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OPINION
Toward better benchmarking: challenge-based
methods assessment in cancer genomics
Paul C Boutros1,2,3, Adam A Margolin4,5, Joshua M Stuart6, Andrea Califano7 and Gustavo Stolovitzky8*
Abstract

Rapid technological development has created an
urgent need for improved evaluation of algorithms for
the analysis of cancer genomics data. We outline how
challenge-based assessment may help fill this gap by
leveraging crowd-sourcing to distribute effort and
reduce bias.
‘competition-based’) method assessment is an increas-
Computational biology comprises three inter-connected
activities: algorithm development, validation through
benchmarking, and application. In the biomedical sci-
ences, benchmarking occupies a central and indispens-
able role as it maps algorithms from the space of
theoretical possibilities to the realm of practical value.
Critically, this process attributes specific probabilities
to an algorithm’s discovery of biologically relevant
knowledge (measured by the sensitivity of the algo-
rithm) while not overwhelming the researcher with
incorrect predictions (quantified by the algorithm spe-
cificity). Benchmarking is, however, a complex task, re-
quiring the creation of comprehensive gold standards
and the design of sophisticated validation strategies
that may require additional experimental data. Indeed,
as the use of computational methods in biomedical
research becomes widespread, the need for appropriate
benchmarking projects, especially those involving commu-
nity participation, is substantially growing (Table 1). In
particular, the rapidly increasing size of whole-genome
molecular profile datasets from large sample repositories
underscores the importance of benchmarking; it has be-
come virtually impossible to validate algorithmic predic-
tions that are based on such large datasets systematically.
Benchmarking is not a matter of simply running a few

algorithms on a few datasets and comparing the results.
Drawing generalizable conclusions from the exercise
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requires significant care in design and execution. The
maturity of bioinformatics as a discipline has been
greatly advanced by the adoption of key principles that
guide robust method evaluation, including evaluator ob-
jectiveness (lack of bias), clearly defined scoring metrics
that align with real-world goals, and the public release of
gold-standard datasets and of the results and code of
prediction algorithms. Challenge-based (also known as

ingly popular mechanism for benchmarking [1,2]. In this
type of study an impartial group of scientists organizes a
‘challenge’ that is based on a carefully curated dataset.
This dataset is typically split into a training dataset, a
validation dataset (which might be used in real-time
leaderboards, typically implemented as a table that re-
ports the comparative performance of the methods
under development), and a gold standard (or test) data-
set that is withheld from challenge participants and used
for final evaluation (Figure 1). Following algorithm de-
velopment on the training dataset and real-time feed-
back to participants based on the validation dataset and
reported in the leaderboard, the challenge organizers
can objectively evaluate the quality of final submitted
predictions using a gold-standard dataset. Such a design
closely reflects the actual difficulties faced by real-world
users trying to determine whether an algorithm general-
izes to unseen cases.
When flawed, benchmarking can lead to the emer-

gence of suboptimal standards that may be applied to
many large datasets, imposing an immense cost to the
community and creating misleading results. Conversely,
the acceptance of knowledge without robust benchmark-
ing can lead to the adoption of inaccurate conventions.
For example, during the 1990s, it was generally accepted
that the number of loci coding for proteins in the hu-
man genome was 100,000, a number that was based on
unverified hypotheses [3]. When the human genome was
finally sequenced in 2000, the total number of coding
loci was found to be a factor of 5 lower. Similarly, a de-
sign error in the early implementation of the GC Robust
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Table 1 Non-comprehensive list of important and current challenge efforts and platforms

Challenge Scope Assessment type Organizers Website

Assemblathon1&2 Sequence assembly Objective scoring UC Davis Genome Center http://assemblathon.org/

CAFA Protein function
prediction

Objective scoring Community collaboration http://biofunctionprediction.org/node/8

CAGI Systems biology Objective scoring UC Berkley/University of
Maryland

http://genomeinterpretation.org/

CAPRI Protein docking Objective scoring Community collaboration http://www.ebi.ac.uk/msd-srv/capri/

CASP Structure prediction Objective scoring Community collaboration http://predictioncenter.org/

ChaLearn Machine learning Objective scoring ChaLearn Organization
(non-for profit)

http://www.chalearn.org/

CLARITY Clinical genome
interpretation

Objective scoring and
evaluation by judges

Boston Children’s Hospital http://www.childrenshospital.org/research-
and-innovation/research-initiatives/clarity-
challenge

