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Abstract

to existing methods.

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an increasingly common experimental approach to
generate genome-wide maps of histone modifications and to dissect the complexity of the epigenome. Here, we
propose EpiCSeg: a novel algorithm that combines several histone modification maps for the segmentation and
characterization of cell-type specific epigenomic landscapes. By using an accurate probabilistic model for the read
counts, EpiCSeg provides a useful annotation for a considerably larger portion of the genome, shows a stronger
association with validation data, and yields more consistent predictions across replicate experiments when compared

The software is available at http://github.com/lamortenera/epicseg

Background

A central question in biology is how cells of a multicellular
organism with essentially the same genotype can establish
and maintain distinct phenotypes. The four core histones
H2A, H2B, H3, and H4 together with approximately 147
base pairs of DNA form the nucleosome — the fundamental
repeating unit of the chromatin. These histones can be co-
valently modified and it is thought that these modifications
carry information about the past and current cellular state
[1]. Together with DNA methylation these histone modifi-
cations constitute the cell-type specific epigenome. Because
the genome cannot be associated to the cell-to-cell variabil-
ity, current research is focused on the epigenome.

Today many consortia, such as NIH Roadmap Epige-
nomics, ENCODE, Blueprint, DEEP, and IHEC [2-6],
are providing genome-wide maps of histone modifica-
tion generated with an experimental technique called
Chromatin Immunoprecipitation followed by Sequen-
cing (ChIP-seq [7]). Typically, for a given cell type, a
panel of histone modifications are profiled in order to
gain insight into the cell-type specific epigenome. This
huge amount of available data calls for the development
of integrative computational approaches to identify the
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most important, biologically meaningful features and to
capture recurrent patterns.

The segmentation of epigenomes into chromatin
states collapses the ChIP-seq tracks and provides an ab-
stract view on the multi-dimensional data. A chromatin
state is a recurrent pattern in the abundances of a given
set of histone modifications, possibly related to a
particular biological function. Chromatin segmentation
aims at explaining the observed epigenomic data as a
long sequence of a small number of hidden chromatin
states. The idea of chromatin segmentation is not new
[8—11], however, the small number of available
computational tools for this task and the growing
importance of epigenomic datasets suggest that there
are still ample margins for improvement. Two popular
tools are ChromHMM [9] and Segway [11]. In both
approaches, the ChIP-seq experiments are transformed
into genome-wide multivariate signals and subsequently
used as observed variables in a probabilistic inference
algorithm.

In ChromHMM the raw reads are assigned to non-
overlapping bins of 200 bps and a sample-specific threshold
is used to transform the count data to binary values. Given
a hidden state, the binary vectors are modeled as independ-
ent Bernoulli random variables. This approach has some
limitations. (1) There is a considerable loss of information
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when transforming a read count into a binary value, as the
possibility of distinguishing between different levels of ac-
tivity is precluded. This limitation is especially important
for more recent, higher coverage ChIP-seq experiments. (2)
There is no obvious way of deciding which threshold to
use, despite it being critical for the final segmentation. (3)
The independent Bernoulli model assumes independence
between the chromatin marks given a hidden state. That
would imply, for instance, that in those regions where a
promoter states occurs, the presence of the mark
H3K4me3 is independent from the presence of the mark
H3K27ac, which is in contrast to our observations (see
Results and Discussion, first paragraph). (4) A large por-
tion of the genome is assigned to a state with no clear role,
apart from being associated to read counts below the
discretization threshold.

Segway works at a single base-pair resolution and
transforms the counts into real values. Given a hidden
state, a vector of transformed read counts is modeled as
independent Gaussian random variables. The following
shortcomings can be noted: (1) as in ChromHMM, the
independence assumption between marks seems inad-
equate; (2) the choice of the monotone function is not
easy to justify, especially because the resulting zero-
inflated distribution can be very different from a Gauss-
ian distribution; (3) because it works at a single base pair
level, this method is orders of magnitude slower than
ChromHMM, which severely limits its applicability.

In order to address these shortcomings we developed
Epigenome Count-based Segmentation (EpiCSeg), a seg-
mentation algorithm with the following main features.
(1) Raw read counts can be directly used as observation
symbols, thus eliminating the need for preprocessing
steps. (2) An accurate discrete multivariate probability
distribution is used for modeling the count vectors given
a hidden state, which can recapitulate the overdispersion
and correlation features observed in the data. (3) The
probabilistic framework and computational efficiency are
similar to those of ChromHMM, making EpiCSeg useful
also for large genomes, such as the human genome.

