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Abstract

We propose the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) method for prioritizing
single-guide RNAs, genes and pathways in genome-scale CRISPR/Cas9 knockout screens. MAGeCK demonstrates
better performance compared with existing methods, identifies both positively and negatively selected genes
simultaneously, and reports robust results across different experimental conditions. Using public datasets,
MAGeCK identified novel essential genes and pathways, including EGFR in vemurafenib-treated A375 cells
harboring a BRAF mutation. MAGeCK also detected cell type-specific essential genes, including BCR and ABL1,
in KBM7 cells bearing a BCR-ABL fusion, and IGF1R in HL-60 cells, which depends on the insulin signaling
pathway for proliferation.
Background
The clustered regularly interspaced short palindromic re-
peats (CRISPR)/Cas9 system is a revolutionary approach
for genome editing of mammalian cells [1,2]. In this sys-
tem, single-guide RNAs (sgRNAs) direct Cas9 nucleases
to induce double-strand breaks at targeted genomic re-
gions. The 5′ end of sgRNAs includes a nucleotide
sequence of around 20 nucleotides that is complementary
to the targeted region. When the double-strand breaks are
repaired by non-homologous end-joining (NHEJ), inser-
tions and deletions occur with high frequency, thus effi-
ciently knocking out the targeted genomic loci. The
recent development of a lentiviral delivery method has en-
abled the creation of genome-scale CRISPR/Cas9 knock-
out (or 'GeCKO') libraries targeting 102 to 104 genes.
These libraries allow both negative and positive selection
screening to be conducted on mammalian cell lines in a
cost-effective manner [3-6]. In CRISPR/Cas9 knockout
screens, each gene is targeted by several sgRNAs, and the
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mutant pool carrying different gene knockouts could be
resolved by high-throughput sequencing.
The genome-wide CRISPR/Cas9 knockout technology

shows greater promise compared with other loss-of-function
screen techniques such as RNA interference (RNAi), be-
cause it is able to knockout genes at the DNA level. How-
ever, the data generated by these screens pose several
challenges to computational analysis. First, studies are
often carried out with no or few replicates, which necessi-
tates a proper statistical model to estimate the variance of
the read counts and to evaluate the statistical significance
of comparisons between treatment and control samples.
The observed sgRNA abundance is highly variable in both
positive and negative selection experiments (Figure S1 in
Additional file 1), and is over-dispersed compared with a
Poisson sampling model. (This over-dispersion is similar
to the observations from other high-throughput sequen-
cing experiments such as RNA-Seq [7,8]). Second, as
different sgRNAs targeting the same gene might have
different specificities [9-11] and knockout efficiencies,
a robust method is needed to take these factors into ac-
count in the aggregation of information from multiple
sgRNAs (see Figure S2 in Additional file 1 for an example).
Third, depending on different screen libraries and study
designs, the read count distributions of the CRISPR/Cas9
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knockout screening experiments are different, as positive
selection often results in a few sgRNAs dominating the
total sequenced reads (Figure S3 in Additional file 1). This
calls for a robust normalization of the sequenced reads.
Several existing algorithms, although not specifically de-

signed for CRISPR/Cas9 knockout screens, can be used
to identify significantly selected sgRNAs or genes. For
example, edgeR [7], DESeq [8], baySeq [12] and NBPSeq
[13] are commonly used algorithms for differential
RNA-Seq expression analysis. These algorithms are
able to evaluate the statistical significance of hits in
CRISPR/Cas9 knockout screens, although only at the
sgRNA level. Algorithms designed to rank genes in
genome-scale short interfering RNA (siRNA) or short hair-
pin RNA (shRNA) screens can also be used for CRISPR/
Cas9 knockout screening data, including RNAi Gene
Enrichment Ranking (RIGER) [14] and Redundant siRNA
Activity (RSA) [15]. However, these methods are designed
to identify essential genes mostly from oligonucleotide
barcode microarray data, and a new algorithm is needed
to prioritize sgRNAs, as well as gene and pathway hits
from high-throughput sequencing data.
We developed a statistical approach called Model-

based Analysis of Genome-wide CRISPR/Cas9 Knockout
(MAGeCK) to identify essential sgRNAs, genes and path-
ways from CRISPR/Cas9 knockout screens. We use the
term 'essential' to refer to positively or negatively selected
sgRNAs, genes or pathways. MAGeCK outperforms exist-
ing computational methods in its control of the false
discovery rate (FDR) and its high sensitivity. MAGeCK? s
results are also robust across different sequencing depths
and numbers of sgRNAs per gene. Furthermore, using
public CRISPR/Cas9 knockout screening datasets, we
demonstrate that MAGeCK is able to perform both posi-
tive and negative selection screens simultaneously, and
identify biologically meaningful and cell type-specific es-
sential genes and pathways.