DREAM Network inference
and systems biology

Objective scoring Community collaboration &
Sage Bionetworks

https://www.synapse.org/#!Challenges:
DREAM

FlowCAP Flow cytometry
analysis

Objective scoring Community collaboration http://flowcap.flowsite.org/

IGCG-TCGA DREAM
Somatic Mutation Calling

Sequence analysis Objective evaluation Community collaboration &
Sage Bionetworks

https://www.synapse.org/#!Synapse:
syn312572

IMPROVER Systems biology Objective evaluation and
crowd-verification

Phillip Morris International https://sbvimprover.com/

Innocentive Topics in various
industries

Objective scoring and
evaluation by judges

Commercial platform http://www.innocentive.com/

Kaggle Topics in various
industries

Objective scoring and
evaluation by judges

Commercial platform http://www.kaggle.com/

RGASP RNA-seq analyses Objective scoring European Bioinformatics
Institute

http://www.gencodegenes.org/rgasp/

Sequence Squeeze Sequence
compression

Objective scoring and
evaluation by judges

Pistoia Alliance http://sequencesqueeze.org/

X-Prize Technology Evaluation by judges X-Prize Organization
(non-for-profit)

http://www.xprize.org/

The challenges were chosen based on relevance to cancer genomics or the representativeness of a type of challenge. Different challenges specialize in specific
areas of research (see ‘Scope’), and may use different assessment types such as objective scoring against a gold standard, evaluation by judges, or community
consensus (‘crowd-verification’). Organizers can be researchers from specific institutions (such as universities or hospitals), a group of diverse researchers from
academia and industry collaborating in the challenge organization (community collaboration), not-for-profit associations, or commercial platforms that run challenges as their
business model (such as Innocentive and Kaggle). Initiatives such as CAFA, CAGI, CAPRI, CASP, ChaLearn, DREAM, FlowCAP and IMPROVER organize several challenges each
year, and only the generic project is listed in this table, with the exception of DREAM, for which we also show the IGCG-TCGA DREAM Somatic Mutation Calling Challenge
because of its relevance to this paper. More information about these efforts can be found on the listed websites.
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Multi-Array (GCRMA) algorithm, which was revealed
by systematic benchmarking of network reconstruction
analyses, may have led to the publication of thousands
of papers that contain incorrect mRNA abundance pro-
files before the error was detected and corrected [4]. As
a third example, in 2006, a group of Duke University re-
searchers published a pair of high-impact papers claim-
ing accurate prediction of the prognosis of lung cancer
patients and of chemotherapy-sensitivity in lung, breast
and ovarian cancers. Attempts to reproduce those claims
ensued almost immediately, with most of the results fall-
ing short of replication because of a combination of pro-
gramming and data-entry errors, and possible fraud [5].
Proper objective benchmarking by a neutral third-party on
private validation data helps to resolve quickly or to detect
many of the issues associated with these kinds of studies.
One concern in algorithm benchmarking and validation
is that computational biology algorithms are often devel-
oped and evaluated by the same researchers. This creates
an inherent conflict of interest, where objective assessment
of accuracy is polluted by the fact that the developers be-
come simultaneously judge, jury and executioner of the val-
idity of their own work. This can result in biases in study
design and over-optimistic performance estimates, whether
intentional or unintentional [6]. For instance, the use of
non-blinded data in the evaluation by methods developers
of their own protein structure prediction methods led, in
the early’ 80s, to the false belief that protein structure pre-
diction was essentially a solved problem. Not until 1994,
when double-blinded data were used in the first Workshop
on the Critical Assessment of Protein Structure Prediction
(CASP), was a very different picture revealed [7].
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Figure 1 Typical design of a crowd-sourced challenge. A dataset is split into a training set, a validation (or leaderboard set) and the test set
(or gold standard). Participants have access to the challenge input data and the known answers for just the training set. For the validation and
test sets only, the challenge input data are provided but the answers to the challenge questions are withheld. In the challenge open phase,
participants optimize their algorithms by making repeated submissions to predict the validation set answers. These submissions are scored and
returned to the participants who can use the information to improve their methods. In the final evaluation phase, the optimized algorithms are
submitted and evaluated against the final test set (the gold standard), and the resulting scores are used to compute the statistical significance
and the ranking of the participating algorithms.
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Challenge-based benchmarking efforts, such as CASP
[8-10], CAFA [11] and DREAM [12,13], among others
(Table 1), offer a robust framework for algorithm
evaluation. These efforts have proven the value of en-
gaging both active challenge leaders and motivated al-
gorithm developers to improve their work in a forum
that has high visibility and rapid feedback.
We believe that challenge-based methods assessment

