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Abstract

Background: To sustain the global requirements for food and renewable resources, unraveling the molecular
networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and
networks involved in final organ size have been proven successful, our understanding remains fragmentary.

Results: Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf
size and whole shoot traits at the seedling stage, complemented with measurements capturing growth
dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying
that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we
searched for association between the transcriptional variation in dividing cells of the growing leaf and final
leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits.
A number of these genes have a known function in leaf development. Additionally, we illustrated that two
independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth.

Conclusions: Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define
the relative contributions of the components and their mutual associations, facilitating dissection of the
biological processes and regulatory networks underneath.
Background
Leaves are the main organs for photosynthesis of the
plant and thus have an indispensable role in the gener-
ation of metabolic energy and organic compounds [1].
The typical laminar and flat morphology of leaves is
ideally suited to capture light energy during photosyn-
thesis. Leaf size is an important component of plant
architecture that determines in part the amount of
energy that can be captured, and as such has a pro-
found effect on productivity. Therefore, understanding
the molecular mechanisms underlying plant leaf growth
and final size is a major goal for plant science. The
monocotyledonous plant Zea mays (maize) shows a
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high level of intraspecific phenotypic variation, making
it excellently suited for genomic approaches and to
study complex phenotypes such as leaf size. Further-
more, the large size of the maize leaf makes it easier to
dissect specific organ domains [2, 3].
At the cellular level, leaf size is determined by two

processes, cell proliferation and cell expansion, which
are highly coordinated [3]. In maize, growing leaves
show a developmental gradient from base to tip, mak-
ing the maize leaf an interesting model to study growth
[3, 4]. The different phases of maize leaf development
have been described in detail [5]. In the first phase after
emergence of the leaf primordium from the shoot
apical meristem, cell division and expansion take place
simultaneously so that the mean cell size remains
constant and the complete leaf consists of dividing cells
in the so-called division zone (DZ). In the next phase,
cells stop dividing at the tip of the leaf, but continue to
expand post-mitotically, giving rise to the expansion
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zone, distal to the DZ. In the third phase, cells enter
the mature zone at the tip of the leaf where cells stop
expanding. In this phase of development, the leaf appears
from the sheath of the surrounding older leaves and shows
a developmental gradient from base to tip, with dividing,
expanding and mature cells [3, 4]. Also, the size of the DZ
remains constant during this phase as well as the elong-
ation rate of the leaf [5]. Finally, the elongation rate
decreases due to a regression of the growth zone.
Although leaf development is well described at the

cellular level, knowledge on the molecular mechanisms
that determine leaf growth and final size is still frag-
mentary, due to the complex polygenic control of these
traits (e.g., [3, 6–12]). Several approaches have been
followed to dissect the genetic circuits that underlie leaf
growth. Forward genetics screens have proven to be useful
in the identification of genes that have the potential to
contribute to natural variation of phenotypic traits and
their specific function [13]. However, the majority of the
mutant screens have been limited to a small number of
laboratory strains, which harbor only a small portion of
the natural variation [14]. Therefore, exploring natural
variation provides a complementary resource to identify
novel genes and allelic variants, especially for quantitative
traits [15]. Typically, linkage analysis is performed using
recombinant inbred line (RIL) populations to identify
genomic regions with at least one gene controlling part of
the phenotypic variability (e.g., [16–19]). Alternatively,
genome-wide association analysis in natural populations
identifies causative single nucleotide polymorphisms
(SNPs) for specific traits [20]. However, these approaches
are time consuming and the regions identified by linkage
mapping and the SNPs detected using genome-wide asso-
ciation analysis often contain a large number of candidate
genes that need to be further narrowed down using com-
plementary analyses or a priori knowledge [21, 22].
A complementary approach that became available

thanks to the recent development of new “-omics” tools is
high throughput profiling of large mapping populations,
offering new perspectives for genetic integration of several
levels of molecular regulation of phenotypic trait variation
[23]. In maize, differences in gene expression patterns are
suggested to be a more important cause of subtle changes
in quantitative traits than alterations in protein sequences
causing defective proteins [24–27]. Therefore, exploring
transcriptome variation in mapping populations has
great potential to characterize the regulatory mecha-
nisms and candidate genes that are at the basis of
phenotypic differences [28].
Gene expression analyses in growing tissues have re-

vealed that the transition from dividing and expanding
to mature tissue coincides with vast transcriptional
changes and differences in protein levels [2, 29–32]. In
the leaf basal region, transcripts and proteins related to
primary cellular metabolism, such as DNA/RNA-related
processes, cell growth and regulation/signaling, are more
abundant, transitioning to enrichment in transcripts and
proteins for secondary cell wall biosynthesis and photo-
synthetic development towards the mature region of the
leaf. Thus, to study the molecular mechanisms underlying
leaf growth, it is important to focus on the growth zone.
More specifically, since the majority of the growth regula-
tory genes that have been described so far affect the final
number of cells rather than the final size of the cells [3,
10, 33], focusing on transcriptional changes in the DZ is
expected to have the largest potential for finding new
regulatory genes for final leaf size.
The use of new transcriptomics tools has resulted in

the generation of large amounts of tissue-specific ex-
pression data that have led to new insights into the
molecular basis of leaf development [2, 30]. However,
the number of studies that link differences in expres-
sion levels to phenotypic measurements on a large scale
remains limited up to now [34–36]. On the other hand,
approaches such as genome-wide association and link-
age mapping typically use measurements at the whole-
organ or organismal scale, resulting in information that
is often too complex to dissect out the biological pro-
cesses and regulatory interactions involved [37]. In this
study we combined a detailed phenotypic analysis of
maize seedlings, focusing on leaf size, with transcript
profiling of dividing leaf tissue of the B73xH99 recom-
binant inbred line population [38] to further unravel
the molecular basis of leaf development. Phenotyping
included a set of final leaf measurements, i.e., leaf
length, leaf width, leaf area and leaf weight, and whole-
shoot measurements at the seedling stage, i.e., fresh
weight, dry weight, leaf number and V-stage. These
end-point measurements were combined with measure-
ments that capture growth dynamics, i.e., maximal
growth rate of the leaf and traits related to timing of
leaf development. The latter concern emergence of the
fourth leaf above the pseudostem cylinder made by
sheaths of previously emerged leaves and duration of
elongation. Finally, leaf development was partially
assessed at the cellular level by determining the size of
the DZ during steady state growth of the fourth leaf in
all RILs. Capturing dynamic and cellular measurements
could reveal new regulatory genes related to more spe-
cific processes compared with only considering end
point measurements [37, 39]. Correlation analysis be-
tween these phenotypic traits revealed that the size of
the DZ is positively correlated with most of the final
size traits, supporting the hypothesis that the molecular
basis underlying final leaf size is already determined in
dividing cells of a growing leaf. To further decipher these
molecular networks, we captured the transcriptional dif-
ferences in dividing cells early during leaf development in
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a RIL population and combined this with the detailed phe-
notyping. Several genes and processes were identified that
show an association between phenotype and expression
levels in dividing cells in this RIL population, and that
have orthologs in other species with known leaf size phe-
notypes upon perturbation. We focused on some specific
associations between the rate and duration of elongation
and final organ size and the association between maximal
growth rate and seedling biomass. The identification of
candidate genes — novel genes as well as known growth
regulators — not only ameliorates our knowledge of the
gene network underlying leaf development but also pro-
vides a framework to identify transcriptional markers for
breeding new varieties and offers opportunities for genetic
modification approaches.

Results and discussion
The size of the DZ correlates with final leaf size, shoot
and growth parameters
We phenotyped an established F12 RIL population de-
rived from the inbred parents B73 and H99 [40] for leaf-
and shoot-related traits at the seedling stage (Table 1;
Fig. S1 in Additional file 1). The majority of the traits
are linked to the final size of the fourth leaf: final leaf
length (LL), final leaf width (Lwi), final leaf area (LA)
and final leaf weight (Lwe). In addition, we determined
the size of the DZ and leaf elongation rate (LER) — the
estimation of the growth of an individual leaf in a given
time frame — during the steady state growth phase [41]
(see "Material and methods"). To complement final size
measurements and further capture leaf growth dynam-
ics, we measured some timing-related traits for leaf 4
Table 1 Mean, maximum, minimum and percentage differences of

Trait Mean ± SD Maximum Minimum

Final leaf length (mm) 623.0 ± 63.6 789.0 469.0

Final leaf weight (g) 4.69 ± 1.05 7.82 2.56

Final leaf area (mm2) 80.39 ± 15.09 122.71 46.82

Final leaf width (mm) 2.57 ± 0.31 3.43 1.61

Leaf elongation rate (mm/h) 2.73 ± 0.27 3.46 2.07

Emergence of leaf 4 (days) 12.44 ± 0.87 14.80 10.35

Te (h) 510.5 ± 38.4 618.5 435.9

Tm (h) 405.8 ± 33.9 499.3 336.3

LED5-e (h) 369.7 ± 27.6 443.0 307.4

Division zone size (μm) 11,082 ± 1,790 16,800 7,817

Number of leaves at harvest 8.4 ± 0.6 9.8 7.2

V-stage at harvest 5.0 ± 0.4 6.0 4.0

Shoot fresh weight (g) 33.3 ± 7.5 49.9 19.5

Shoot dry weight (g) 2.6 ± 0.6 4.4 1.7

Measurements are averages of 18–20 plants per RIL for leaf 4 emergence, of three
P values are for differences between B73 and H99 parents. LED5-e leaf elongation du
between sowing and reaching final length, Tm time between sowing and reaching
using LEAF-E [42]: (i) time point of emergence of leaf 4
from the whorl; (ii) time between sowing and reaching
final length (Te); (iii) time between sowing and reaching
maximal growth rate (Tm); and (iv) leaf elongation dur-
ation from a leaf of 5 mm until final length (LED5-e).
Together these traits provide an estimate of how long
the plant needs to fully expand leaf 4. In addition to
these leaf size-related traits, we determined fresh weight
(FW) and dry weight (DW) of the above soil-grown
plant parts at 27 days after sowing, i.e., when leaf 4 had
reached its final size in all lines, and we counted leaf
number (LN) and V-stage at this time point.
For the majority of the traits, the two parental lines

clearly differed and encompassed the RIL average
values (Table 1; Fig. S1 in Additional file 1), but the
average of the two parents did not differ significantly
from the average over all RILs (p > 0.05). In general,
B73 plants were larger than H99 at the seedling stage:
FW and DW were higher for B73 than for H99 (p < 0.05),
which was in part due to the larger number of leaves (and
corresponding V-stage; p < 0.05) (Fig. S2 in Additional file
1). In agreement, timing traits showed that B73 leaves de-
veloped faster (emergence, Te, Tm and LED5-e are smaller,
p < 0.05). The fourth leaf of B73 grew faster during steady
state and was longer and larger when fully grown than
that of H99, but was somewhat narrower (p < 0.05). None-
theless, DZ size was not significantly different between
B73 and H99 (p > 0.05). In previous reports on the B73-
H99 RIL population, traits were measured for fully grown
plants, e.g., flowering and yield components, and a trend
was also observed for higher values for B73 than for H99
[38, 43, 44].
the traits determined for the 103 RILs