In this article we will first give an overview of EpiCSeg
and highlight its advantages relative to ChromHMM
when applied to four different datasets and finally we
will summarize the salient features and the most import-
ant conclusions.

Results and discussion

A multivariate probabilistic model for read counts
Modeling the raw count data is a considerable challenge for
two reasons. First, because the number of mapped reads in
a given region is overdispersed, that is, the variance across
replicate experiments is so large that a simple Poisson
model cannot account for it [12]. This degree of variation is
especially important when modeling the variability in the
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read counts associated to the same chromatin state. Sec-
ond, because the read abundances along the genome tend
to be correlated. This can happen because of technical or
biological biases, such as mappability, chromatin accessibil-
ity, and unspecific antibody binding [13], but it can also be
a reflection of the biological processes taking place on the
chromatin fiber. The histone modification abundances at
promoters, for instance, have been shown to accurately pre-
dict the expression levels of genes [14]. Therefore it should
be expected that in a given chromatin state the mark abun-
dances vary more or less in proportion to the activity of the
biological process they are related to.

EpiCSeg’s main feature is the multivariate modeling of
read counts from several histone marks, which is then inte-
grated in a Hidden Markov Model (HMM) to produce a
segmentation of the genome. The input of the algorithm is
a desired number of states and a matrix where the rows
represent bins (non-overlapping genomic regions of a fixed
size), the columns represent histone marks, and each elem-
ent contains the number of reads of a certain mark in a cer-
tain bin. The main output of the algorithm is a vector that
assigns each genomic bin to one of the states (see Fig. 1
and Methods).

EpiCSeg uses a negative multinomial distribution to
model the count vectors generated from each chromatin
state (see Methods). This distribution, which was previ-
ously used in bioinformatics for modeling footprints in
DNase I hypersensitivity data [15], has been chosen for
three main reasons. Let X = (X}, X5, ... X,,) be a random
count vector distributed as a negative multinomial distri-
bution, where each component of the vector represents
a different histone mark. It can be shown that the mar-
ginal distribution of each histone mark X; is overdis-
persed, that each pair of histone marks is positively
correlated, and that the negative multinomial model is
more general than the independent Poisson model.

We found that this model can leverage the statistical
properties observed in the experimental data to better
characterize the patterns of histone mark abundances.

Method comparison

As the chromatin segmentation problem is an unsuper-
vised learning problem there is no clear performance
score which can be used to compare segmentations by
different methods. To make the comparison as fair and
comprehensive as possible we adopted two strategies.
First, we define and compute a number of performance
indicators. These are based on the association between
chromatin states and validation data or on the robust-
ness of the segmentation algorithms. Second, we com-
pare the different segmentations qualitatively, that is,
without using any performance indicator. These compar-
isons also suggest alternative solutions to the task of
interpreting the models provided by a segmentation
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Fig. 1 EpiCSeg segmentation in a genome browser. The first seven tracks represent the input data, that is, read counts for each genomic bin and
for a panel of histone marks. The eighth track represents the main output of the algorithm, that is, a partition of the genome into segments of
different types, where each type is a chromatin state and it is represented by a specific color in this picture. The last three tracks show data used
for validation. It can be seen that chromatin states can be easily related to biological processes, for instance the red state represents active
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algorithm. The sensitivity and specificity scores used in
the quantitative comparison show how validation data
can be used to identify a state which most likely repre-
sents a given genomic feature. The genome-wide statis-
tics used in the qualitative comparison show how each
state has a peculiar distribution with respect to genes
and a particular signature in terms of histone mark
abundances which can be related to known biological
processes.

The tools chosen for the comparisons are EpiCSeg
and ChromHMM. Segway could not be included
here because the time required for its training
process is orders of magnitude larger and also be-
cause it works at single base pair resolution, while
EpiCSeg and ChromHMM, as well as our validation
procedure, use a binning scheme to reduce the high
noise levels in the read counts. In Additional file 1:
Section 5.3, we propose a comparison with a more
limited scope where we make Segway’s segmentation
compatible to our binning scheme. Within the limits
of this comparison and based on our performance
indicators, Segway does not seem to perform as well
as the other two algorithms.