will play an increasingly important role in standardizing
and optimizing the analysis of cancer genomics data,
and its broader adoption will drive progress in both
algorithm development and biological discovery. Con-
versely, failing to exploit challenge-benchmarking as a
fundamental validation methodology for cancer genom-
ics algorithms may result in lost opportunities to trans-
late results derived from best-in-class methods into
patient care.
Here, we provide our perspective on the growing use

of challenge-based methods to benchmark algorithms in
cancer genomics. We outline the different types of prob-
lems faced and some of the key considerations that need
to be explored to determine whether a challenge might
be successful, and to provide suggestions for challenge
organization and execution. Finally, we look to the fu-
ture and consider how challenge-based assessment may
change in the coming decade.
Challenge design and dynamics
Over the past few years, an established challenge-based
design paradigm has emerged in which portions of a pri-
vate (that is, not globally released) dataset are made pub-
licly available according to a predefined schedule. Such a
dataset provides increased user engagement based on
continuous feedback; an opportunity for participants to
refine and improve their methods on the basis of results
obtained throughout the challenge; and multiple inde-
pendent rounds of validation, which can be used to as-
sess the consistency and robustness of results. After the
initial training dataset is made publicly available, a real-
time leaderboard can be generated in which the per-
formance of different algorithms is evaluated against a
withheld private portion of the data (Figure 1). Previous
research has shown that the provision of real-time feed-
back is among the most important factors in ensuring
user engagement in crowd-sourcing projects [14]. (Here,
we use the term crowd-sourcing in the sense that a com-
munity of tens to hundreds of researchers are engaged
in working on the same problem. In other contexts,
crowd-sourcing activities may engage different numbers
of participants.) After a period of time in which several
iterations of the leaderboard can be posted, one of the
participating groups is declared the best performer in
this initial phase of the challenge, either on the basis of
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their position on the leaderboard or because they were the
first to reach some pre-specified performance level. The
challenge may include multiple rounds of assessment based
on different portions of the private data. A final round is
typically invoked in which methods are rated against a
withheld evaluation dataset to determine the overall chal-
lenge winner (Figure 1). The most robust validation set
is often reserved for this final evaluation - often with
larger sample size, newly generated data or prospective
validation designed on the basis of challenge results.
Each participating team submits a small number (for
example, one to five) of independent predictions made
by their algorithm(s), which are scored and ranked to
determine a winner. Finally, the public release of all of
the data kept private throughout the challenge, along
with the predictions and ideally source code from each
group, provides a long-term resource to spur further
development of new and improved methods.
The collection of algorithm source code allows de-

velopers to share insights that promote future im-
provements. If required as part of the final submission,
this code can also be used to ensure objective scoring
and verification of reproducibility. In the 2012 Sage
Bionetworks-DREAM Breast Cancer Prognosis Chal-
lenge, participants were required to submit their
models as open source R-code [15] that was visible to
all participants and executed by an automated system
to generate the results reported on the leaderboard.
This was enabled by Synapse [16], a software platform
that supports scientific challenges as well as large dis-
tributed collaborations, such as those in the TCGA
Pan-Cancer consortium [17]. Planned challenges, such as
the RNA-seq follow-up to the ICGC-TCGA DREAM Som-
atic Mutation Calling (SMC) Challenge, are considering the
use of cloud-computing solutions to provide a central com-
puting facility and a harness upon which contestant code is
directly run. This will inherently force the deposition of
complete analysis workflows, which can be run routinely
on new datasets. Further, this approach would help to
standardize application programming interfaces and file
formats, such that multiple algorithms use similar inputs
and produce easily comparable outputs. This vision of
interoperability is shared by many practitioners in the field
and has most recently been championed by the Global
Alliance for Genomics And Health [18].
Several criteria should be used to help participants

limit over-fitting to the training data. Over-fitting is a
known peril in statistics, occurring when a predictive
model has enough flexibility in its parameters that
optimization effectively leads to ‘memorization’ of the
training data and an inability to generalize to unseen
cases. The most common way to help participants avoid
over-fitting, while enabling the testing of their models,
is to provide leaderboard scoring that is based on a
subset of the private dataset, optimally a subset that is
not used in the final evaluation. The latter condition is
sometimes not feasible (for example, when the number
of patients available to predict clinical outcomes is lim-
ited), in which case the leaderboard will be based on
data that are also used for the final scoring. If this is
the case, limiting the number of submissions can re-
duce over-fitting.
While most challenges share some common design

principles, each research area has its own unique charac-
teristics that require customized experimental designs
and consideration of risks and benefits. Indeed, the util-
ity of organizing a challenge to help advance a particular
research area depends on a balance between challenge-
based benchmarking advantages and limitations, as well
as consideration of the potential barriers for participa-
tion (Table 2). In the sections below, we highlight three
research areas in which rapid development of new algo-
rithms has led to a concomitant need for benchmarking:
accurate identification of tumor-specific genomic alter-
ations, association of clinical data with genomic profiles
(that is, biomarkers) and identifying network-biology
features that underlie cancer phenotypes.