Percentage difference B73 H99 P value

41 624.9 ± 8.5 584.5 ± 6.7 <0.05

67 4.17 ± 0.13 4.32 ± 0.12 NS

62 74.07 ± 2.30 69.81 ± 1.53 NS

53 2.34 ± 0.04 2.48 ± 0.03 <0.05

40 2.93 ± 0.04 2.41 ± 0.03 <0.05

30 11.40 ± 0.07 12.18 ± 0.14 <0.05

30 462.2 ± 3.7 519.7 ± 5.2 <0.05

33 363.0 ± 2.9 409.1 ± 4.4 <0.05

31 341.9 ± 3.5 381.3 ± 3.7 <0.05

53 10,908 ± 312 11,650 ± 1,176 NS

27 9.2 ± 0.1 8.0 ± 0.1 <0.05

33 5.5 ± 0.1 4.9 ± 0.1 <0.05

61 40.6 ± 1.1 31.5 ± 1.2 <0.05

63 3.5 ± 0.1 2.2 ± 0.1 <0.05

plants per RIL for division zone size, and of six plants per RIL for all other traits.
ration from a leaf of 5 mm until final length, NS not significant, Te time
maximal growth rate
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Screening 103 RIL lines showed that the weight-related
parameters (FW, DW and Lwe) displayed the largest vari-
ation (about 65 %), while the smallest variation (about 30
%) was seen for the timing parameters emergence, Tm, Te

and LED5-e (Table 1; Fig. S3 in Additional file 1).
Next, Pearson correlation coefficients (PCCs) were de-

termined between all traits obtained for all RILs and the
parental lines (Table 2). Traits related to final leaf size
(Lwe, LA, LL and Lwi) correlated well, and the shoot
traits (DW, FW, LN and V-stage) also showed a positive
correlation, as did the timing traits (emergence, Tm, Te

and LED5-e). DZ size correlated positively with the final
leaf size traits and LER. Also, DZ size correlated to some
extent with FW and DW, while no significant correlation
between DZ size and timing traits was observed. LER
correlated positively with most of the final leaf size traits
and with FW and DW, but with none of the timing
traits. We also performed a principal component ana-
lysis (PCA) to validate the relationships between the
phenotypic traits; we focused on the first two principal
components, which explain most variance within the
data (Fig. S4 in Additional file 1). Based on PCA and
correlation analysis, phenotypic traits were separated
into three groups (Table 2; Fig. S4 in Additional file 1):
leaf size traits (final size traits LL, Lwe, LA and Lwi, and
in addition LER and DZ size), shoot traits (FW, DW, LN
and V-stage) and timing traits (emergence, Tm, Te and
LED5-e).
The leaf size traits Lwe and LER correlated well with the

shoot traits FW and DW. In agreement, co-localization of
quantitative trait loci (QTL) for leaf growth rate and
growth of other organs suggests that the growth rates in
different organs share a part of their genetic control [16],
implying that similar genes and networks of genes affect
organ growth and, as a consequence, also biomass accu-
mulation. In wheat and tall fescue, leaf area expansion rate
also correlated positively with above-ground biomass and
grain yield [45, 46]. V-stage showed a negative correlation
with the final leaf size traits, suggesting that plants with
larger leaves were generally slower in producing new
leaves. Accordingly, timing traits showed a positive correl-
ation with traits related to final leaf size, implying that
larger leaves needed more time to obtain their final size
compared with smaller leaves. In agreement, there was a
negative correlation between whole shoot traits and tim-
ing traits, also illustrated in the biplot of the PCA (Fig. S4
in Additional file 1). This implies that if it takes longer for
a plant to obtain its final leaf size, this generally results in
fewer leaves and smaller shoot biomass when leaf 4 stops
growing.
The positive correlation between DZ size and the final

leaf size parameters confirmed the importance of the
number of dividing cells in determination of final organ
size. Previously, it was shown that cell proliferation, and
more specifically the transition between cell division
and cell expansion, is an important contributing factor
to final organ size in different plant species [3, 47, 48].
Additionally, perturbation of most leaf size regulatory
genes primarily affects cell number rather than cell size
[3, 33, 49, 50]. This suggests that focusing on transcrip-
tional differences between RILs in the DZ may provide
deeper insight into the molecular networks behind final
leaf size traits. Since the DZ size varied considerably
between RILs (Table 1) and we wanted to avoid sam-
pling expanding tissue, we restricted our analysis to the
most basal 0.5 cm of the DZ, which contained only pro-
liferating cells in all analyzed RILs.

Transcriptome analysis of proliferative tissue confirms the
correlation between leaf size, growth and shoot
parameters
We performed RNA sequencing to profile transcrip-
tional changes in proliferative leaf tissue of 103 lines of
the B73xH99 RIL population. To this end, the most
basal 0.5 cm of the fourth leaf was sampled during the
steady state growth phase, i.e., three days after the tip
of the fourth leaf emerged from the pseudostem cylinder.
The B73 maize reference genome [51] was used to align
the RNA sequencing data. As variations on the sequence
level can affect the alignment of reads to the reference
genome, differences in the genetic background of the two
parental lines could affect gene expression quantification
differently in different RILs. Therefore, we focused on
conserved genes, selecting expressed genes with a low per-
centage of SNPs across maize inbred lines (see "Material
and methods"). This resulted in a filtered set of 15,051
genes that were used for all further analyses.
The expression data and the phenotypic data were

combined after normalization by calculating PCCs be-
tween transcript expression values and trait values across
all RILs. From the probability plots, the q0.99 and q0.01
correlation coefficients were determined, i.e., the 1 %
best correlating and anti-correlating transcripts. The q0.99
and q0.01 correlation coefficients were also determined
after permutation of the phenotypic data over the RILs
(Fig. 1), revealing that we could identify genes correlated
higher than expected with a certain phenotype compared
with a random gene set. The number of genes correlating
better than random, indicated further as the qrandom cor-
relating gene sets, varied between 1073 and 3276 depend-
ing on the phenotype (Table 3). The maximal correlation
coefficients were rather low, ranging from 0.456 for DZ
size to 0.617 for Te, which is not unexpected since the
traits under study are polygenic [6, 19, 52] and known to
be controlled by a large number of small-effect genes [53].
For all traits, the numbers of positively and negatively cor-
relating genes in the qrandom correlating gene sets were
similar. The numbers of genes in the qrandom correlating



Table 2 Pearson correlation coefficients for the different traits analyzed

Leaf size traits Timing traits Shoot traits

LL Lwe LA Lwi LER DZ size Emergence Te Tm LED5-e LN V-stage FW DW

Leaf size traits LL 1 0.750** 0.781** 0.316** 0.738** 0.594** 0.245* 0.379** 0.374** 0.424** −0.255 −0.423** 0.215* 0.206*

Lwe 1 0.915** 0.688** 0.493** 0.516** 0.258** 0.328** 0.334** 0.332** −0.258 −0.420** 0.413** 0.311**

LA 1 0.794** 0.479** 0.526** 0.291** 0.414** 0.413** 0.418** −0.273 −0.472** 0.297** 0.245*

Lwi 1 0.063 0.308** 0.307** 0.365** 0.379** 0.298** −0.267 −0.375* 0.170 0.098

LER 1 0.507** 0.007 −0.105 −0.048 −0.114 0.176 0.083 0.520** 0.502**

DZ size 1 0.097 0.113 0.118 0.147 −0.251 −0.266 0.211* 0.219*

Timing traits Emergence 1 0.620** 0.650** 0.461** −0.649** −0.599** −0.455** −0.462**