Results and discussion
Overview of the MAGeCK algorithm
A schematic of the MAGeCK algorithm is presented in
Figure 1. Briefly, read counts from different samples are
first median-normalized to adjust for the effect of library
sizes and read count distributions. Then the variance of
read counts is estimated by sharing information across
features, and a negative binomial (NB) model is used to
test whether sgRNA abundance differs significantly be-
tween treatments and controls. This approach is similar
to those used for differential RNA-Seq analysis [7,8,13].
We rank sgRNAs based on P-values calculated from the
NB model, and use a modified robust ranking aggregation
(RRA) algorithm [16] named α-RRA to identify positively
or negatively selected genes. More specifically, α-RRA as-
sumes that if a gene has no effect on selection, then
sgRNAs targeting this gene should be uniformly distrib-
uted across the ranked list of all the sgRNAs. α-RRA ranks
genes by comparing the skew in rankings to the uniform
null model, and prioritizes genes whose sgRNA rankings
are consistently higher than expected. α-RRA calculates
the statistical significance of the skew by permutation, and
a detailed description of the algorithm is presented in the
Materials and methods section. Finally, MAGeCK reports
positively and negatively selected pathways by applying
α-RRA to the rankings of genes in a pathway.

CRISPR/Cas9 knockout screen datasets
We examined three recently published CRISPR/Cas9
knockout screen experiments [3,4,6]. The first experi-
ment (or 'ESC dataset') performed negative selection on
mouse embryonic stem cells (ESCs) to screen for essen-
tial genes. The second experiment (or 'leukemia dataset')
[3] performed similar negative selection experiments on
the chronic myeloid leukemia cell line KBM7 and the
acute promyelocytic leukemia cell line HL-60. The controls
for these studies were cells before Cas9 activation. The
third experiment (or 'melanoma dataset') [4] was based on
one human melanoma cell line (A375), which harbors a
V600E mutation in the BRAF protein kinase gene. In this
study, positive selection was performed to identify genes
whose knockouts resulted in resistance to 7-day and 14-
day treatment with the BRAF inhibitor vemurafenib (PLX),
and the controls were cells treated with dimethyl sulfoxide
(DMSO).

MAGeCK outperforms other methods in detecting
significantly selected sgRNAs and genes
We compared MAGeCK with two different categories of
methods, including methods for statistical evaluation of
high-throughput sequencing read counts using NB models
(edgeR and DESeq), and methods originally designed for
ranking genes in genome-scale RNAi screens (RIGER and
RSA). A summary of the comparisons between MAGeCK
and these algorithms is presented in Table 1.
We first compared MAGeCK with edgeR and DESeq.

All three algorithms model the high variance of sgRNAs
with higher mean read counts (Figure S1 in Additional
file 1). The variance models of MAGeCK and DESeq are
similar, while edgeR has a lower variance estimation when
read counts are low. We also evaluated the FDR of differ-
ent algorithms by making comparisons between control
samples and between replicates of the treatment samples
in the ESC and melanoma datasets (there were no repli-
cated treatment samples in the leukemia dataset). Since
the CRISPR/Cas9 knockout system should show no differ-
ence in selection preference between control samples or
between replicated treatment samples, a good method
should not detect many significantly selected sgRNAs and
genes between these samples. MAGeCK identified fewer
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Figure 1 Overview of the MAGeCK algorithm. Raw read counts corresponding to single-guided RNAs (sgRNAs) from different experiments are
first normalized using median normalization and mean-variance modeling is used to capture the relationship of mean and variance in replicates.
The statistical significance of each sgRNA is calculated using the learned mean-variance model. Essential genes (both positively and negatively
selected) are then identified by looking for genes whose sgRNAs are ranked consistently higher (by significance) using robust rank aggregation
(RRA). Finally, enriched pathways are identified by applying the RRA algorithm to the ranked list of genes.
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significantly selected sgRNAs using the NB model than
edgeR and DESeq (see Section A of Supplementary mate-
rials in Additional file 1 for more details). The distribution
of the calculated P-values for all the sgRNAs approximates
a uniform distribution (Figure S4 in Additional file 1),
which indicates that our model controls the specificity for
comparisons where we expect no true positives.
Next we compared the performance of MAGeCK with
two RNAi screening algorithms, RIGER and RSA, at both
the sgRNA and gene level. MAGeCK ranks sgRNAs based
on the NB P-values, while the ranking of RIGER is based
on the signal-to-noise ratio. RSA ranks sgRNAs based on
their fold change between treatment and controls, but this
approach introduces bias towards sgRNAs with fewer read