Analyzing genome assembly and structural variants
Technologies for identifying cancer-related somatic alter-
ations from genomic or transcriptomic data are advancing
extremely rapidly. In only 6 years, next-generation sequen-
cing (NGS) has rapidly progressed from the measurement
of millions of short sequences (of around 25 bp) to that
of hundreds of millions of longer segments (of around
100 bp). This creates an urgent need for on-going
benchmarking studies as old algorithms become rap-
idly out-dated and new algorithmic approaches are
required to handle new technologies and new scales of
data. Small-scale studies have resulted in dramatic discord-
ance when different researchers apply their algorithms to
the same genomic data (Figure 2) [19-21]. These studies
have shown that accuracy and generalizability vary dramat-
ically across samples and regions of the genome. The con-
stantly shifting landscape presented by rapidly evolving
technologies and tools fuels the urgency in the need to
identify the best-performing methods objectively and to re-
evaluate them frequently, and to identify particularly error-
prone aspects of existing tumor genome analysis methods
[22]. Several non-cancer-focused challenge-based bench-
marking efforts are on-going, including the Assemblathon
benchmarking of de novo sequence assembly algorithms
[23] and the CLARITY Challenge for standardizing clinical
genome sequencing analysis and reporting [24] (Table 1).
Challenge-based benchmarking of methods for som-

atic variant detection in cancer faces several unique hur-
dles. First, genomic sequence is inherently identifiable
[25], and is thus considered personal health information



Table 2 Some advantages and limitations of challenge-based methods assessment, along with barriers to participation
in them

Advantages Limitations Participation barriers

Reduction of over-fitting Narrower scope compared to
traditional open-ended research

Incentives not strong enough to promote participation

Benchmarking individual methods Ground truth needed for objective scoring No funding available to support time
spent participating in challenges

Impartial comparison across
methods using same datasets

Mostly limited to computational approaches Fatigue resulting from many ongoing challenges

Fostering collaborative work,
including code sharing

Requires data producers to share
their data before publication

Time assigned by organizers to solve a
difficult challenge question may be too short

Acceleration of research Sufficient amount of high-quality
data needed for meaningful results

Lack of computing capabilities

Enhancing data access and impact Large number of participants not
always available

New data modality or datasets that are
too complex or too big poses entry barrier

Determination of problem solvability Challenge questions may not be
solvable with data at hand

Challenge questions not interesting or impactful enough

Tapping the ‘Wisdom of Crowds’ Traditional grant mechanisms not
adequate to fund challenge efforts

Cumbersome approvals to acquire sensitive datasets

Objective assessment Difficulties to distribute datasets
with sensitive information