Te 1 0.979** 0.894** −0.621** −0.701** −0.582** −0.557**

Tm 1 0.787** −0.601** −0.675** −0.568** −0.557**

LED5-e 1 −0.568** −0.656** −0.470** −0.420**

Shoot traits LN 1 0.834** 0.521** 0.377*

V-stage 1 0.435** 0.326*

FW 1 0.893**

DW 1

Significant correlations are indicated by **p < 0.01 and *p < 0.05; highly significant positive correlations are indicated in bold; highly significant negative correlations are indicated in italics. LL leaf length, Lwe leaf
weight, LA leaf area, Lwi leaf width, LER leaf 4 elongation rate, DZ division zone, Tm time to maximal LER, Te time to final leaf length, LED5-e leaf elongation duration, FW shoot fresh weight, DW shoot dry weight, LN
leaf number
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Fig. 1 Correlation coefficients of the top 1 % (anti-)correlating genes. The q0.99 and q0.01 quantiles of the distributions of PCCs between transcript
expression levels and phenotypes, for real data (q0.99 in dark grey and q0.01 quantile in light grey) and permuted data (black line). LL leaf 4 final
length, Lwe leaf 4 final weight, LA leaf 4 final area, Lwi leaf 4 final width, LER leaf 4 elongation rate, Tm time to maximal LER, Te time to final leaf
length, LED5-e leaf elongation duration, DZS leaf 4 DZ size, FW fresh weight 27 days after sowing, DW dry weight 27 days after sowing
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gene sets for FW and DW were comparable to the num-
bers found for leaf size traits, which was unexpected since
DW and FW are believed to be more complex traits than
the others. Although we cannot exclude that additional
and/or partially different diagnostic transcriptional vari-
ation would be captured in the complete DZ, our results
imply that the transcriptome of the most basal part of the
DZ during steady state growth of a leaf at least partly re-
flects final organ size and even more distant phenotypic
traits such as FW and DW.
Table 3 Number of genes that correlate with a certain
phenotypic trait higher than random

Phenotype Correlation Percentage Positive
correlation

Negative
correlation

Leaf length 2206 15 1162 1044

Leaf weight 2596 18 1240 1356

Leaf area 2230 16 1084 1146

Leaf width 2477 17 1222 1255

Leaf
elongation
rate

1073 8 498 575

Emergence 2490 17 1337 1153

Tm 3171 22 1730 1441

Te 3276 23 1748 1528

LED5-e 3003 21 1563 1440

Division zone
size

1927 14 881 1046

Fresh weight 2259 16 994 1256

Dry weight 1707 12 746 961
For the remaining analyses, we focused on the 1 %
best correlating and anti-correlating genes for each of
the traits, further indicated as the correlated and anti-
correlated gene sets. These gene sets are for each trait
subsets of the qrandom correlated gene sets discussed
above (Fig. 1). Visualization of the expression pattern of
these anti-correlating/correlating genes in the 103 RILs
and the parents is exemplified in Fig. 2 for leaf length
(and for other traits in Fig. S5 in Additional file 1).
When the RILs were ordered according to phenotype
from smallest to largest RIL, a clear correlation with
gene expression was observed. The observed gradient
became, as expected, less clear for the traits for which
the correlation coefficients were lower, such as for LER
and DW (Fig. S5 in Additional file 1). Although we
could identify individual genes for which expression level
is clearly associated with one or more of the traits we
analyzed, the low correlation levels and the observation
that no single gene was for all RILs associated with a
particular trait across all RILs suggests that not one gene
but a network of multiple genes is underlying the traits
under study.
In total, 1740 genes are part of the (anti-)correlating

gene sets of at least one of the traits (Additional file 2).
Approximately half of these genes — 886 genes or 51 % —
were specific for one trait, while three genes (anti-)corre-
lated with eight traits, the maximum number of traits
for which there were genes in common (Fig. 3). These
genes have no immediate known link with leaf develop-
ment (GRMZM2G166713, which shows homology to a
methionine tRNA synthetase; GRMZM2G471142, which
shows homology to barley MLO genes; and a third gene,



Fig. 2 Expression patterns of the top 1 % genes (anti-)correlated with leaf length. Columns represent the 103 RILs and parental lines B73 and
H99, organized from small (left) to large (right) leaf length; rows represent gene expression profiles. Genes above the line are significantly correlated
with leaf length; genes below the line are significantly anti-correlated with leaf length. Parental lines H99 and B73 are indicated by the blue arrow and
orange arrow, respectively. Green indicates low expression, red indicates high expression
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GRMZM2G389768, which shows homology to cold shock
domain-containing proteins). The numbers of genes (anti-
)correlating with from one to eight traits were comparable
for positive and negative correlation. Comparing the num-
bers of genes (anti-)correlating with two or more traits
within and between the three phenotype classes defined
based on their correlation (leaf size, timing and shoot
traits) showed that this number is higher within groups
than between groups (this is illustrated in Fig. 3; compare
the size of the red bars versus the orange bars and the
green bars versus the blue bars). The number of common
genes between leaf size traits and shoot traits was limited
— just 50 genes. Furthermore, only a minority of the
genes — 84 genes or 5 % — correlated with one or more
traits and anti-correlated with one or more other traits
(purple bars in Fig. 3). This opposite correlation for differ-
ent traits was exclusively observed for timing traits versus
shoot traits; strikingly, there was not one (anti)-correlating
gene in common between shoot and timing traits. Thus,
the (anti-)correlation between traits on a phenotypic level
was fully supported by the correlations between expres-
sion levels of the selected genes and traits.
In a next step we evaluated if the correlated genes for

the different traits were enriched in comparable pro-
cesses (Fig. S6 in Additional file 1). Enrichment for spe-
cific processes was calculated based on MapMan gene
function annotations [54]. For positively correlated
gene sets, there was an enrichment in six categories:
“regulation of transcription”, “hormone metabolism”,
“protein modifications”, “protein degradation” “carbohy-
drate metabolism” and “transport”. Negatively correlated
gene sets were enriched for the categories “regulation of
transcription”, “cell wall synthesis and degradation” and
“protein synthesis”. Most of the enriched categories were
not specific for one trait, with the exception of the cat-
egory “transport” for genes correlating with leaf emer-
gence, although no specificity for transport of certain
compounds was found. Furthermore, we found that traits
were enriched for the same processes not only when they
have a large number of correlating genes in common (e.g.,
FW and DW), but also when only a limited number of
genes was shared (e.g., the shoot traits and final leaf size
traits). Functional categories “carbohydrate metabolism”
and “transport” were specific for the timing related traits.
To visualize the co-expression of the genes correlating

with the traits, we generated a correlation network start-
ing from the 1740 genes that (anti-)correlated to at least
one of the traits. The network was based on correlation
coefficients between the transcripts (nodes) higher than
0.6 or lower than −0.6, and as such 1459 transcripts
were connected by 23,363 edges. The network was clus-
tered using the Markov cluster algorithm (MCL) [55]
(see "Materials and methods" for details). The algorithm
differentiated 155 clusters encompassing all but 81 tran-
scripts (Fig. 4). For 19 clusters containing more than 15
nodes, we calculated enrichment for specific processes
in a comparable way as for the trait-specific gene sets
[54]. Eight of the 19 clusters were significantly enriched



Fig. 3 Number of genes correlating or anti-correlating with one or multiple traits. Traits were separated into three groups: leaf size traits (leaf
elongation rate, leaf length, leaf weight, leaf area, leaf width and DZ size), shoot traits (fresh weight and dry weight) and timing traits (emergence,
Tm, Te and leaf elongation duration). Positive correlation is colored red (traits of the same group) and orange (traits of different groups), negative
correlation is colored green (traits of the same group) and blue (traits of different groups), while purple bars indicate genes that show positive
correlation with one trait and negative correlation with another trait
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for one or more functional categories (clusters 1, 2, 3, 4,
6, 7, 9, and 14). Cluster 1 was enriched for protein-
related processes, i.e., “amino acid activation” and “pro-
tein degradation and protein targeting”, and for “cell
vesicle transport”, although the genes in this cluster were
not associated with any specific trait (Fig. 4). Cluster 2,
with mainly genes anti-correlated to leaf size and timing
traits, was found to be enriched for the functional cat-
egories “protein synthesis”, “regulation of transcription”,
“photosynthesis” and “tetrapyrrole synthesis” (Fig. 4).
Clusters 3 and 4 consisted primarily of nodes positively
correlating with shoot traits or negatively correlating
with timing traits. Cluster 3 was enriched for functional
categories “protein synthesis” and “DNA synthesis/chro-
matin structure”. Cluster 4 was found to be enriched in
“hormone metabolism” and “regulation of transcription”,
both functional categories positively correlated with
shoot traits, in accordance with the predominantly shoot
trait-correlating gene content of this cluster (Fig. 4).
Cluster 6, representing predominantly genes correlated
with timing traits, was enriched in the functional category
“major carbohydrate metabolism” (Fig. 4). Clusters 7 and
14, containing nodes anti-correlated with leaf size and
timing traits, were enriched in the category “cell wall deg-
radation and synthesis” (Fig. 4). Cluster 9, positively corre-
lated with leaf size traits, was enriched in “regulation of
transcription” (Fig. 4).
Taken together, some of the gene expression-based

clusters associated with certain traits or combination of
traits contain genes assigned to functional categories
found in the overall enrichment results. Most of the
gene clusters and most of the categories found enriched
in those clusters are not specific for one trait group,
but for a combination. This is not unexpected given the
correlations we find between the traits on the pheno-
type level. Also, some functional categories were found
enriched in several clusters associated with uncorre-
lated trait groups, or inversely correlated with a par-
ticular trait group, e.g., “regulation of transcription” in
clusters 2 (negatively correlated with leaf size traits), 4
(positively correlated with shoot traits) and 9 (positively
correlated with leaf size traits).