To be able to draw relatively general conclusions, we
compared the algorithms on four different datasets pro-
vided by the ENCODE consortium [3]:

1. IMR90: lung fibroblast cells with 27 histone marks,
2. H1: embryonic stem cells with 26 histone marks,

3. K562_1: myelogenous leukemia with 11 histone
marks and one control experiment,

4., K562_2: same as above. The K562_1 and K562_2
datasets derive from an ENCODE dataset where two
replicates per histone mark are available.

For each of these cell types ENCODE also provided
RNA-seq and DNase I hypersensitivity experiments that
were used for validation, as described in the next section.

Quantitative comparison

We ran ChromHMM and EpiCSeg genome-wide on the
four datasets. The number of chromatin states was set
to 10, the number of processing threads was set to 10,
and all other parameters were set to their default values.
In particular, both EpiCSeg and ChromHMM use the
same binning scheme. The runtime of the two algo-
rithms were similar: both tools performed genome-
wide training and prediction in 15 to 30 min with
neither method showing consistently shorter runtimes
(see Additional file 1: Figure S4).

We first measured how well an algorithm can recognize
large regions with unusually low levels of histone marks.
These regions are typical in genome-wide datasets due to
mappability artifacts or low levels of chromatin accessibil-
ity, and it is desirable to characterize them as precisely as
possible in order not to filter out a too large portion of the
genome. In this measurement, we identified the bins cor-
responding to assembly gaps, that is, large regions of the
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reference genome where the sequence is not known and
where no reads can be mapped. Next, we identified which
state most likely represents assembly gaps by selecting the
state with the highest precision. Given a state, the preci-
sion (or specificity) is the fraction of bins assigned to this
state that are assembly gaps and the sensitivity is the
fraction of assembly gaps that are assigned to this state.
Figure 2 shows that in all datasets and both in EpiCSeg
and in ChromHMM almost all assembly gaps are anno-
tated with the same state, however in EpiCSeg this state
overlaps with the assembly gaps much more precisely,
especially in the K562_1 and K562_2 datasets. The fact
that the precision always remains relatively low suggests
that assembly gaps are not the only regions with unusually
low levels of histone marks. Assembly gaps bins were
excluded in the computation of all other performance
indicators.

Next, we measured how well chromatin states can pre-
dict gene expression. For that purpose we used a cell-type
specific RNA-seq experiment for each dataset. As a meas-
ure of gene expression levels we used the logarithm of the
average RNA-seq coverage per bin (adding a pseudo-
count of 1) and as a measure for predictive power we
computed the R” resulting from standard linear regression
with a categorical predictor (the chromatin states). Figure 3
shows that EpiCSeg and ChromHMM have a similar
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Fig. 2 Assembly gap prediction. Chromatin states can be used as
binary classifiers for detecting assembly gaps. Given a state, the true
positives are the bins annotated with that state and where the
reference sequence is not known (so no reads can be mapped). The
specificity, or precision, is the number of true positives divided by
the number of bins annotated with the state, the sensitivity is the
number of true positives divided by the number of bins
corresponding to assembly gaps. The state which gives maximum
precision has been chosen
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Fig. 3 Chromatin states-based prediction of transcription levels. The
value to be predicted is the log-transformed RNA-seq coverage per
bin and the predictor is the chromatin state per bin. The R2 values
were computed using standard linear regression

predictive power, but the former tends to perform better.
The low R? values observed in the IMR90 and H1 datasets
might suggest that in datasets with many ChIP-seq
tracks the segmentation algorithms are less influenced
by transcription-associated histone marks (for example,
H3K36me3).

For the next performance indicators we used the gene
annotation from GENCODE [16] and cell-type specific
RNA-seq and DNase I HS experiments to characterize
four different chromatin environments per cell line: RNA,
characterized by a high RNA-seq signal; DNase+TSS and
DNase-TSS, characterized by a high DNase I HS signal
and separated according to their proximity to an anno-
tated TSS; and intergenic, characterized by their long dis-
tance from RNA and DNase environments. We will refer
to this annotation as the supervised annotation (for more
details, see Methods). Note that in this annotation some
bins remain unannotated and they are not considered in
the following.

