
http://bioconductor.org/packages/release/bioc/html/minfi.html
http://cancergenome.nih.gov/
http://www.broadinstitute.org/pubs/epigenomicsresource/browser
http://www.broadinstitute.org/pubs/epigenomicsresource/browser
http://pantherdb.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Cellular senescence is associated with extensive DNA methylome dynamics
	Reversal of senescence
	Reversal of senescence-associated methylation dynamics
	SenDMPs show significant enrichment with expression changes in DS cells
	Investigating the senDMP signature in�vivo
	The senDMP signature is associated with cancer
	The senDMP signature is associated with in�vivo ageing
	Common disease linked SNPs associated with the p16 locus are linked with senDMPs

	Discussion
	Conclusions
	Materials and methods
	Cells and reagents
	siRNA transfections
	Flow cytometry
	Immunofluorescence
	Processing of arrays
	Identification of senDMPs
	SNP analysis
	Defining differences in DS across experiments
	TCGA data
	Genomic feature analysis
	Panther DB analysis
	Co-methylation analysis
	Defining an in�vivo senescence score
	Data accessibility

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