Fig. 4 Transcript co-expression network based on Pearson correlation. The network of transcript co-expression links with correlation coefficients
higher than 0.6 or lower than −0.6 as visualized in Cytoscape [148]. A circular layout is used for 19 clusters that contain at least 15 nodes. The
remaining transcripts are displayed in the middle with a prefuse force directed layout. Node colors and shapes represent the associations of transcripts
with the traits (in the figure legend, _P stands for positive and _N for negative correlation with the trait concerned), whereby similarly colored circles
and triangles depict opposite associations with the same traits. The strength of the correlations between transcripts is reflected in the hue of the edges
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Phenotypic components and genes contributing to final
leaf size
To decipher the complexity of final leaf biomass, this
trait was dissected in different components. In general,
correlation analysis showed significant positive correla-
tions between the different components, consisting of
leaf length, leaf weight, leaf area and leaf width (LL, Lwe,
LA and Lwi), although the strength of the relationships
differed considerably (Table 2). The PCC between LA
and Lwe was high (0.915), implying that the contribution
of leaf thickness to Lwe is negligible. This is in agree-
ment with currently used models for leaf and crop
growth, where leaf thickness is not taken into consider-
ation [56]. Comparable PCCs between LL–LA/Lwe and
Lwi–LA/Lwe (0.781/0.750 and 0.794/0.688, respectively),
while correlation between Lwi and LL was only limited
(0.316), suggest an equal contribution of LL and Lwi to
final LA and Lwe. Comparably, the overlap between LL
and Lwi at the genetic level in the nested association
mapping population in maize was very restricted [18],
and meta-analysis of several populations also confirmed
a low correlation coefficient between LL and Lwi [57].
The diversity in associations between the final leaf

size traits was also reflected in the transcriptome data.
Figure 5a and b represent the intersections between the
genes correlating and anti-correlating, respectively, with
the final leaf size traits. Of the in total 361 and 334 genes
correlating and anti-correlating, respectively, with at least
one of the final leaf size traits, 224 and 189 were specific
for one particular trait. Lwi in particular only shared a lim-
ited number of genes with the other traits, suggesting that
this trait is under different genetic control than the other
final leaf size traits.
Consistent with the co-expression network and en-

richment analysis for separate traits (Fig. 4; Fig. S6 in
Additional file 1), the genes positively correlating with
the final leaf size traits were enriched for four functional
categories of genes: “regulation of transcription”, “protein
degradation”, “protein modifications” and “hormone me-
tabolism”. Negatively correlating transcripts were enriched
for the categories “cell wall synthesis and degradation”,
“protein synthesis”, “tetrapyrrole synthesis”, and “photo-
synthesis” (Fig. S7 in Additional file 1). The biological
significance of the major categories of positively and nega-
tively correlating transcripts is discussed below and exam-
ples of (orthologous) genes with a known function in leaf
development are summarized in Table 4.
Of the 15,051 genes in the filtered gene set, 1433

genes are part of the MapMan category “regulation of
transcription”, and for 82 of these genes expression
levels in the RILs were positively or negatively corre-
lated with at least one of the final leaf size traits. These
82 genes were separated over 32 different families of
transcription factors, although no clear trends of speci-
ficity of certain families for certain traits could be ob-
served (Additional file 2). The Arabidopsis homologs of
several of these genes are involved in hormone regula-
tion, such as ARFs and AUX/IAA in auxin signaling
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Fig. 5 Venn diagrams of the top 1% transcripts that correlate positively or negatively with selected phenotypic traits. a Transcripts positively
correlated with final leaf size traits (leaf length, leaf weight, leaf area and leaf width). b Transcripts negatively correlated with final leaf size traits
(leaf length, leaf weight, leaf area and leaf width). c Transcripts positively correlated with leaf elongation rate, leaf elongation duration and leaf
length. d Transcripts negatively correlated with leaf elongation rate, leaf elongation duration and leaf length. e Transcripts positively correlated
with fresh weight, dry weight and leaf elongation rate. f Transcripts negatively correlated with fresh weight, dry weight and leaf elongation rate
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[58, 59], ARR in cytokinin signaling [60] and GRAS in gib-
berellin signaling [61]. Some genes are homologs of the
Alfin-like family, SET-domain family and DNA methyl-
transferases, all involved in regulation of chromatin struc-
ture in Arabidopsis [62–67], which is essential for normal
cell functioning, development and leaf growth [50]. Other
genes belong to (super)families of transcription factors that
are functionally very diverse, e.g., the B3 superfamily [68],
bHLH family [69], bZIP family [70], MYB family [71],
NAC family [72] and Trihelix family [73]. Many of these
families contain transcription factors with a clear role in
leaf development; some examples are summarized in
Table 4. For instance, GRMZM2G099862 shows homology
to the Arabidopsis transcriptional activators GROWTH
REGULATING FACTOR 1 (GRF1) and GRF2 [74]; two
E2F/DP transcription factors, GRMZM2G462623 and



Table 4 Examples of genes for which expression levels are (anti-)correlated with leaf size-related traits

MapMan Gene Maize
description

Arabidopsis
orthologs

Arabidopsis
symbol

Arabidopsis
description

LL Lwe LA Lwi Arabidopsis
orthologs
with
phenotype

Phenotype Reference

Regulation of
transcription

GRMZM2G361659 AT3G48160a DEL1, E2FE,
E2L3

DP-E2F-like 1 −
−

− − AT3G48160a Overexpression results in smaller leaves
due to repression of cell proliferation

[76]

AT3G01330c

AT5G14960c

GRMZM2G462623 AT5G02470b

AT5G03415a
DPA, DPB Transcription factor

DP
+
+

++ +
+

AT5G02470b DPa acts together with E2F as stimulator
of cell proliferation

[75]

GRMZM2G099862 Putative
growth-
regulating
factor

AT2G22840b ATGRF1,
ATGRF2

Growth-regulating
factor 1, growth-
regulating factor 2

+
+

+ + AT2G22840b Overexpression results in larger
cotyledons and leaves due to increase
in cell number

[74]

AT4G37740a,b AT4G37740a,b

GRMZM2G470307 AT4G32730b ATMYB3R-1,
ATMYB3R1,
MYB3R-1,
MYB3R1, PC-
MYB1,
AtMYB3R4,
MYB3R-4

Homeodomain-like
protein, myb domain
protein 3r-4

+ + ++ AT5G11510a,b Loss of function mutants are more
compact

[77]

AT5G11510a,b

GRMZM2G053298 AT1G20640b Plant regulator RWP-
RK family protein

+ ++ +
+

+ AT1G20640b Loss of function mutants have smaller
rosettes

[77]

AT1G76350a,b,c

AT2G17150b,c

AT4G35270b

AT4G38340b

GRMZM2G067624 AT1G53160a,b SPL4, FTM6,
SPL3, SPL5

Squamosa promoter
binding protein-like,
FLORAL TRANSITION
AT THE MERISTEM6

+ ++ +
+

+ AT1G53160a,b Promotor of vegetative phase change;
influencing the duration of the
vegetative phase can affect number and
size of leaves

[78, 149]

AT2G33810b

AT3G15270b

Hormone
metabolism

GRMZM2G144701 AT2G42820c HVA22F HVA22-like protein F + ++ + AT2G42820c Downregulation of HVA22-like genes re-
sults in plants with dwarf and bushy
stature with a reduced seed set

[80]

GRMZM2G130548 HVA22-like
protein a

AT1G74520a HVA22A HVA22 homologue A ++ +
+

++ AT1G74520a Downregulation of HVA22-like genes re-
sults in plants with dwarf and bushy
stature with a reduced seed set

[80]

GRMZM2G102347 AT1G75700a,b HVA22G HVA22-like protein G +
+

AT1G75700a,b Downregulation of HVA22-like genes re-
sults in plants with dwarf and bushy
stature with a reduced seed set

[80]

AT5G42560b

AT1G19950b

GRMZM2G135978 AT1G12820c AFB3, AFB2,
TIR1, AFB1,
GRH1

Auxin signaling F-
box 3, auxin signal-
ing F-box 2, F-box/
RNI-like superfamily

+
+

+ + AT3G62980a,b,c Mutations in TIR1 that enhance the
degradation of auxin/IAA display more
lateral roots, smaller rosettes and
reduced number of axillary branches

[59, 77]

AT3G26810c

AT3G62980a,b,c
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Table 4 Examples of genes for which expression levels are (anti-)correlated with leaf size-related traits (Continued)

protein, GRR1-like
protein 1

AT4G03190b,c

GRMZM2G057000 Brassinosteroid
biosynthesis-
like protein

AT3G19820a,b,c CBB1, DIM,
DIM1, DWF1,
EVE1

Cell elongation
protein/DWARF1/
DIMINUTO (DIM)

−
−

− − AT3G19820a,b,c Brassinosteroid dwarfs have more
roundish, dark green leaves next to
short, robust inflorescence and reduced
fertility

[81]

GRMZM2G125943 Histidine kinase AT1G27320c AHK3, HK3,
AHK4, ATCRE1,
CRE1, WOL,
WOL1, AHK2,
HK2

Histidine kinase 3,
CHASE domain
containing histidine
kinase protein,
histidine kinase 2

+ ++ +
+

+ AT1G27320c Ectopic expression of ZmHK6 in
Arabidopsis results in strongly enhanced
shoot development, next to smaller
seeds and a smaller root system; loss of
function mutants in Arabidopsis
orthologs have severe phenotypes,
including smaller leaves due to a strong
reduction in the number of cells

[150, 151]

AT2G01830a,b AT2G01830a,b

AT5G35750c AT5G35750c

GRMZM2G158252 Histidine kinase
3

AT1G27320c

AT5G35750a,b,c
AHK3, HK3,
AHK4, ATCRE1,
CRE1, WOL,
WOL1, AHK2,
HK2

Histidine kinase 3,
CHASE domain
containing histidine
kinase protein,
histidine kinase 2

+
+

++ +
+

+ AT1G27320c

AT5G35750a,b,c
Ectopic expression of ZmHK1 in
Arabidopsis results in strongly enhanced
shoot development, next to smaller
seeds and a smaller root system; loss of
function mutants in Arabidopsis
orthologs have severe phenotypes,
including smaller leaves due to a strong
reduction in the number of cells

[150, 151]

GRMZM2G067225 Allene oxide
synthase

AT5G42650a,b,c DDE2, AOS,
CYP74A

DELAYED
DEHISCENCE 2,
allene oxide
synthase,
CYTOCHROME P450
74A

−
−

− − − AT5G42650a,b,c aos mutants have larger leaves and
rosettes

[83, 152]