Using the DNase+TSS bins as a gold-standard set of
active TSSs we measured how well an algorithm can
recognize active promoters. We selected the chromatin
state that overlaps DNase+TSS bins with the highest
precision. Figure 4 shows that EpiCSeg always identifies
a chromatin state overlapping putative TSSs with a con-
siderably higher precision than in ChromHMM. Often
this state also overlaps more TSSs than in ChromHMM
except in the HI1 dataset (here, however, we could
achieve a higher performance than with ChromHMM
by merging two EpiCSeg states).
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Next, we used the supervised annotation to compute an
overall association score between external datasets (TSS an-
notation, RNA-seq, and DNase I hypersensitivity) and chro-
matin states. As performance measure we used mutual
information, which can be estimated from a contingency
table between the chromatin states vector and the chroma-
tin environments vector (see Additional file 1: Section 5.2,
for more details and for an alternative score). Figure 5 sum-
marizes the results and suggests that EpiCSeg is more
strongly associated to the validation data.

To test the generality of our conclusions, we repeated
the comparisons described above varying the number
of states from 2 to 40 (see Additional file 1: Figure S5).
The results suggest that our conclusions are unlikely to
depend on a particular choice of the parameters or on a
particular initialization of the maximization algorithms.
The results also show that the specificity in assembly
gap and TSS prediction, as well as the association to
transcription and to the supervised annotation, tend to
grow with the number of states, while the sensitivity in
assembly gap and TSS prediction decreases, suggesting
that the state representing a given genomic feature will
eventually be split into two or more subtypes when in-
creasing the number of states. A large number of states,
however, renders the biological interpretation of the
model difficult. The BIC and AIC methods [17], which

failed in suggesting a number within the explored range
(data not shown). We believe that such a choice should
be a compromise between interpretability and accuracy
of the model.

Finally, we set out to test the algorithms’ robustness to
perturbations of the input data. For assessing the robust-
ness of a pair of segmentations we used the average
Jaccard index (see Methods), which is a score between
zero (completely different segmentations) and one (identi-
cal segmentations). The purpose of the first assessment
is to test to which extent the chromatin states are
influenced by technical variability, which includes sam-
pling noise and differences in sequencing coverage. In
fact this technical variability might affect EpiCSeg
more than ChromHMM, as the former uses raw count
data, while the latter uses normalized binary variables.
The K562 1 and K562_2 datasets are suitable for this
purpose because all samples come from the same cell
type and replicate pairs are strongly correlated, even
though there are considerable differences in sequen-
cing coverage (see Additional file 1: Section 5.4). In
order to have several measurements, we ran the seg-
mentation algorithms (training and prediction) on each
chromosome and each dataset separately and we
computed the similarity between corresponding seg-
mentations. The box plot in Fig. 6 shows that the seg-
mentations obtained with EpiCSeg tend to be more
consistent across replicate datasets than those obtained
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same dataset. The segmentation algorithms were run independently
on each chromosome on both datasets and the similarity between
corresponding segmentations was measured. A higher Jaccard index
means a greater robustness. The box plots show, among other
things, the median (the thick line) and the first and third quartiles
(the boundaries of the box) of the score distribution for

each algorithm

with ChromHMM. In both tools, the highest error rates
tend to occur in those bins with a total read count
across marks between 10 and 100 (see Additional file 1:
Section 5.5).

In the second assessment, we test the robustness of
the algorithms to changes in the binning scheme. By de-
fault both algorithms (EpiCSeg and ChromHMM), bin
the genome by assigning the first 200 base pairs of each
chromosome to a bin, the second 200 base pairs to the
next, and so on. Here, we studied to which extent the
state assignment per base pair changes after shifting all
bins by 100 base pairs. Figure 7 shows that, for instance,
in the K562_1 dataset with the EpiCSeg algorithm, on
average more than 80 % of the base pairs annotated with
a certain state in one segmentation are annotated with
the corresponding state also in the segmentation that
uses the alternative binning scheme. Note, however, that
a certain portion of this disagreement is simply due to
the fact that the boundaries of two matching segments
will necessarily differ by at least 100 base pairs. If we
consider the difference between the parameters of the
two models learnt by EpiCSeg, the agreement seems
much more convincing (see Additional file 1: Section
5.6). These results suggest that both algorithms are rela-
tively robust to changes in the binning scheme, and that
EpiCSeg tends to be more robust.
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Fig. 7 Algorithms robustness to shifts of the binning offset. Reads
have been counted using two different binning schemes, both with
a bin size of 200 base pairs. In the first scheme, for each
chromosome, the first base of the chromosome is also the first base
of the first bin. In the second scheme the bins have been shifted by
100 base pairs. The segmentation algorithms have been run using
both schemes and the similarity between segmentations has