Table 1 A comparison of MAGeCK with existing shRNA/siRNA screening methods: RIGER, RSA, edgeR and DESeq

Methods MAGeCK RIGER [14] RSA [15] edgeR [7] /DESeq [8]

sgRNA
ranking

Ranking method Negative binomial P-value Signal-to-noise ratio Fold change Negative binomial
P-value

Statistical evaluation Yes No No Yes

Number of samples
required in each category

1, prefer more At least 2 1 1

Bias towards sgRNAs with
smaller read countsa

No No Yes No

Gene
ranking

Ranking method Robust rank aggregation
P-value

Kolmogorov-Smirnov P-value Iterative hyper-geometric
P-value

Not applied to
gene ranking

Permutation Yes Yes No

FDRb Low Low High

Sensitivity in detecting
negatively selected genesc

High Low High

Robust against the number
of sgRNAs/gened

Yes No Yes

aEvaluated in Figure S5 in Additional file 1.
bEvaluated in Figure 2a and in Table S1 in Additional file 2.
cEvaluated in Figure 2a and in Table S1 in Additional file 2.
dEvaluated in Figure 5.
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counts (Figure S5 in Additional file 1). At the gene level,
RIGER? s sensitivity was lower, and it identified less than 30
significantly selected genes in all datasets, and missed
many of the essential genes (for example, ribosomal genes)
in two negative screening studies [3,6] (Figure 2a). RSA
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false positives when comparing controls or replicates
(Figure 2a; Table S1 in Additional file 2).
Finally, we compared the screening results from the

melanoma dataset with those from an independent study
which used pooled shRNAs to screen PLX-treated A375
cells [17]. We applied MAGeCK, RIGER and RSA to
both the CRISPR/Cas9 knockout screens and shRNA
screens and checked the consistency of the top-ranked
genes (Figure 2b). Although the overall consistency of genes
called from the different screens was low (fewer than 5%
overlap), MAGeCK always identified more consistent genes
than RIGER and RSA at different cutoffs. This shows that
MAGeCK can be used for both RNAi screens and CRISPR/
Cas9 knockout screens, and that MAGeCK identifies more
consensus hits between different screening technologies
than other methods (Table S2 in Additional file 2).

MAGeCK reports robust results with different sequencing
depths and different numbers of sgRNAs per gene
Both sequencing depth and the number of targeting sgRNAs
per gene affect the CRISPR/Cas9 knockout screening ex-
periment outcomes substantially. To study the effect of se-
quencing depth on performance, we randomly sampled
sequencing reads in one negative screening dataset (the
leukemia dataset) and one positive screening dataset (the
melanoma dataset), and used MAGeCK to identify signifi-
cantly selected sgRNAs and genes. We compared the
numbers of significantly selected sgRNAs and genes that
are identified for different numbers of down-sampled
reads (Figures 3 and 4; see Materials and methods for
more details). At the sgRNA level, less than 10% of the
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cause the reads corresponding to these sgRNAs dominate
the library population (Figure S7 in Additional file 1), and
the sequencing depth required to detect positively selected
sgRNAs is much less in the positive selection screens.
We next evaluated the performance of the different