Protein
degradation

GRMZM2G041561 BRCA1-
associated
protein

AT2G26000a,b,c BRIZ2 Zinc finger (C3HC4-
type RING finger)
family protein

+
+

++ +
+

++ AT2G26000a,b,c Loss of function mutants show severe
phenotype; genes involved in seed
germination and early seedling growth

[91]

GRMZM2G120408 AT3G61590a,b HWS, HS HAWAIIAN SKIRT +
+

+ + AT3G61590a,b Loss of function mutants display
increased growth of leaves and roots,
while overexpression reduces rosette
size

[92]

GRMZM2G116314 AT1G17110a,b,c UBP15 Ubiquitin-specific
protease 15

+ ++ + AT1G17110a,b,c Overexpression results in plants with
larger rosettes due to increase in leaf
weight and number of leaves, while
mutants display opposite phenotypes

[90]

Posttranslational
modifications

GRMZM2G054634 ATP binding
protein

AT1G01740c BSK3, BSK1,
BSK2

BR-signaling kinase +
+

+ +
+

AT1G01740c Triple, quadruple and pentuple loss of
function mutants show a reduced
rosette size

[153]

AT1G50990c AT1G50990c

AT1G63500c AT1G63500c

AT3G54030c AT3G54030c

AT4G00710c AT4G00710c
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Table 4 Examples of genes for which expression levels are (anti-)correlated with leaf size-related traits (Continued)

AT4G35230c AT4G35230c

AT5G41260c AT5G41260c

AT5G46570a,b,c AT5G46570a,b,c

AT5G59010c AT5G59010c

GRMZM2G004572 AT1G53730a SRF6, SRF7,
SRF4, SRF5,
SRF3

STRUBBELIG-receptor
family protein

+ ++ +
+

+ AT3G13065c Loss of function mutants show smaller
leaves while overexpressing plants
display enlarged leaves

[95]

AT3G13065c

AT1G78980c

AT4G03390c

Cell wall GRMZM2G328500 AT1G26570b,c UGD1, UGD2,
UGD3

UDP-glucose
dehydrogenase 1,
UDP-glucose 6-
dehydrogenase fam-
ily protein

−
−

− − AT3G29360a,b,c Double mutants in the two isoforms of
the enzyme udg2,3 are severely
dwarfed due to defects in cell wall
composition

[101]

AT3G29360a,b,c AT5G15490b,c

AT5G15490b,c

AT5G39320b,c

Arabidopsis orthologs were determined using PLAZA3.0 web resource [147]. a Best hit family ortholog. b Tree-based ortholog. c Orthologous gene family. Double plus signs ("++") indicate transcript levels positively cor-
related with phenotypic trait (q0.99). Single plus signs ("+") indicate transcript levels positively correlated with phenotypic trait (qrandom). Double minus signs ("−−") indicate transcript levels negatively correlated with
phenotypic trait (q0.01). Single minus signs ("−") indicate transcript levels negatively correlated with phenotypic trait (qrandom). IAA indole-3-acetic acid
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GRMZM2G361659, showed an opposed correlation with
leaf size traits, in agreement with the function of their puta-
tive homologs in Arabidopsis [75, 76]; GRMZM2G470307
shows homology to Arabidopsis MYB domain protein 3r-4
[77]; GRMZM2G053298 encodes a transcription factor
with homology to an Arabidopsis plant regulator RWP-RK
family protein [77]; GRMZM2G067624 encodes a squa-
mosa promoter binding protein with homology to Arabi-
dopsis SPL4, which promotes vegetative phase change [78].
A second functional category, next to “regulation of tran-

scription”, in which gene sets positively correlate with sev-
eral of the final leaf size traits was enriched in “hormone
regulation” (Fig. S7 in Additional file 1). Plant hormones
regulate diverse processes in plant development and are
suggested to play an important role in the balance between
cell division and differentiation to modulate growth [79].
Sixteen genes encoding proteins for auxin, cytokinin, bras-
sinosteroid, ethylene, abscisic acid, gibberellin and jasmo-
nate biosynthesis and signaling correlated with final leaf
size traits (Table 4; Additional file 2). Some of these genes
have homologs in Arabidopsis which are known to function
in leaf development and/or display defects in leaf morph-
ology when perturbed and some examples are summarized
in Table 4. For instance, GRMZM2G135978 shows hom-
ology to the family of Arabidopsis TIR1/AFB auxin recep-
tors [59]; GRMZM2G130548, GRMZM2G144701 and
GRMZM2G102347 are putative HVA22-like genes [80];
GRMZM2G057000 is the maize ortholog of Arabidopsis
DWARF1, a brassinosteroid biosynthetic enzyme [81]; histi-
dine kinase receptors (HK) ZmHK1 (GRMZM2G158252)
and ZmHK6 (GRMZM2G125943) result in enhanced shoot
development when ectopically expressed in Arabidopsis
[82]; GRMZM2G067225 is a homolog of the Arabidopsis
jasmonate biosynthesis gene ALLENE OXIDE SYNTHASE
(AOS) [83].
The functional category “protein degradation” was

enriched in all gene sets positively correlated with a
final leaf size trait (Fig. S6 in Additional file 1). Con-
trolled proteolysis is an important layer of regulation,
next to (post-)transcriptional and (post-)translational
regulation. For instance, progression through the cell
cycle requires tight control of the involved regulatory pro-
teins and depends on a precise temporal and spatial prote-
olysis of these proteins through the ubiquitin-mediated
pathway, next to other regulatory mechanisms such as
phosphorylation/dephosphorylation and specific protein–
protein interactions [84, 85]. Several genes that are part of
the ubiquitin-mediated pathway display an altered final
leaf size when perturbed, e.g., APC10, SAMBA, DA1 and
BIG BROTHER [86–89]. GRMZM2G116314 is a maize
homolog of Arabidopsis UBIQUITIN-SPECIFIC PROTE-
ASE 15 (UBP15), involved in protein de-ubiquitination
[90]; GRMZM2G041561 encodes a RING finger domain
E3 ligase with homology to Arabidopsis BRAP2 RING
ZNF UBP DOMAIN-CONTAINING PROTEIN 2 (BRIZ2),
essential for seed germination and for post-germination
growth [91]; GRMZM2G120408 is a maize homolog of
the Arabidopsis F-box E3 ligase HAWAIIAN SKIRT
(HWS) [92] (Table 4).
Besides the positive correlation with “protein degrad-

ation”, Lwe and LA were also positively correlated with
genes involved in “protein modifications”, including post-
translational modifications and glycosylation. Because
these modifications are essential to rapidly transduce
inter- and intracellular information, they are important
for regulation of plant growth and development [93].
GRMZM2G054634 shows homology to Arabidopsis BR-
SIGNALING KINASES (BSK) [94]; GRMZM2G004572
is related to the STRUBBELIG-receptor family (SRF) in
Arabidopsis [95] (Table 4).
The category “protein synthesis”, and more specifically

synthesis of ribosomal proteins, was overrepresented in
the anti-correlating gene sets for all final leaf size traits
(Fig. 4; Fig. S6 in Additional file 1). Protein synthesis is
one of the most energy consuming processes in the cell
and a major component of cell growth. An indirect cost
of protein synthesis is to synthesize and maintain the
structural constituents of the ribosomes, the ribosomal
proteins. A more efficient translational machinery can
minimize these indirect costs and result in more energy
available for growth [96–98], which might explain the
anti-correlation we observed between ribosomal protein
synthesis transcript levels and leaf size and timing traits.
The fact that the translation machinery also plays a role
in leaf development is supported by the many mutations
in ribosomal proteins that have been reported to affect
leaf morphology (reviewed in [99, 100]).
Genes negatively correlating with leaf size traits were

also enriched for the functional category “cell wall syn-
thesis and degradation” (Fig. 4; Fig. S6 in Additional file
1). Cell wall expansion is essential to allow cell growth
and is thus pivotal for plant growth and development.
GRMZM2G328500 is a homolog of the Arabidopsis gene
encoding UDP-glucose dehydrogenase 2 (UDG2), which
is a key enzyme in primary cell wall formation [101]
(Table 4).
The multitude of genes with expression levels correlat-

ing with final leaf size traits in this RIL population that
have homologs in Arabidopsis showing altered leaf sizes
upon perturbation implies that these genes are part of
molecular networks in the most basal part of the DZ
that are associated with final leaf size traits. For some
genes (e.g., GRMZM2G120408 and GRMZM2G120408),
correlation in our dataset does not reflect the anticipated
variation based on phenotypes of the Arabidopsis homo-
logs. This is possibly due to comparing subtle variation
in expression and allelic effects and combination of
these within the RIL population with more abrupt effects
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of complete knock-out or strong overexpression, often
in one or a limited number of genetic backgrounds in
Arabidopsis.