Standardizes experimental design
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(PHI) in many countries. This places a burden on challenge
contestants to acquire ethics approval from the appropriate
authorities, such as dbGaP in the USA or ICGC in Canada.
Second, because of the inherent complexity of both the
data and file formats, it may be difficult for researchers
from other fields to acquire sufficient domain knowledge to
compete effectively against domain experts. This point may
Figure 2 Different researchers studying the same data may arrive at
to separate true findings from spurious ones. (Illustration by Natasha Sto
the elephant).
be ameliorated by gamifying the problem, that is, using
game tools that require puzzle solving or geometric think-
ing to engage users in genomics problems [26,27]. Gamifi-
cation may not be possible or appropriate, however,
because it may require sacrificing domain-specific prior
knowledge that is essential to the correct solution. Third,
the size of the raw genomic data necessary to perform these
discordant conclusions. Benchmarking becomes essential as a way
lovitzky-Brunner© inspired by the parable of the six blind men and
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challenges creates a ‘big-data’ problem. For example, the
ICGC-TCGA DREAM SMC Challenge [28] (Table 1) in-
volved transmitting over 10 TB of data to every contestant,
so that each had a copy of the 15 tumor-normal whole-
genome pairs. Two different solutions to this problem are
to provide access to high-speed, cloud-based download
technologies (such as GeneTorrent or Aspera) or to provide
co-location of computers and data in a hosted environment
[29]. The latter solution has the advantage of providing
implementations of the best-performing algorithms in a
form that is more readily redistributed to the community,
as well as allowing more ‘democratized’ participation for
groups that do not have large in-house computing re-
sources. Nevertheless, this solution also has disadvantages:
cloud-computing may require additional overhead expend-
iture for groups that are familiar with developing methods
within their local computing environments; many re-
searchers have access to in-house computing options subsi-
dized by their institution and have limited incentive to
transfer their analysis to the cloud; and access permissions
for some datasets can hinder redistribution through cloud
platforms. Furthermore, the assessment of predictions is
challenging because the ground-truth for genetic alterations
is unknown. The SMC Challenge employs two strategies
for evaluation. The first involves an in silico method for
simulating cancer genomes called BAMSurgeon, which was
developed to allow the comparison of methods predictions
against a synthetic ground-truth (work by Ewing and col-
leagues). In the second strategy, targeted deep-sequencing
allows prospective validation of a large number of predicted
mutations, chosen by an algorithm that most accurately
computes false-positive and false-negative rates across
submissions. It is unclear how important it is for pro-
spective validation data to be orthogonal to that used
by the original challenge participants. Verification in
TCGA projects typically relies on deep sequencing
using the same technology, but on selected targets and
with the construction of new sequencing libraries. This
approach assumes that most errors are randomly dis-
tributed and/or associated with only a small fraction of
reads. The more orthogonal the validation technology,
the more this assumption is relaxed. Nevertheless, the
error profile of the final evaluation dataset is crucial,
and there are currently no error-free approaches to
generating this gold-standard data for NGS.

Finding genomic biomarkers that are associated
with phenotype
Once a set of somatic variants have been identified from
genomic interrogation of patient-derived samples, one of
the most common analyses is to attempt to develop bio-
markers that can predict patient survival, response to
therapy or other outcomes [30-33]. The development of
genomic-based personalized medicine has immense
clinical potential, but the optimal approach to predicting
such biomarkers de novo remains poorly understood and
controversial. Indeed, it is widely known that inferred
biomarkers are highly sensitive to factors such as choice
of algorithm and data pre-processing methods [34-37].
Nevertheless, developing challenges to benchmark

biomarker discovery problems is relatively straightfor-
ward. Participants are given training data in which
features (for example, genome-wide mRNA transcript
abundance) are paired with outcome (for example, patient
survival) data. Participants are given only the features for
the test set and asked to predict the outcome data using a
model inferred from the training data. Alternatively, par-
ticipants may submit trained models as executable code to
be run on the test data, thus allowing the test feature data
to be hidden from participants [15]. Model results are
scored on the basis of the correspondence between pre-
dicted and measured outcome data from the test set.
Prediction challenges have been employed in many do-

mains outside of biomedical research [38]. Because
biomarker-based challenges fit the setup of the classic su-
pervised machine-learning paradigm, they attract new ideas
and participation from the broader machine-learning com-
munity. Benchmarking in biomarker discovery is crucial,
however, as outlined by the case of the retracted Duke
study on chemotherapy selection noted above.
Two key difficulties exist in the creation of bench-

marking challenges for biomarker discovery. First, the
ideal datasets for biomarker-discovery challenges are
uniquely defined, especially when data were collected
from large cohorts requiring long-term follow-up or
expensive standardized treatment protocols (such as
clinical trials). These datasets can potentially lead to
high-impact publications or concerns over the intellec-
tual property of the data-generating groups. Second, the
potential size of patient cohorts is currently limiting for
many biomarker-development questions. If the amount
of data available is inadequate, they may not generate
enough statistical power to distinguish the performance
of the top-ranked groups accurately. These factors also
complicate the ability to obtain independent datasets for
final method assessment. Despite these problems, several
successful challenges pertaining to diagnostics, prognostics
and treatment outcomes have been conducted, including
the MAQC-II study [39], the IMPROVER Challenge on
Diagnostic Signatures [40], the Sage Bionetworks DREAM
Breast Cancer Prognostics Challenge [15], and the DREAM
AMLTreatment Outcome Challenge [41].