been measured

Qualitative comparison
In order to show the salient differences between the
two algorithms without focusing on single regions, we
collapsed the segmentation data into genome-wide
summary statistics. The first summary statistic (Fig. 8)
is a bar plot where each bar corresponds to a chroma-
tin state and where its length is proportional to the
state frequency. Additionally edges between states of
the two segmentations have been drawn with widths
proportional to the number of overlapping bins. An-
other statistic (Fig. 9) shows where each state tends to
localize with respect to genes. More precisely, for each
annotated transcript in the GENCODE database [16]
and for a given segmentation we considered a region
comprising the transcript, 5,000 bps upstream the TSS
and 5,000 bps downstream the TES, we labeled each
base pair with its inferred state, and we rescaled the
region between TSS and TES to a reference length.
Finally, taking into account all transcripts, we counted
how many regions are annotated with a given state at a
given position. The third summary statistic (Fig. 10) is
a heatmap showing the log-transformed average histone
modification levels per state.

From Fig. 9 we notice that both segmentations on the
K562_1 dataset are strongly dependent on the genomic
context, that is, they can capture and represent the most
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Fig. 10 Average mark intensities per state in the K562_1 dataset.
The heatmaps show the average level of a certain mark in the bins
annotated with a certain state. For display purposes, the averages
have been log-transformed after adding a pseudocount of 1.

important biological processes acting on the chromatin.
The clearest signals are a state peaking exactly at the
TSS of the genes and a state which appears mainly in
the body of the transcripts and peaks at the TES.
However, there are also some differences. The most
apparent is that in the ChromHMM segmentation there
is a state accounting for more than half of all bins,
while the state distribution in EpiCSeg’s segmentation is
more balanced (see Fig. 8). This background state in
ChromHMM is likely to be an artifact of the discretization
step and correspond to bins where most of the read
counts are below the discretization threshold rather than
to represent a well-defined chromatin state. The same
background state mainly corresponds to three EpiCSeg
states. One of them is associated to very low read counts
for all marks. The analysis in Fig. 2 showed that almost all
assembly gaps are annotated with this state and that
they make up almost half of it. The other two states cor-
respond to repressive chromatin environments enriched,
respectively, with H3K27me3 and H3K9me3 (see Fig. 10).
The second apparent difference is that that the promoter
state in the EpiCSeg segmentation (state 2) is more tightly
centered on the TSS, which is also reflected in the higher
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classification score observed in the performance compari-
son (Fig. 4). These conclusions are also confirmed in the
other three datasets (see Performance Comparison and
Additional file 1: Section 5.7, where the genome-wide seg-
mentation statistics are shown for all other datasets).

Other smaller differences can be observed in Fig. 6. For
instance, EpiCSeg separates promoter-proximal regions
into those with the known set of promoter-associated
marks, H3K27ac, H3K9ac, H3K4me2-3 (state 2), and those
with lower levels of promoter-associated marks and a very
high level of H3K79me2 (state 1), whereas ChromHMM
does not make this distinction (state 1). Furthermore, the
state in ChromHMM with the highest levels of H3K4mel
(state 2, probably representing enhancer regions) is very
similar to the promoter state (state 1) considering its
localization (Fig. 9) and marks intensities (Fig. 10), while in
EpiCSeg there is a greater separation (between state 3 and
state 2). These two last differences, however, cannot be al-
ways generalized to the other datasets.