Both maximal growth rate and duration of growth
independently determine final leaf length
The final length of a monocot leaf depends on the rate
and duration of elongation of the leaf, represented here by
the parameters LER and LED5-e. LER and LED5-e showed
no correlation on the phenotype level (Table 2), in con-
trast to the positive correlation between final size-related
traits and timing traits on the one hand and LER on the
other hand. A comparable correlation between LER and
LL was reported for the sixth leaf in greenhouse and field
conditions, and was supported by the co-location of QTL
for LER and LL in several populations [16]. For Lolium
perenne grown in the field, correlation between LER and
LED was limited, while there was a high positive correl-
ation between LER and LL, and between LED and LL.
LER and LED were also not correlated in wheat (Triticum
aestivum) and its wild relative Aegilops [102].
Figure 6 represents a scatter plot of LER and LED5-e,

with the blue and green lines indicating the borders of
the 10 % and 20 % largest RILs for the two traits, re-
spectively. This figure illustrates that there is only a very
limited number of lines that have both a high LER and
LED5-e, supporting an idea of phenotypic tradeoff. Thus,
a better insight into these two traits on the molecular
level can provide useful information for selecting or
engineering plants with increased biomass.
300

320

340

360

380

400

420

440

460

2 2.2 2.4 2.6

L
E

D
5-

e
(h

)

LER

Fig. 6 Scatter plot of the measurements for the leaf elongation rate (LER) a
of RILs with the largest leaf length; green dots the 20 % of RILs with largest
largest LED5-e and LER; green lines represent the borders of the 20 % of RIL
The fact that there is no correlation on the phenotype
level between LER and LED5-e is also reflected on the
molecular level: no (anti-)correlating genes are shared
between LER and LED5-e (Fig. 5c, d), pointing to separ-
ate, independent molecular mechanisms that determine
final leaf length. Given the high PCC (0.738) between
LER and LL on the phenotype level, the number of
genes specifically correlating with one of the traits was
rather high — more than two-thirds of the LER-
correlating genes were specific for LER (Table 2; Fig. 5c,
d). Despite the lower PCC between LED5-e and LL than
between LER and LL, this was not reflected in the num-
ber of genes in these intersections (Fig. 5c, d). This is
possibly due to the lower values for the 0.99 and 0.01
quantiles of Pearson correlation distributions for LER
than for the other traits (Fig. 1). The limited overlap in
(anti-)correlating genes between LL and LER or LED5-e

suggests that the molecular networks underlying elong-
ation rate, elongation duration and final size are only
partially shared and other additional mechanisms are
also possibly involved.
On the gene level, the intersection between LER and

LL represents genes functioning in hormone signal
transduction and metabolism (auxin, brassinosteroid
and ethylene), protein degradation machinery (E3
RING proteins), transcription factors (bZIP and E2F/
DP) and genes related to transport, calcium and light
signaling (Additional file 2). Some of these genes have
Arabidopsis homologs that are possibly involved in
regulation of leaf development, given that perturbation
2.8 3 3.2 3.4 3.6

 (mm/h)

nd leaf elongation duration (LED5-e) traits. Blue dots indicate the 10 %
leaf length. Blue lines represent the borders of the 10 % of RILs with
s with largest LED5-e and LER



Baute et al. Genome Biology  (2015) 16:168 Page 16 of 26
results in altered leaf and rosette sizes (Table 5). Examples
are GRMZM2G462623 and GRMZM2G361659, two E2F/
DP transcription factors showing homology to DPa and
DEL1, respectively [75, 76], GRMZM2G135978, a putative
ortholog of TRANSPORT INHIBITOR RESPONSE 1
(TIR1) [59, 77], and GRMZM2G445905, a cellulose syn-
thase showing homology to IRREGULAR XYLEM 5
(IRX5) [103].
In the intersection between LED5-e and LL, we found

genes related to entirely different processes than in the
intersection between LER and LL, namely genes related
to primary metabolism — amino acid synthesis and
lipid metabolism — cell wall proteins, genes involved in
cell vesicle transport, hormone signal transduction,
subtilases, receptor kinases and stress-related genes. In
addition, several transcription factors were identified that
are commonly correlated with LL and LED5-e, belonging
to the bHLH, HSF, NAC, SBP, SET and Trihelix families.
Some examples of genes in the intersection of LL and
LED5-e (Table 4) are GRMZM2G074267, which shows
homology to the auxin efflux carriers or PINs [77, 104],
GRMZM2G015295, a S-adenosyl-L-homocysteine hydro-
lase showing homology to cytokinin binding protein
HOG1 [105] and GRMZM2G702026, a homolog of
AUXIN RESPONSE FACTOR 1 (ARF1) [77].
LED5-e and the other timing traits were positively

correlated with “carbohydrate metabolism” (Fig. S6 in
Additional file 1); accordingly, cluster 6 of the co-
expression network, consisting predominantly of genes
positively correlated with timing traits, was also enriched
in this MapMan category (Fig. 4). The corresponding
genes were mainly involved in starch biosynthesis. Avail-
ability of starch in leaves is a major determinant of plant
growth since it provides a supply of carbon during the
night, when no photosynthesis takes place but growth is
nevertheless continuing [106, 107]. Our data suggest that
RILs that have the potential to maintain high growth rates
for longer periods of time have a modified balance be-
tween carbon supply and growth compared with other
RILs. Tight regulation of starch biosynthesis is required to
determine how much carbohydrate can be used during
the day for growth and how much starch should be
synthesized to provide the plant with carbon during the
subsequent night [108]. The flux of carbon into starch
is governed largely by regulation of the enzyme ADP-
glucose pyrophosphorylase (AGPase). Transcript levels
of one of the subunits of this enzyme [109, 110],
GRMZM2G106213, showed a correlation in our dataset
with the timing traits (Additional file 2), consistent with an
increase in yield and biomass in several crops when altering
AGPase activity [111–115]. Another example is a sucrose-
phosphate synthase, GRMZM2G055331 (Additional file 2).
Sucrose-phosphate synthase enzymes catalyze the rate
limiting steps in the biosynthesis of sucrose and play an
important role in carbon partitioning in the regulation of
starch production versus sugar accumulation in many de-
velopmental processes [116]. In several species, increased
or ectopic expression of sucrose-phosphate synthases
resulted in an increase in plant size [117–119], while
down-regulation resulted in a strong decrease in plant
growth [120, 121].
Which cellular mechanism was affected in the mutant

phenotype was not examined for the majority of the
genes with a known role in leaf development, impeding
further validation of a specific role of the (anti-)correlating
genes in leaf growth rate or duration of leaf elongation.
Our analysis, however, provides a potential framework to
start deciphering the molecular networks underlying the
trait LL and provides evidence that there are at least two
mechanisms regulating leaf size.

Leaf as an organ contributing to biomass
The shoot parameters FW and DW showed a strong
correlation on the phenotypic level — a PCC of 0.893
(Table 2) — and this was also reflected by the high frac-
tion of genes that (anti-)correlated with both traits:
approximately two-thirds of the genes were commonly
(anti-)correlated (Fig. 5e, f ). In addition, seedling bio-
mass showed a significant positive correlation with LER
and Lwe, and to a lesser extent with LA, LL and DZ size,
but not with Lwi, indicating that the majority of the final
leaf size traits are important contributors to seedling
biomass, next to leaf number and V-stage. The highest
correlation was observed between seedling weight
and LER and this was also observed in the PCA biplot
(Fig. S4 in Additional file 1). This suggests that LER can
be used as a proxy for seedling biomass. At the molecular
level, 19 genes correlated with both LER and seedling bio-
mass and 30 genes anti-correlated with both (Fig. 5e, f ).
These genes are involved in a variety of processes,
such as cell organization, protein degradation and post-
translational modifications, transcriptional regulation
(e.g., C2H2 zinc finger family protein, MYB domain
protein and methyl-binding domain protein) and sig-
naling. However, the numbers were too small to iden-
tify enriched processes.
Some genes in the intersections between LER and FW

and/or DW have homologs in Arabidopsis for which
perturbation mutants have phenotypes that hint at a role
in shoot development (summarized in Table 6). For in-
stance, GRMZM2G091715 encodes an acyl carrier pro-
tein involved in de novo synthesis of fatty acids [122];
GRMZM2G092595 shows homology to FAB genes en-
coding a phosphatidylinositol-3P 5-kinase important for
endomembrane homeostasis [123]; ZmCCD8/MAX4
(GRMZM2G446858) is a strigolactone biosynthetic gene
[124]; GRMZM2G149224 encodes a 3β-hydroxysteroid-
dehydrogenase/decarboxylase required for plant sterol



Table 5 Examples of genes for which expression levels are (anti-)correlated with leaf length, LER or LED5-e

MapMan Gene Maize
description

Arabidopsis
orthologs

Arabidopsis
symbol

Arabidopsis description LER LL LED5_e Arabidopsis
orthologs
with
phenotype

Phenotype Reference

Regulation
of
transcription

GRMZM2G702026 Auxin response
factor 1

AT1G59750a,b ARF1 Auxin response factor 1 −
−

−− AT1G59750a,b arf1 mutations enhance arf2
phenotype, i.e., delayed leaf
senescence resulting in more and
larger leaves

[77, 154]

GRMZM2G361659 AT3G48160a DEL1, E2FE,
E2L3

DP-E2F-like 1 −− −
−

AT3G48160a Overexpression results in smaller leaves
due to repression of cell proliferation

[76]

AT3G01330b

AT5G14960b

GRMZM2G462623 AT5G02470b

AT5G03415a
DPA, DPB Transcription factor DP ++ +

+
+ AT5G02470b DPa acts together with E2F as

stimulator of cell proliferation
[75]

Hormone
metabolism

GRMZM2G135978 AT1G12820c AFB3, AFB2,
TIR1, AFB1,
GRH1

Auxin signaling F-box 3,
auxin signaling F-box 2, F-
box/RNI-like superfamily
protein, GRR1-like protein 1

++ +
+

AT3G62980a,b,c Mutations in TIR1 that enhance the
degradation of auxin/IAA display more
lateral roots, smaller rosettes and
reduced number of axillary branches

[59, 77]

AT3G26810c

AT3G62980a,b,c

AT4G03190b,c

GRMZM2G074267 Putative auxin
efflux carrier

AT1G23080c PIN7, PIN3,
PIN1, PIN4, AGR,
AGR1, EIR1,
MM31,
PIN2WAV6

Auxin efflux carrier family
protein

−
−

−− AT1G70940c T-DNA insertion line has serrated
leaves

[77, 104]