algorithms after reducing the number of sgRNAs in a
CRISPR/Cas9 knockout screen. The leukemia dataset was
used since, on average, >10 sgRNAs were designed to tar-
get each gene. As the true essential genes are unknown, we
selected 168 'reference' genes that are consistently ranked
among the top 5% by all three methods using 10 sgRNAs/
gene. We then tested whether the algorithms can detect
these 'reference' genes using fewer sgRNAs (Figure 5; see
Materials and methods for more details). Both MAGeCK
and RSA detected more reference genes than RIGER, and
could still identify over 80% of these 'reference' genes with
four to six sgRNAs per gene (Figure 5). This suggests that
when there are fewer sgRNAs available for some genes,
MAGeCK and RSA can still make robust calls.
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MAGeCK identifies known and novel biologically
interesting genes and pathways
We applied MAGeCK to the original CRISPR/Cas9 knock-
out screen studies to identify positively and negatively se-
lected genes and pathways. Genes in pathways from the
KEGG (Kyoto Encyclopedia of Genes and Genomes) and
REACTOME databases were evaluated for pathway en-
richment (Tables S3 to S10 in Additional file 2; Tables S11
to S18 in Additional file 3). In the leukemia and ESC
CRISPR/Cas9 knockout screen studies, negatively selected
genes were enriched in many fundamental pathways
(Tables S9 and S10 in Additional file 2; Tables S10 to S14
in Additional file 3) [3,6]. Pluripotency genes and genes
that are well known to be essential for ESC proliferation were
also negatively selected, consistent with the observations
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eral new positively selected genes (Table 2), such as
CDH13 (FDR = 1.7e-2, ranked 9th out of 17,419) and
PPT1 (FDR = 8.5e-2, ranked 14th out of 17,419). Loss-
of-function mutations of PPT1 cause neuronal ceroid
lipofuscinosis and are resistant to apoptosis induction
[3-6,19]. CDH13, a tumor suppressor that negatively
regulates cell growth, is frequently hyper-methylated
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Table 2 Significant positively (and negatively) selected genes and pathways that have experimental support in
different comparisons

Dataset Comparisons Direction Genes or pathways FDR Rank Experimental
support

Leukemia HL-60, KBM7, treatment
versus control

Positive MAP4K3 0.14 9 [22]

EPM2A 0.14 10 [23]

Negative KEGG: ribosome 4.71E-4 1/181 [3]

HL-60 versus KBM7 Negative IGF1R 1.98E-3 1 [30]

KBM7 versus HL-60 Negative BCR 1.60E-3 7 [31]

ABL1 1.98E-3 18

KEGG: chronic myeloid leukemia 9.00E-4 6/181

Melanoma PLX treatment versus
control (14 days)

Positive CDH13 0.017 9 [20,21]

PPT1 0.085 14 [19]

NF1, NF2, MED12, CUL3, TADA1, TADA2B <0.031 11 (max) [4]

Negative RREB1 0.050 1 [25,26]

PLX treatment versus
control (7 days)

Positive NF1, NF2, MED12, CUL3, TADA1, TADA2B <0.030 26 (max) [4]

Negative EGFR 0.025 6 [28,29]

REACTOME: SHC1 events in EGFR signaling 0.069 1/676

REACTOME: signaling by constitutive active EGFR 0.069 2/676

DMSO treatment 14 days
versus 7 days

Negative KEGG: oxidative phosphorylation 3.30E-3 2/181 [18]

ESC ESC versus plasmid Positive TRP53 0.010 1 [24]

Negative KEGG: ribosome 2.83E-4 1/181 [6]

NANOG, POU5F1, RAD51, BRCA1 <0.016 217 (max)

For other top ranked genes, see Tables S3 to S10 in Additional file 2 and Tables S10 to S18 in Additional file 3.

Li et al. Genome Biology 2014, 15:554 Page 7 of 12
http://genomebiology.com/2014/15/12/554
and contributes to tumorigenesis in melanoma, lung and
colorectal cancers [7,8,20,21]. Interestingly, these cancers
often harbor a BRAF V600E mutation that can be treated
with the BRAF inhibitor PLX, and this mutation is also
present in the melanoma cell line used in this CRISPR/
Cas9 knockout screen. Our results imply that tumor pa-
tients harboring BRAF V600E mutations might have sub-
optimal response to PLX treatment if their tumors have
CDH13 hypermethylation.