Uncertainty in state assignments

We explored how confidently EpiCSeg’s probabilistic
model can assign a bin to a chromatin state in relation
to the read coverage in the bin. As a measure of uncer-
tainty in the state assignment we computed the posterior
entropy per bin, which is the entropy of the probability
distribution describing how probable each state is for
that bin. The read coverage per bin is the sum of the
read counts across all histone marks. The results of this
explorative analysis can be seen in Fig. 11 for the
K562_1 dataset, which shows: (1) a smoothed scatter-
plot of the posterior entropies versus the read coverage;
and (2) the mean posterior entropy per read coverage
level. The most apparent trend is that most of the
entropies tend to cluster around 0, or to a much smaller
extent, around 1, suggesting that for most of the bins
the probabilistic model is very certain of the state
assignment, or it is undecided between two alternatives.
The second apparent trend is that the bins that can be
most confidently classified are either bins with no reads
at all, typically corresponding to assembly gaps, or bins
with a very large number of reads, typically located in
promoter regions, while bins with a read coverage
between 10 and 100 are harder to classify. The same
analysis performed in the other datasets leads to similar
conclusions (data not shown). To summarize, EpiCSeg’s
model tends to be very certain of state assignments,
with a weak dependence on the read coverage. This sug-
gests that modeling the read counts directly does not
necessarily introduce a high level of uncertainty in the
state inference for bins with low-counts and supports
our claim that EpiCSeg allows for assigning chromatin
states to a larger portion of the epigenome compared to
existing approaches.
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Conclusions
We developed EpiCSeg: a new tool for segmenting the
genome and determining the most important chromatin
states by analyzing several ChIP-seq experiments si-
multaneously. Similarly to the ChromHMM algorithm,
EpiCSeg divides the genome into consecutive bins and
assumes a Hidden Markov Model to learn and infer the
hidden sequence of chromatin states. In contrast to its
predecessor, EpiCSeg’s input data are natural numbers
instead of binary variables, which has two important
practical advantages. First, no arbitrary thresholds on the
read counts are needed to decide when a mark is present
or not, as the read counts can be directly used as input
data. Second, because the input data contains more
information than the binary variables, EpiCSeg segmenta-
tion has the potential of being more accurate and robust.
Extensive comparisons across diverse datasets have
shown that indeed the count-based segmentation can
characterize active TSSs and regions with unusually low
counts, distinguish between different degrees of tran-
scription and recapitulate the validation data more

precisely than the segmentation based on binary values.
Moreover, this increased accuracy is also associated to
an increased robustness. A qualitative analysis of EpiC-
Seg’s results has shown that ChromHMM'’s background
state, typically accounting for more than half of the gen-
ome, corresponds to at least three biologically distinct
chromatin states. Finally, by modeling the read counts
our method provides a starting point to introduce also
other feature types such as whole genome bisulfite
sequencing and DNAse hypersensitivity data to obtain a
chromatin segmentation based on all commonly used
epigenomic data types.

Methods

From reads to counts

A unique feature of EpiCSeg is that the input data can be
derived from the mapped reads directly, almost without
any preprocessing. The genomic regions of interest, which
can be whole chromosomes, or better yet, only assembled
and mappable regions, are partitioned into non-
overlapping subregions of the same size called bins (in all
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of our analyses we used a bin size of 200 base pairs). In all
our analyses, except when studying the robustness to
shifts of the binning offset, the first bin of each chromo-
some starts at the first base pair of the reference sequence
for that chromosome. To count each read into one bin the
average fragment length of each ChIP-seq library needs to
be taken into account, because proteins tend to bind to
the middle of DNA fragments, while the reads come from
the extremities of these fragments. We used NucHunter
[18] to infer the average fragment length automatically
from the reads. Next, we consider the corrected position
of each read as its 5" end mapping coordinate shifted in
the 5'-to-3" direction by roughly half of the average frag-
ment length. In cases where a simpler analysis is desired,
because the inferred average fragment lengths lie almost
always between 100 and 200 base pairs, EpiCSeg applies a
default shift of 75 base pairs. Read counting with a shift is
performed using the R Bioconductor package bamsignals
[19]. Counting the reads in all bins for all marks yields a
count matrix for each region. These are the input to the
core segmentation algorithm.

The hidden Markov model

A hidden Markov model is used to model the count matri-
ces and to derive a segmentation (similarly as in
ChromHMM). In this framework, the i -th sequence of ob-
servations is encoded in the count matrix C?, and the b
-th observation symbol in the i -th sequence is the b -th
row in C. The main idea behind the model is that there is
a small number k of hidden states (which is an input par-
ameter of the algorithm), and that each observation vector
corresponds to a hidden state. The observation vectors and
the transitions from a hidden state to the next are assumed
to follow a state-dependent probability distribution (called,
respectively, emission probabilities and transition probabil-
ities), and the first hidden state in each sequence follows
another probability distribution (initial probabilities).

Given this model, the algorithm does the following:

1. Initializes the emission, transition, and initial
probabilities.

2. Fits the emission, transition, and initial probabilities
using the Baum-Welch algorithm.

3. Infers the sequence of hidden states, which is the
final segmentation, using the Viterbi or the posterior
decoding algorithm (in all our analyses we use the
second choice).