AT1G70940c AT1G73590a,b,c Mutants have fewer leaves with
distorted shape

AT1G73590a,b,c

AT2G01420c

AT5G57090c

Cell wall GRMZM2G445905 AT5G44030a CESA4, IRX5,
NWS2

Cellulose synthase-like −− −
−

AT5G44030a T-DNA insertion line grows slower,
plants are darker green and leaves are
more narrow

[103]

Unknown GRMZM2G015295 Adenosylhomo-
cysteinase

AT3G23810b,c SAHH2,
EMB1395HOG1,
MEE58, SAHH1,

S-adenosyl-l-homocysteine
(SAH) hydrolase 2, S-
adenosyl-L-homocysteine
hydrolase

−
−

−− AT4G13940a,b,c Loss of function mutants show
increased leaf size, higher seed yields
and delayed flowering, while
overexpression plants show opposite
phenotypes

[105]

AT4G13940a,b,c

Arabidopsis orthologs were determined using PLAZA3.0 web resource [147]. a Best hit family ortholog. b Tree-based ortholog. c Orthologous gene family. Double plus signs ("++") indicate transcript levels positively cor-
related with phenotypic trait (q0.99). Single plus signs ("+") indicate transcript levels positively correlated with phenotypic trait (qrandom). Double minus signs ("−−") indicate transcript levels negatively correlated with
phenotypic trait (q0.01). IAA indole-3-acetic acid
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Table 6 Examples of genes for which expression levels are (anti-)correlated with fresh/dry weight and LER

MapMan Gene Maize
description

Arabidopsis
orthologs

Arabidopsis
symbol

Arabidopsis description LER FW DW Arabidopsis
orthologs
with
phenotype

Phenotype Reference

Hormone
metabolism

GRMZM2G446858 Carotenoid
cleavage
dioxygenase

AT4G32810a,b,c CCD8,
MAX4

Carotenoid cleavage dioxygenase 8 ++ ++ ++ AT4G32810a,b,c ZmCCD8/MAX4 is a stringolactone
biosynthetic gene of which the
knockout mutant shows a
branching phenotype, comparable
to the Arabidopsis orthologous
mutant, and in addition shorter
stature and smaller ears

[124, 155]

Protein
degradation

GRMZM2G704093 AT5G46210a,b CUL4 Cullin4 −− − −− AT5G46210a,b CUL4 is part of an E3 ubiquitin
ligase complex. Loss of function
mutants display reduced growth
and aberrant leaf phenotypes

[127]

At4G12100b

AT3G46910b

Lipid
metabolism

GRMZM2G149224 Sterol-4-alpha-
carboxylate 3-
dehydrogenase,
decarboxylating

AT1G47290b,c 3βHSD/D1,
AT3βHSD/
D1, 3βHSD/
D2,
AT3βHSD/
D2

3β-Hydroxysteroid-dehydrogenase/
decarboxylase

−− −− −− AT1G47290b,c Overexpression of this 3β-
hydroxysteroid dehydrogenase/de-
carboxylase required for plant sterol
activation results in growth defects,
such as shorter internodes

[125]

AT2G26260a,b,c

GRMZM2G091715 Acyl carrier
protein

AT4G25050c ACP4,
ACP1,
ACP2,
ACP3,
ACP5

Acyl carrier protein ++ ++ ++ AT4G25050c Reduced ACP4 levels result in a
decreased lipid content and varying
degrees of a bleached phenotype,
smaller size and shorter bolts

[122]

AT3G05020a

AT1G54580c

AT1G54630c

AT3G17790c

Signaling GRMZM2G094951 AT2G37290c Ypt/Rab-GAP domain of gyp1p
superfamily protein

−− −− −− AT2G37290c T-DNA line shows pale green leaves [77]

AT2G39280c

AT3G55020a,b,c

GRMZM2G092595 AT1G71010a,b,c FAB1C,
FAB1B,
FAB1A

FORMS APLOID AND BINUCLEATE
CELLS 1C, phosphatidylinositol-4-
phosphate 5-kinase family protein,
1-phosphatidylinositol-4-phosphate
5-kinases, zinc ion binding, 1-
phosphatidylinositol-3-phosphate
5-kinases

++ ++ + AT3G14270c Loss of function and gain of
function mutants display pleiotropic
phenotypes primarily related to
auxin signaling, including dwarfism
and root growth inhibition

[123]

AT4G33240cAT3G14270c

AT4G33240c

AT1G34260c

Development GRMZM2G170567 AT5G18410a,b KLK, PIR,
PIR121,
PIRP, SRA1

Transcription activators −− − −− AT5G18410a,b Downregulation results in larger
rosettes that are epinastic and paler

[126]
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Table 6 Examples of genes for which expression levels are (anti-)correlated with fresh/dry weight and LER (Continued)

green, next to additional
developmental phenotypes

RNA
processing

GRMZM2G346639 AT5G53770a,b,c Nucleotidyl-transferase family
protein

−− −− −− AT5G53770a,b,c T-DNA line shows smaller, more
compact rosette with more
roundish leaves

[77]

Unknown GRMZM2G406043 AT3G04490a,c −− −− −− AT3G04490a,c Smaller rosette size due to smaller
leaves in T-DNA line

[77]

Arabidopsis orthologs determined using PLAZA3.0 web resource [147]. a Best hit family ortholog; b Tree-based ortholog; c Orthologous gene family. Double plus signs ("++") indicate transcript levels positively correlated
with phenotypic trait (q0.99). Single plus signs ("+") indicate transcript levels positively correlated with phenotypic trait (qrandom). Double minus signs ("−−") indicate transcript levels negatively correlated with phenotypic
trait (q0.01). Single minus signs ("−") indicate transcript levels negatively correlated with phenotypic trait (qrandom)
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activation [125]; GRMZM2G170567 is a transcriptional
activator [126]; GRMZM2G704093 is a homolog of Arabi-
dopsis CUL4, part of an E3 ubiquitin ligase complex [127].
Also, for Arabidopsis homologs of GRMZM2G406043,
GRMZM2G346639 and GRMZM2G094951 (At3g04490,
At5g53770 and At2g37290, respectively) a leaf or whole
rosette phenotype was recently described in the corre-
sponding T-DNA insertion mutants [77].
The positive correlations between final leaf size traits

and seedling biomass indicated that these traits are
important contributors to seedling biomass. Since LER
showed the highest correlation with FW and DW, LER
measurements that take place early in development
might allow to identify subsets of plants in populations
with high or low biomass. The identification of a num-
ber of genes in the intersection of LER and FW/DW for
which a link with growth and development is shown
further supports this hypothesis.

Conclusions
In this study, we could successfully correlate variation
in transcript levels in growing leaf tissue with variation
for traits measured at later stages of development. This
implies that dividing cells of a growing leaf already con-
tain the molecular information underpinning the final
phenotypes. Furthermore, we illustrate that breaking
down complex traits such as leaf and seedling biomass
into their components aids in determination of the
most important contributors and their mutual associ-
ation and facilitates the dissection of regulatory interac-
tions. The relevance of our approach is also reflected
by the presence of genes for which Arabidopsis homo-
logs have a known function in leaf development or
genetic perturbations display anticipated variation in
leaf size in our gene sets correlating with the final leaf
and shoot traits. Next to these known genes involved in
leaf development, a large set of novel genes were also
identified. In future studies, integration of phenotyping
and transcriptomics data of additional mapping popula-
tions — since the mapping population used determines
to a large extent the genetic variation that can be
captured — and the combination with other forward
genetic approaches, such as QTL and expression QTL
analysis, will allow for selection of putative regulators
of leaf growth that can be used for further analysis in
genetic modification approaches or as biomarkers for
leaf size traits.

Materials and methods
Genetic material
The RIL population used in this study is derived from a
cross between parental lines B73 and H99, followed by
12 generations of self-pollination. In total, 142 RILs were
generated and 223 markers were used for mapping these
RILs [40]. A randomly chosen subset of 103 RILs was
analyzed in this study.

Growth conditions, measured traits and sampling
All traits were measured in a series of experiments in a
single growth chamber. RILs were grown in a random-
ized design each time along with their respective par-
ents. Experiments were conducted under controlled
growth chamber conditions (24 °C, 55 % relative hu-
midity, light intensity of 170 mmol m−2 s−1 photosyn-
thetic active radiation, in a 16 h/8 h day–night cycle).
Since the focus of our research was on leaf develop-
ment, primarily leaf size traits were determined. The
traits measured for leaf 4 were: final leaf 4 area (LA),
final leaf 4 width (Lwi), final leaf 4 weight (Lwe), final
leaf 4 blade weight, final leaf 4 length (LL), leaf 4 elong-
ation rate (LER), DZ size of leaf 4 at steady state
growth, time point of leaf 4 emergence, time point of
maximal LER (Tm), time point when leaf 4 reaches its
final length (Te) and leaf elongation duration (LED5-e).
Since results for Lwe and leaf 4 blade weight were
highly correlated, only results for Lwe are shown. LER
and DZ size were determined as described previously
by Rymen et al. [41]. Briefly, LER was determined by
measuring the leaf length, using the soil level as a refer-
ence point, on a daily basis from the time of emergence
of leaf 4 until the leaf was fully grown and calculating
the average growth rate during the steady state growth
phase. DZ size was estimated as the distance between
the base of the leaf and the most distal mitotic cell in
the epidermis that could be visualized after staining with
4′,6-diamidino-2-phenyindole (DAPI). Tm, Te and LED5-e

were determined as described before [42]. Additionally, at
a fixed time point after sowing (after 27 days), fresh
weight, dry weight, V-stage and total number of leaves of
the whole seedling were determined. V-stage and total
number of leaves were not determined for all RILs, but for
a selection of 42. All traits were determined for six plants
per RIL, except for DZ size (three plants per RIL) and time
point of leaf 4 emergence (19 plants per RIL). Simultan-
eously with phenotyping, plants were sampled for RNA
sequencing. Since we preferred to grow plants for pheno-
typic analysis, including determination of DZ size, and
RNA sequencing simultaneously, it was not feasible to
sample the total DZ. Therefore, we sampled the first 0.5
cm of the most basal part of leaf 4 three days after appear-
ance, always at the same time of the day to minimize diur-
nal effects. This zone of the leaf is at that stage fully
proliferative for all RILs we examined. For each parent we
had three biological and three technical replicates, each
pool consisting of proliferative tissue of four plants. For
the RILs, one biological replicate, consisting of prolifera-
tive tissue of four plants, was sampled for RNA sequen-
cing. Total RNA was extracted using Trizol (Invitrogen)
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according to the manufacturer’s instructions, followed
by DNA digestion using the RNase-free DNase I kit
(Qiagen).