MAGeCK allows bi-directional screening and
cell-type-specific screening
Although the original leukemia and ESC studies are nega-
tive screens and the melanoma study is a positive screen,
MAGeCK is also able to perform bi-directional analysis
to search for both positively and negatively selected genes
simultaneously. This functionality allows MAGeCK to gain
biological insights beyond the original screen design. For ex-
ample, MAGeCK identified several positively selected genes
from both negative-selection screens (the leukemia and ESC
datasets), and negatively selected genes in the positive-
selection screen (the melanoma dataset) (Table 2; Tables S4
and S8 in Additional file 2; Table S12 in Additional file 3).
In the leukemia dataset, MAGeCK identified 23 positively
selected genes, whose knockout induces cell proliferation.
They include MAP4K3 (FDR = 0.14, ranked 9th out
of 7,115), a tumor suppressor kinase in the mitogen-
activated protein kinase (MAPK) pathway which induces
apoptosis [9-11,22], and EPM2A (FDR = 0.14, ranked 10th
out of 7,115), another protein phosphatase that negatively
regulates cell cycle progression [7,23]. From the ESC data-
set, TRP53, a mouse ortholog of the human TP53 tumor
suppressor gene [8,24], was ranked first out of the three
positively selected genes identified. The negative regulator
functions of these genes are consistent with our results
that knocking them out confers a selective advantage for
cell growth. From the melanoma dataset, MAGeCK only
identified one negatively selected gene, RREB1, in the
14-day PLX treatment. RREB1 (FDR = 0.05, ranked 1st
out of 17,419) is a transcription factor and a downstream
activator in the RAS-RAF signaling pathway [12,25,26],
which is closely related to the BRAF mutation found in
A375 cells [13,27]. Interestingly, MAGeCK also found
EGFR (FDR = 0.025, ranked 6th out of 17,419) and its as-
sociated pathways to be negatively selected in the 7-day
PLX-treated samples, implying that PLX-treated cells are
more dependent on EGFR. Our finding is consistent with
recent studies linking ectopic EGFR expression in melan-
oma cells to PLX resistance [14,28] and with the improved
efficacy of BRAF and EGFR combination inhibition in
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colorectal cancer cells with the BRAF V600 mutation
[15,29].
Finally, we applied MAGeCK to identify cell type-

specific essential genes and pathways that differ between
the chronic myeloid leukemia cell line KBM7 and the
acute promyelocytic leukemia cell line HL-60, which are
part of the leukemia dataset [3,7,8,13] (Tables S15 to
S18 in Additional file 3). MAGeCK identified the KEGG
'chronic myeloid leukemia' pathway as essential in KBM7
(FDR = 9.00e-4, ranked 6th out of 181), correctly distin-
guishing the cell type differences between KBM7 and
HL-60. At the gene level, IGF1R (FDR = 1.98e-3, ranked
1st out of 7,115) was found to be specifically essential in
HL-60, which is consistent with the observation that an
IGF1R inhibitor reduces proliferation and induces apop-
tosis in HL-60 cells [16,30]. In addition, MAGeCK identi-
fied BCR (FDR = 1.60e-3, ranked 7th out of 7,115) and
ABL1 (FDR = 1.98e-3, ranked 18th out of 7,115) as specif-
ically essential in KBM7, which is consistent with the pres-
ence of the BCR-ABL fusion in this cell line [3,4,6,31]. The
ability of MAGeCK to identify cell type-specific essential
genes will be very useful as more CRISPR/Cas9 knockout
screening data become publicly available.

Conclusions
The recently developed genome-scale CRISPR/Cas9 knock-
out screening technology is a promising tool to select
essential genes in mammalian cells. We developed a
computational algorithm MAGeCK to reliably identify
essential sgRNAs, genes and pathways from CRISPR/
Cas9 knockout screens. Compared with existing algo-
rithms that use high-throughput sequencing counts (for
example, edgeR, DESeq and baySeq) or RNAi screens (for
example, RIGER and RSA) to detect significantly selected
sgRNAs and genes, MAGeCK has high sensitivity and a
low FDR. It is also robust to different sequencing depths
and different numbers of sgRNAs targeting each gene,
which will allow more cost-effective CRISPR/Cas9 knock-
out screening experiments to be performed.
MAGeCK yielded novel biological insights from the re-

analysis of three public CRISPR/Cas9 knockout screening
datasets. It identified biologically meaningful essential
genes and pathways that were missed in the original stud-
ies, and found cell type-specific essential genes by compar-
ing CRISPR/Cas9 knockout screens from different cell
types. We also demonstrated MAGeCK? s ability to simul-
taneously identify genes under both positive and negative
selection in one dataset. This allowed us to explore new
features beyond the original CRISPR/Cas9 knockout
screen design, for example, to identify new drug response
genes and potential combination therapies (for example,
EGFR in BRAF mutated cancer cells).
Taken together, our results demonstrate that MAGeCK

is a useful tool for the computational analysis of CRISPR/
Cas9 knockout screens, although our evaluation is based
on the limited number of public datasets (and replicates)
that are currently available. The mean-variance model of
MAGeCK fits the data slightly better than DESeq and
edgeR in these datasets, and the MAGeCK algorithm may
be further improved as more public CRISPR/Cas9 knock-
out screening datasets accumulate in the public domain.
CRISPR/Cas9 knockout screens that target non-coding
regions (for example, long non-coding RNAs, enhancers,
microRNAs) will be more challenging, as the number of
targeting sgRNAs that can be designed is limited. It is
likely that it will be possible to further improve MAGeCK? s
algorithm by considering additional factors that may affect
the experimental outcome, such as the sequence context
and the knockout efficiency of each sgRNA.