Inferring biological networks underlying cancer
phenotypes
Identifying the relationships between biological (tran-
scriptional and signaling) networks and cancer onset
and progression is another potential area for challenge
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benchmarking. Network analysis involves several as-
pects, including the coherent modeling of different
types of alteration and dysregulation events and their
integration into a unified network-based model [42-44].
One of the major problems with organizing challenges in
this area is that the underlying cellular regulatory networks
are mostly unknown, especially in complex systems such
mammalian tumor cells. So how can a challenge be orga-
nized when a pre-known gold-standard network cannot be
defined? Several strategies employed by the DREAM pro-
ject include using synthetic biology networks [13], in silico
networks [45], and experimentally assessed bacterial net-
works [46]. An alternative strategy is to evaluate methods
on the basis of their ability to predict the response of a sys-
tem to a set of perturbations, such as drugs or receptor li-
gands, as surrogates for predicting the underlying network
connectivity [47]. The introduction of ingenious surrogates
to the gold standard has enabled the formulation of other
network reverse-engineering challenges, such as the 2013
HPN-DREAM Breast Cancer Network Inference Chal-
lenge [48]. In this challenge, participants were asked to
submit predicted signaling networks that were activated
by a set of stimuli in four breast cancer cell lines. These
networks were scored on the basis of their ability to
identify the set of proteins that are downstream of a
given phosphoprotein. The predicted protein set was
compared to an experimentally determined set of pro-
teins (the surrogate gold standard), defined as those
proteins whose phosphorylation levels were affected by
inhibiting that phosphoprotein. Further research on
benchmarking network-inference algorithms would be
highly beneficial to help advance the field of network
biology, whose role in unraveling biological mechanisms
in cancer is hard to overestimate.

The truth is hard to find
From the previous discussion, it is clear that the single most
crucial aspect in benchmarking is the definition and assem-
bly of gold standards. A gold standard fundamentally de-
fines the problem under study, and it provides the limiting
resolution of error for the overall endeavor. As outlined in
this article, gold standards can be defined in several ways.
First, a single experiment can be performed with portions
of the resulting data used for training and evaluation. This
approach avoids experimental inconsistencies, but requires
that a large selection of true results is generated prior to the
challenge. Simulated datasets are ideal for this strategy
but have been criticized as only partially representing a
biological system [49]. While validation of simulated data is
straight forward, because the ground-truth is completely
known, in most cases the value of benchmarking is per-
ceived to be in the ability to assess best-performing methods
when applied to real biological data as opposed to simulated
data. An important caveat is that the synthetic data may fail
to reflect some of the underlying assumptions of the system
they attempt to emulate. Indeed, the most common ques-
tion about simulations is how well they reflect experimental
samples [49].
Second, for systems that are difficult to benchmark dir-

ectly, such as the structure of a biological network, charac-
teristics of the systems can be evaluated instead. These
might include the effects of the systems’ perturbation or
other phenomena, such as the identification of the net-
works that best predict patient outcomes.
Third, the results of a study can be validated after

the challenge is completed by additional experimental
work, either on the same sample or on others. This has
the advantage of directly addressing the predictions
made by challenge participants, but has the disadvan-
tage of introducing a time lag between challenge com-
pletion and the availability of full results. In addition,
the effort and cost of follow-up validation may be pro-
hibitive given the resources available to the challenge
organizers.
For genomic studies, wet-lab validation can be both time-

consuming and expensive. For example, the MAQC study
considered approximately 20,000 genes on microarray
platforms, but only validated approximately 1,000 (5%) by
real-time PCR as a gold standard [50]. Because of this cost,
both in terms of time and money, it is critical that a good
validation be sufficiently representative, providing similar
levels of statistical power for assessing the accuracy of each
group. In the context of somatic mutation calling, this
means selecting calls that are unique to individual predic-
tors as well as those common to multiple predictors. In-
deed, the validation techniques will often be experimentally
limited to a subset of results, leaving a bias in the distribu-
tion of what is tested. There is thus a clear need for re-
search into the optimal selection of validation candidates in
many biological settings. Further, validating a small subset
(<10%) of results comes with the possibility, however small,
of producing an incorrect relative ordering of different
algorithms. In practice, a combination of synthetic and
real-world validation is best, and finding the right balance is
challenge-dependent.
Finally, some very important elements of cancer gen-

omics are difficult to validate. For example, almost all
NGS analyses rely on sequence alignment as a first step.
It is, however, very difficult to benchmark the accuracy
of an alignment algorithm on real tumor data, because
there is no obvious way to create a ground-truth dataset.
Thus, rather than benchmarking the aligners, challenges
benchmark the results of entire pipelines such as those
for detecting somatic variants [28], which may incorpor-
ate different aligners and different data pre-processing
and statistical approaches. Similarly, it is of great interest
to infer cancer-driver genes. Unfortunately, the definition
of a ‘driver gene’ (beyond simple statistical recurrence) is



Boutros et al. Genome Biology 2014, 15:462 Page 8 of 10
http://genomebiology.com/2014/15/9/462
unclear, and does not yet allow unambiguous, high-
throughput experimental validation. Most experimental
techniques in this area probe only one aspect of a driver
gene (such as its influence on proliferation or metastasis),
while many subtle phenotypes (such as angiogenesis or
local spread) are challenging to probe. Also, these designs
ignore the potentially polygenic nature of tumor initiation
and progression. In designing a new challenge, one of the
first questions must be whether or not suitable gold-
standard test datasets can be generated.