Data analysis
PCCs and PCA analysis of phenotypic data
Pearson correlations among the traits were calculated on
the means of the RILs and two parental lines in SPSS
(SPSS Inc., Chicago, IL, USA). PCA was performed as a
dimensionality reduction technique on the centered and
scaled phenotype data, using the prcomp function in R.

RNA sequencing analysis
Library preparation was done using the TruSeq RNA
Sample Preparation Kit v2 (Illumina). In brief, poly(A)-
containing mRNA molecules were reverse transcribed,
double-stranded cDNA was generated and adapters li-
gated. After quality control using a 2100 Bioanalyzer
(Agilent), clusters were generated through amplification
using the TruSeq PE Cluster Kit v3-cBot-HS kit (Illumina)
followed by sequencing on an Illumina HiSeq2000 the
TruSeq SBS Kit v3-HS (Illumina). Sequencing was per-
formed in paired-end mode with a read length of 100 bp.
The quality of the raw data was verified with FastQC

[128] (version 0.9.1). Next, quality filtering was per-
formed using the FASTX-Toolkit [129] (version 0.0.13):
reads were globally filtered so that, for at least 75% of
the reads, the quality exceeds Q10 and 3’ trimming was
performed to remove bases with a quality below Q20,
ensuring a minimum length of 35 bp remaining. Re-
pairing was performed using a custom perl script. Reads
were subsequently mapped to the maize B73 reference
genome (5b) using GSNAP [130] allowing maximally five
mismatches. The concordantly paired reads that uniquely
map to the genome were used for quantification on the
gene level with htseq-count from the HTSeq.py python
package [131].
It has been reported that inbred lines of maize are very

divergent [132]. This could introduce artifacts in the
mapping of reads and therefore inaccurate transcript
quantification. Therefore, we selected for genes that are
conserved between inbred lines. To make this selection
more robust, we included eight inbred lines in this selec-
tion procedure, among which were the two parental
lines of the RIL population studied here. RNA-seq data
of proliferative tissue for these eight inbred lines (M.E.
Pè, personal communication) was mapped to the B73
reference genome. A coverage cutoff was applied, using
the R/Bioconductor package with default HTSFilter par-
ameter settings [133]. This coverage cutoff retained 50 %
of the genes (19,948) which are expressed in at least one
of the parents.
Next, SNP calling was performed. The reads of the dif-

ferent libraries were preprocessed separately. Read sorting
was done using SAMtools version 0.1.18 [134] and dedu-
plication using Picard MarkDuplicates version 1.56 [135].
Subsequently, variants were called using GATK version
2.5.2 [136]. First, all read libraries were recalibrated using
the tool BaseRecalibrator. A high quality SNP set was used
as so-called known sites and this set was generated by
UnifiedGenotyper using a quality threshold of 50. Next,
an 18-way variant calling was performed using Unified-
Genotyper. Three variant sets were generated: a raw
variant set by setting a quality threshold of 30, and a high
quality SNP and INDEL set by setting a quality threshold
of 50. Quality scores of the raw variants were recali-
brated using the high quality variant sets and the tools
VariantRecalibrator and ApplyRecalibration. For SNPs,
we set the VariantRecalibrator options maxGaussians to
10, percentBad to 0.01, minNumBad to 1000 and an to
QD, MQRankSum, ReadPosRankSum, FS and DP. For
INDELs, we set the VariantRecalibrator options maxGaus-
sians to 4, percentBad to 0.05, minNumBad to 2500 and
an to mQRankSum, ReadPosRankSum, FS and DP. In
both cases, we set the ApplyRecalibration option ts_fil-
ter_level to 99.0. In case of INDELs, the recalibrated SNP
set was used. Using BEDops version 2.2.0 [137], BEDTools
version 2.16.1 [138] and VCFtools version 0.1.10 [139], we
selected only variants present in the exon regions as de-
fined in the ZmB73_5b filtered gene set GFF file [140].
Finally, genes with no more than 1.75 % of SNPs were
selected. By applying this threshold, 75 % of the expressed
genes were retained. This resulted in a set of 15,051
selected genes.

Normalization and transformation of RNA-seq count data
Count data of the filtered set of 15,051 transcripts were
normalized for library size with the default normalization
methods in the DESeq2 package version 1.2.10 [141] in R
version 3.0.2 [142]. Transcripts expressed in less than 5 %
of samples (transcript count > 0) were removed. An in-
verse hyperbolic sine transformation was applied on the
remaining transcript levels ("asinh" function in R), which
is able to transform the zero counts. Additionally, the 5 %
least varying transcripts (based on the coefficient of vari-
ation) were removed from further analyses.

Correlation analysis between phenotype and transcriptome
PCCs were calculated between each transcript and all
traits over all RILs and parents. For each trait, the q0.01
and q0.99 quantiles of the set of transcript–trait PCC
values were calculated. The genes with PCC higher and
lower than the q0.99 and q0.01, respectively, showed no
bias in absolute expression levels or expression range
between RILs compared with the filtered gene set of
15,051 genes. In order to compare the general linear
correlation tendency of transcripts and traits, a distribu-
tion of correlation coefficients expected by chance was
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calculated by permuting the trait values 1000 times and
calculating the q0.01 and q0.99 quantiles for each permu-
tation. The mean q0.01 and q0.99 quantiles were taken as
the reference correlation coefficients expected by chance
across the 105 parent and RIL samples. For the majority
of the analyses performed, we focused on the genes with
PCC lower and higher than the q0.01 and q0.99 quantiles,
respectively, of the set of transcript–trait PCC values,
indicated as the (anti-)correlating gene sets. Few analyses
were based on the gene sets with PCC higher than
expected by chance, indicated as qrandom correlating gene
sets. The traits LN and V-stage were not analyzed using
this approach since the phenotyping data were only
available for 42 of the RILs.
The expression patterns of the (anti-)correlating sets

of genes in the different RILs and parental lines were
visualized in MeV [143]. Data were adjusted by normal-
izing the genes/row and color scale limits were set at
−3 and 3 as the lower limit and upper limit, respect-
ively, since these numbers approached the minimal and
maximal data values after normalization. For many
traits, there are particular RILs for which the expres-
sion levels of all correlating and anti-correlating genes
are higher and lower, respectively, than for other RILs,
which becomes visually apparent as green and red
ribbons in Fig. 2 and Fig. S1 in Additional file 1. This is
most likely not due to normalization errors since the
RILs showing these brighter green and red ribbons
differ from trait to trait (Fig. S5 in Additional file 1).

Correlation network
A transcript expression correlation network was calcu-
lated across all transcripts correlated with at least one
trait, with transcripts as nodes and Pearson correlation
values between transcripts as edge weights. For cluster-
ing and visualization, edges with correlation values
below 0.6 were discarded. The resulting weighted net-
work was clustered with the Markov cluster algorithm
(MCL) [55] using clusterMaker version 1.10 [144] with
granularity (inflation) parameter 2 and default advanced
parameters, and visualized in Cytoscape version 3.1.0.
A circular layout was used for clusters consisting of at
least 15 transcripts; the rest of the network was visual-
ized with the prefuse force directed layout.

Functional enrichment analysis
Functional enrichment analyses of the transcript clusters
were based on the pathway annotations defined in Map-
Man [54]. The file with mapped maize transcripts and
pathways was downloaded from the MapMan webpage
[145]. For enrichment analyses of MapMan categories, the
GOseq package [146] was used in R. The function is a
priori programmed for gene ontology enrichment, but it
allows for mapping user-defined categories. Additionally,
it allows for analyses that incorporate transcript lengths.
As a transcript background, the filtered list of 15,051 tran-
scripts was used and an uncorrected p value of 0.01 was
used as cutoff for selection. Biological interpretation was
focused on MapMan categories that contained at least
five genes. Functional annotation, mostly transferred from
model species such as Arabidopsis, was determined using
the online resource PLAZA3.0 [147].
Transcriptome data from this article have been sub-

mitted to the ArrayExpress data libraries (eight parental
lines E-MTAB-3173; RILs E-MTAB-3758). Phenotyping
data are available in Additional file 3.
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Additional file 1: Figure S1. Mean minimum–maximum normalized
values for all analyzed traits in parental lines and RILs. Fig. S2 Some
examples of RILs and the parental lines at seedling stage, 27 days after
sowing. Fig. S3 Coefficient of variation for the different traits measured.
Fig. S4 PCA analysis of the phenotype data of the population. Fig. S5
Expression patterns of the top 1 % of genes (anti-)correlated with the
different traits. Fig. S6 Overrepresented MapMan categories of top 1 %
of genes (anti-)correlated with phenotypic traits. Fig. S7 Overrepresented
MapMan categories of top 1 % of genes (anti-)correlated with final leaf
size traits. (PDF 1976 kb)

Additional file 2: Table S1. List of 1740 genes with expression levels in
the leaf division zone of the RILs (anti-)correlating with at least one of the
traits. (XLSX 363 kb)

Additional file 3: Table S2. All phenotyping data per plant and
averages per line. (XLSX 188 kb)
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