Materials and methods
The MAGeCK algorithm
MAGeCK is designed to identify positively and negatively
selected sgRNAs and genes in genome-scale CRISPR/
Cas9 knockout experiments. It consists of four steps: read
count normalization, mean-variance modeling, sgRNA
ranking and gene ranking.

Read count normalization
Suppose there are N CRISPR/Cas9 knockout screening
experiments performed on a set of M sgRNAs, and the
read count of sgRNA i in experiment j is xij, 1 ≤ i ≤M,
1 ≤ j ≤N. Since the sequencing depths (or library sizes)
differ between experiments, we adjust read counts by ap-
plying the 'median ratio method' [3,8] to all experiments.
More specifically, the adjusted read count x

0
ij is calcu-

lated as the rounded value of xij/sj, where sj is the size
factor in experiment j and computed as the median of
all size factors calculated from individual sgRNA read
counts:

sj ¼ mediani
xij
x̂i

� �
ð1Þ

where x̂i is the geometric mean of the read counts of

sgRNA i : x̂i ¼
QN

k¼1xik
� �1=N

.

Mean-variance modeling
To estimate the statistical significance of sgRNA abundance
changes between conditions, we need to estimate the vari-
ance of the read counts within one condition (typically the
control samples). Ideally, the variance can be estimated if
there are enough replicates in one condition (for example,
the approach used in SSMD [4,32]). However, the number
of replicates is usually limited. We adopted the approaches
used in edgeR [3,6,7] and DESeq [8,17] to model the vari-
ance. More specifically, we assume that the variance is a
smooth function of the mean, and this function can be
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inferred using the mean and variance values of all sgRNAs.
The simplest model is the Poisson model, which implies
that the variance is equal to the mean. In many next-
generation sequencing applications, however, the observed
sample variance is substantially higher than the sample
mean (over-dispersion) and the Poisson model substantially
underestimates the true variance (Figure S1 in Additional
file 1). To account for this over-dispersion, we assume the
sample variance σ̂ 2ð Þ and sample mean μ̂ð Þ satisfy the fol-
lowing empirical equation:

σ̂ 2 ¼ μ̂ þ kμ̂b ð2Þ
or

log σ̂ 2−μ̂
� � ¼ log kð Þ þ b log μ̂ð Þ; k≥0; b≥0 ð3Þ

This approach plugs in a consensus value for the indi-
vidual sgRNA variances, thus effectively borrowing infor-
mation between sgRNAs with similar read counts. To
estimate the values of k and b, we calculate the sample
mean μ̂ð Þ and variance σ̂ 2ð Þ for each sgRNA normalized
read count, and perform linear regression on y ¼ log
σ̂ 2−μ̂ð Þ against x ¼ log μ̂ð Þ. Finally, the parameters of the
NB distribution can be determined from μ̂ and σ̂ 2 using
the method of moments approach. More specifically, the
parameters of the NB distribution NB(r, p) are calculated
as:

p ¼ 1−
μ̂

σ̂ 2

r ¼ μ̂2

σ̂ 2−μ̂

The above approach can be summarized as follows:
sgRNA read counts are generated from a NB distribution,
and the parameters of the NB distribution (that is, the
mean and variance) for individual sgRNAs are determined
by an empirical distribution in Equation 2. Note that simi-
lar models have been used in RNA-Seq differential expres-
sion tools (for example, edgeR [3,6,7] and DESeq [8,18])
to capture the mean and variance relationship of RNA-
Seq read counts.
We also compared our mean-variance model with the

model used in edgeR [4,7] and DESeq [8] (Figure S1 and
Supplementary materials in Additional file 1). In edgeR
(and later versions of DESeq), the variance is primarily
determined by the squared mean (b = 2 in Equation 2)
and only one parameter (k) needs to be estimated from
the data. In the original DESeq paper, the variance is de-
termined by the smoothed function f of the mean, where
f is learned empirically from the data. (Notice that f does
not have to be a quadratic function, as the NB assumption
is not used in this step). The edgeR model using a com-
mon disperion value has a better fit for the variances for
samples with larger μ but underestimates the variance for
samples with smaller μ (Figure S1 in Additional file 1).
This increases the number of significant selected sgRNAs
for smaller μ where the variance estimates are less reliable.
(Note that different normalization methods may also
affect the performance of different algorithms; see Section
B of Supplementary materials in Additional file 1 for more
details).