Closing considerations
Benchmarking is a fundamental part of computational
biology and is increasingly being appreciated by the bio-
medical community as a whole. Recent benchmarking
studies both within [19,51] and outside of cancer genom-
ics [39,52-54] have helped highlight new ways to analyze
data and have prompted reconsideration of the error pro-
files of datasets. Challenge-based assessments have also re-
cently surged in other fields [55] in which the use of
incentives (including prizes and prestige) have stimulated
increased attention and algorithm development [56].
As the profile of the results of benchmarking studies

increases, it is becoming increasingly clear that bench-
marking itself is a serious scientific endeavor. The design
of a challenge is non-trivial and in some ways is easy ‘to
get wrong’ - there needs to be a careful integration
between experts in challenge-based benchmarking and
domain experts in the challenge topic. At the outset,
there is a fundamental requirement for the benchmark-
ing team to foster a community that supports and pro-
motes the exercise. Indeed, some topic areas may be
unsuitable to challenge-based benchmarking because a
sufficiently big community of interested algorithm devel-
opers has not yet emerged (although in these cases, ap-
propriate incentives may be useful in helping to focus
attention on a potential challenge topic). Further, the
challenge organizing team must be able to assure the
broader community of its neutrality and objectivity.
There is a clear advantage to building groups of ‘challenge-
based benchmarking experts’ who can bring their expertise
to diverse topics within cancer genomics, or any other field.
Such groups may be well-placed to develop and optimize
the statistical methods needed to improve challenge-based
benchmarks. Several groups are developing the expertise to
facilitate this process, including CASP, DREAM, CAFA and
others (Table 1).
Cancer genomics is characterized by rapid techno-

logical development, and this trend is likely to persist for
many years. As a result, benchmarking cannot be a static
endeavor. Rather, each new technology will have its own
specific error profiles and distinct algorithms that are
used for data analysis. In a world of continual techno-
logical and algorithmic innovation, it may be impossible
to have definitive, permanent benchmarks, because any
effort will be based on a snapshot of technology and will
rapidly become out-dated. Instead, a long-running series
of ‘living benchmarks’ may allow the co-evolution of
benchmarks with technology. In this mutualistic sce-
nario, regular releases of new datasets capturing the
current state of experimental methodologies will allow
users at any point in time to identify the best tool for
their dataset, and algorithm developers to have a dataset
suitable for developing and optimizing methods on the
latest data.

Abbreviations
CASP: Critical Assessment of Protein Structure Prediction; GCRMA: GC Robust
Multi-Array; PHI: Personal health information; NGS: Next-generation sequencing;
SMC: Somatic Mutation Calling.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
We are indebted to the DREAM community for teaching us how to run
challenges, and to Sage Bionetworks for their contributions in organizing
DREAM challenges. This study was conducted with the support of the
Ontario Institute for Cancer Research through funding provided by the
Government of Ontario (to PCB). This work was supported by Prostate
Cancer Canada and is proudly funded by the Movember Foundation (Grant
#RS2014-01). Dr Boutros was supported by a Terry Fox Research Institute
New Investigator Award and a CIHR New Investigator Award. This project
was supported by Genome Canada through a Large-Scale Applied Project
contract. This work was also supported by the Discovery Frontiers: Advancing
Big Data Science in Genomics Research program, which is jointly funded by
the Natural Sciences and Engineering Research Council (NSERC) of Canada,
the Canadian Institutes of Health Research (CIHR), Genome Canada, and the
Canada Foundation for Innovation (CFI). NIH grants R01 CA180778 (JMS) and
U24-CA143858 (JMS) supported this work.