EpiCSeg differs from ChromHMM and from other ap-
proaches mainly by its choice of the emission probabil-
ities, which is described in the next section. How the
parameters are initialized and other implementation de-
tails are described in Additional file 1: Section 2 and 3.
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The Negative multinomial distribution
The observation vectors generated from a given hidden
state are assumed to follow a negative multinomial dis-
tribution. In formulas X = (X3, X5, ... X,,) ~ NM(y, 1, p1,
P2 --- Pn), where X is the random count vector with »
random components, and y, 1, p1, pa, ... p, are the
parameters.

The distribution can be defined in terms of a simple
hierarchical model:

1. the random variable X, = Y X, follows a negative
binomial distribution: X, ~ NB(y, ),

2. the counts Xi, X, ... X, given that X, equals x,
follow a multinomial distribution: X [{X, = x,} ~
Multinom(x,, p1, po, ... pPn),

3. as a consequence, the probability of observing the
count vector x = (x1, X, ..., X,,) is:

Prob{X =} =
Prob{X, =x,} Prob{X =x | X, =x.} =
(e ) (o)) ot
1= .
I'(ryxy! \r+u r+u !

In one version of the algorithm (the ‘independent’
mode), for each hidden state there are n + 1 free parame-
ters that characterize a negative multinomial distribu-
tion. In another variant (the ‘dependent’ mode, which
was used in our analyses), there is only one r parameter
for all distributions. This reduces the total number of
emission parameters from k (m+1) to kn+1 (just one
more than in ChromHMM) and excludes unrealistic
models where different states have wildly different dis-
persion parameters. The update rules for the parameters

of the distribution in the Baum-Welch algorithm can be
found in Additional file 1: Section 3.

Implementation

EpiCSeg has been implemented as an R packages with
two main design goals in mind: ease of use and efficiency.
The interface is simple and familiar to the large bioinfor-
matics and statistics community using the R language. A
command-line interface is also available, for those users not
familiar with R. At the same time, most of the time-
consuming operations have been developed in C++, paral-
lelized with OpenMP [20] and interfaced with R using the
Repp package [21], which ensures efficiency and scalability
with the number of cores in shared-memory architectures.
Beside the functionalities shown in these analyses, such as
producing the genome-wide segmentation statistics,
EpiCSeg can also be used to learn the same set of states
across different datasets and to aggregate replicate ChIP-seq
tracks into one. EpiCSeg is available under the GPLv3
license at the website http://github.com/lamortenera/epicseg.
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The supervised annotation

The supervised annotation was made using the gene
annotation from GENCODE [16] and cell-type specific
RNA-seq and DNase I HS experiments following these
simplified steps (for the complete description see
Additional file 1: Section 4):

1. We considered only those 200 base pairs bins that do
not overlap any assembly gap.

2. For each bin, we counted the number of DNase I tags
and the average coverage of RNA-seq read pairs.

3. Based on the quantiles of the DNase and RNA counts
per bin, we defined a stringent and a permissive
threshold for RNA and a stringent threshold for DNase
read counts.

4. Bins with a count larger than the stringent DNAse
threshold were classified as DNase bins.

5. DNase bins were further split into DNase+TSS and
DNase-TSS bins (respectively, promoter and
enhancer environments), depending on the distance
from an annotated TSS.

6. Bins with a count larger than the stringent threshold
for RNA, smaller than the permissive threshold for
DNase, and far from the boundaries where these
two conditions start to hold, were classified as RNA
bins (transcription environment).

7. Bins that were not classified as RNA or DNase bins
and very far away from the boundaries where these
two conditions start to hold, were classified as
intergenic bins.

The robustness score

To measure how similar two segmentations are to each
other we used the average Jaccard index. The Jaccard
index between two sets A and B is the ratio between
the size of the intersection and the size of the union.
If |A| denotes the size of set A (in our setting, a
number of base pairs), the Jaccard index can be
expressed by the formula }‘: Sgl. Given two segmenta-
tions, and assuming that there is a one-to-one corres-
pondence between states, the average Jaccard index is
computed as follows:

1. for each state s consider the two sets of base
pairs I; and I,, defined as the bins where state s
occurs in segmentation 1 and 2 respectively

2. measure the Jaccard index J; between the two
sets, defined as J; = ‘|111181122|‘

3. as the final score, consider the average Jaccard index
J across all states ] = Z Js where |§| denotes the

seS ?’
number of states. S|

The one-to-one correspondence between states is chosen
as the one that maximizes the average Jaccard index.
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Additional file

Additional file 1. The Supplementary Material is provided as a .pdf
file and it contains additional figures and more detailed information
about the computational methods and the results.
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