sgRNA test and ranking
In this step, we test whether the read count difference of
each sgRNA in two conditions (for example, in CRISPR/
Cas9-treated samples versus control samples) is signifi-
cant. We assume that the read count xiA of sgRNA i in
condition A follows a NB distribution:

xiA eNB μiA; σ
2
iA

� �
where μiA and σ2iA are the mean and variance of the NB
distribution, respectively. σ2iA is adjusted using the mean-
variance model learned from the previous step.
For a set of read counts of sgRNA i with replicates in

two conditions A and B, we would like to test whether
the read count is significantly different between the con-
ditions. We first calculate the mean μiA and adjusted
variance σ2

iA of condition A (typically the control condi-
tion) using the mean-variance model. After that, for the
mean of read counts μiB of sgRNA i in condition B, we
calculated the tail probability that the null NB distribu-
tion generates a read count that is more extreme than
μiB:

p ¼

X
x>μiB

NBðx μiA; σ
2
iA

�� �
; μiB > μiAX

x<μiB
NB x μiA; σ

2
iA

�� �
; μiB < μiA

�
8><
>:

ð4Þ
Where NB x μiA; σ

2
iAÞ

���
is the probability mass function

(PMF) of a read count x from the NB distribution with
mean μiA and variance σ2iA . This is the statistical signifi-
cance of sgRNA i in two conditions. We provide two
one-sided P-values to test whether sgRNA is positively
selected (μiB > μiA) or negatively selected (μiB < μiA).
If there are no replicates in condition A, we estimate

the mean and variance from all samples (in conditions A
and B). This approach assumes that the majority of the
sgRNAs have no effect on selection, which may not be
true in some scenarios. Consequently, if there are no
replicates, MAGeCK may be less sensitive as it overesti-
mates the variance in one condition.

Gene test and ranking using modified robust rank
aggregation (α-RRA)
A gene is considered essential if many of the sgRNAs
targeting this gene rank near the top of the sgRNA list.
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To identify genes with a significant fraction of sgRNAs
ranked near the top of the sgRNA list, which is sorted
by NB P-values, we employed the RRA algorithm pro-
posed by Kolde et al. [16]. Suppose M sgRNAs are in-
cluded in the experiment, and R = (r1, r2, …, rn) is the
vector of ranks of n sgRNAs targeting a gene (n < < M,
ri ≤M where i = 1, 2, …, n). We first normalize the ranks
into percentiles U = (u1, u2, …, un), where ui = ri/M (i = 1,
2, …, n). Under null hypotheses where the percentiles fol-
low a uniform distribution between 0 and 1, the kth smal-
lest value among u1, u2, …, un is an order-statistic which
follows a beta distribution B(k, n, + 1 − k). RRA computes
a P-value ρk for the kth smallest value based on the
beta distribution. The significance score of the gene, the
ρ value, is defined as ρ =min(p1, p2, …, pn).
We note that, when the sgRNAs targeting a gene con-

centrate in the middle of the sgRNA ranked list (that is,
they have no effect on selection), RRA also computes a
significant P-value for that gene and introduces false
positives. This is because the assumption of uniformity
is not necessarily satisfied in real applications. This is
also a limitation of the frequently used Kolmogorov-
Smirnov (KS) test. To solve this problem, we modified
RRA by redefining the ρ value as follows. We first select
the top ranked α% sgRNAs if their negative binomial
P-values are smaller than a threshold (for example, 0.05).
If j of the n sgRNAs targeting a gene are selected, then the
modified ρ value is defined as ρ =min(p1,p2, …, pj), where
j ≤ n. The modified RRA method, named α-RRA, can effi-
ciently remove the effect of insignificant sgRNAs in the
assessment of gene significance.
To compute a P-value based on the ρ values, we per-

formed a permutation test where the sgRNAs are randomly
assigned to genes (the numbers of sgRNAs targeting each
gene remain unchanged). By default, 100 × ng permutations
are performed, where ng is the number of genes. We then
compute the FDR from the empirical permutation P-values
using the Benjamini-Hochberg procedure [33].

Pathway test and ranking using α-RRA
We tested the enrichment of pathways based on the rank-
ings of the genes using α-RRA, using the same approach
we used to test genes. The pathway annotations include
the KEGG canonical pathways [34] (181 pathways) data-
base and the REACTOME pathway database [35] (676
pathways). We downloaded the annotations from GSEA
MSigDB version 4.0 [36].

Computational evaluation
Running RIGER
RIGER was originally designed to identify essential genes
in genome-scale shRNA screens using microarray tech-
nology [14]. To accommodate the input requirements of
RIGER, we median-normalized (the same as the first
step of MAGeCK) and log2 transformed read counts from
CRISPR/Cas9 knockout screens. We ran the latest version
of RIGER (0.1 beta) as specified in the paper [14] and web-
site [37]. Default RIGER parameters were used in all ex-
periments, except that we set the number of permutations
to 100,000 to get a more precise P-value. The results were
ranked by the P-values of the genes.

Running RSA
RSA is an algorithm to rank essential genes based on the
activity of siRNA knock-downs [15]. RSA ranks siRNAs by
their fold enrichment. To accommodate the input require-
ments of RSA, we median-normalized the read counts
from the CRISPR/Cas9 knockout screens (the same as the
first step of MAGeCK). We defined the fold enrichment
for each sgRNA as (Mean read counts in treatment sam-
ples)/(Mean read counts in control samples). We down-
loaded the latest version of RSA (v1.3) from the website
[38]. For the negative selection experiments, we used the
default parameters. For the positive selection experiments,
we used the following parameters: -r (reverse picking), -u
1.0e8 (the upper bound of fold enrichment), -l 1 (the lower
bound of fold enrichment).

Running edgeR and DESeq
We downloaded the latest versions of edgeR (v3.6.2) and
DESeq (v1.16.0) from R Bioconductor [39]. When there
were multiple replicates for one condition, we ran both
DESeq and edgeR with default parameters. For edgeR, we
estimated the common dispersion (using the estimate-
CommonDisp() function), and then estimated the tag-wise
dispersion (using the estimateTagwiseDisp() function), as
is indicated by the manual. If there were no replicates in
one condition, we passed the following parameters to the
dispersion estimation function in DESeq: method = 'blind'
(ignore sample labels by treating all samples as replicates),
sharingMode = 'fit-only'(use only the fitted values as the
dispersion values), fitType = 'local' (use the local fit func-
tion as is described in the DESeq paper). For edgeR, we
only estimated the common dispersion (using the estima-
teCommonDisp function).

sgRNA down-sampling
In the leukemia dataset, each gene was targeted by 10 pre-
designed sgRNAs (ribosomal genes are targeted by >30
sgRNAs). This dataset allowed us to compare MAGeCK
with RIGER and RSA by using fewer targeting sgRNAs
per gene. Using this dataset, we down-sampled the num-
ber of sgRNAs per gene to 10, 8, 6, 4, 2 and compared the
results of the three algorithms. For evaluation, we used
each algorithm to identify the same number of top-ranked
(5%) genes separately using all sgRNAs. The intersection
of these three lists of top-ranked genes yielded 188
genes, which we used as 'reference' genes to evaluate the
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performance of the different methods using fewer sgRNAs
per gene.

Sequencing read down-sampling
We down-sampled the sequencing depth to evaluate the
performance of MAGeCK. Initially we down-sampled
reads to the minimum sequencing depth of all of the
samples in each dataset (32 million in the leukemia data-
set and 17.5 million in the melanoma dataset). Subse-
quently, we sampled different numbers of reads and
evaluated the performance of MAGeCK.

Running on RNAi screening data
The pooled shRNA screen was performed in a previous
study to identify genes whose knockdown confers resist-
ance to PLX in A375 cells [17]. The screening results of
RIGER were provided in the original paper, and we ran
both MAGeCK and RSA from the shRNA rankings pro-
vided by RIGER. For MAGeCK, we provided the rank-
ings of the shRNA to the RRA algorithm in MAGeCK
with the threshold (α) set to be 0.05.

Availability
The source code of MAGeCK is freely available at [40]
under the 3-clause Berkeley Software Distribution (BSD)
open-source license.
The datasets used in this paper, including the leukemia,

melanoma and ESC datasets, are presented in Additional
file 4.
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Additional file 3: Tables S11 to S18.

Additional file 4: Raw read counts of the leukemia, melanoma and
ESC datasets.
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