Author details
1Informatics & Biocomputing Program, Ontario Institute for Cancer Research,
University Avenue, Toronto, ON M5G 0A3, Canada. 2Department of Medical
Biophysics, University of Toronto, College Street, Toronto, ON M5G 1L7,
Canada. 3Department of Pharmacology & Toxicology, University of Toronto,
King’s College Circle, Toronto, ON M5S 1A8, Canada. 4Sage Bionetworks,
Fairview Ave North, Seattle, WA 98109, USA. 5Computational Biology
Program, Oregon Health & Science University, SW Sam Jackson Park Road,
Portland, OR 97239-3098, USA. 6Department of Biomolecular Engineering,
University of California, Santa Cruz, High Street, Santa Cruz, CA 95064, USA.
7Department of Systems Biology, Biochemistry & Molecular Biophysics,
Herbert Irving Comprehensive Cancer Center, Columbia University, St.
Nicholas Avenue, New York, NY 10032, USA. 8IBM Computational Biology
Center, TJ Watson Research Center, Kitchawan Road, Yorktown Heights, NY
10598, USA.

References
1. Costello JC, Stolovitzky G: Seeking the wisdom of crowds through

challenge-based competitions in biomedical research. Clin Pharmacol
Ther 2013, 93:396–398.

2. Meyer P, Alexopoulos LG, Bonk T, Califano A, Cho CR, de la Fuente A, de
Graaf D, Hartemink AJ, Hoeng J, Ivanov NV, Koeppl H, Linding R, Marbach D,
Norel R, Peitsch MC, Rice JJ, Royyuru A, Schacherer F, Sprengel J, Stolle K,
Vitkup D, Stolovitzky G: Verification of systems biology research in the
age of collaborative competition. Nat Biotechnol 2011, 29:811–815.

3. Pertea M, Salzberg SL: Between a chicken and a grape: estimating the
number of human genes. Genome Biol 2010, 11:206.



Boutros et al. Genome Biology 2014, 15:462 Page 9 of 10
http://genomebiology.com/2014/15/9/462
4. Lim WK, Wang K, Lefebvre C, Califano A: Comparative analysis of
microarray normalization procedures: effects on reverse engineering
gene networks. Bioinformatics 2007, 23:i282–i288.

5. Baggerly KA, Coombes KR: Deriving chemosensitivity from cell lines:
forensic bioinformatics and reproducible research in high-throughput
biology. Ann Appl Stat 2009, 3:1309–1334.

6. Norel R, Rice JJ, Stolovitzky G: The self-assessment trap: can we all be
better than average? Mol Syst Biol 2011, 7:537.

7. Moult J, Pedersen JT, Judson R, Fidelis K: A large-scale experiment to
assess protein structure prediction methods. Proteins 1995, 23:ii–v.

8. Cozzetto D, Kryshtafovych A, Tramontano A: Evaluation of CASP8 model
quality predictions. Proteins 2009, 77:157–166.

9. Shi S, Pei J, Sadreyev RI, Kinch LN, Majumdar I, Tong J, Cheng H, Kim BH,
Grishin NV: Analysis of CASP8 targets, predictions and assessment
methods. Database (Oxford) 2009, 2009:bap003.

10. Tramontano A, Morea V: Assessment of homology-based predictions in
CASP5. Proteins 2004, 55:782.

11. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K,
Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S,
Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P,
Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DW, Bryson K, Jones DT,
Limaye B, et al: A large-scale evaluation of computational protein function
prediction. Nat Methods 2013, 10:221–227.

12. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke
ND, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment of systems
biology models: the DREAM3 challenges. PLoS One 2010, 5:e9202.

13. Stolovitzky G, Prill RJ, Califano A: Lessons from the DREAM2 challenges.
Ann N Y Acad Sci 2009, 1158:159–195.

14. Athanasopoulos G, Hyndman RJ: The value of feedback in forecasting
competitions. Int J Forecast 2011, 27:845–849.

15. Margolin AA, Bilal E, Huang E, Norman TC, Ottestad L, Mecham BH,
Sauerwine B, Kellen MR, Mangravite LM, Furia MD, Vollan HK, Rueda OM,
Guinney J, Deflaux NA, Hoff B, Schildwachter X, Russnes HG, Park D, Vang
VO, Pirtle T, Youseff L, Citro C, Curtis C, Kristensen VN, Hellerstein J, Friend
SH, Stolovitzky G, Aparicio S, Caldas C, Børresen-Dale AL: Systematic
analysis of challenge-driven improvements in molecular prognostic
models for breast cancer. Sci Transl Med 2013, 5:181re181.

16. Synapse; [http://www.sagebase.org/synapse]
17. Omberg L, Ellrott K, Yuan Y, Kandoth C, Wong C, Kellen MR, Friend SH,

Stuart J, Liang H, Margolin AA: Enabling transparent and collaborative
computational analysis of 12 tumor types within The Cancer Genome
Atlas. Nat Genet 2013, 45:1121–1126.

18. Global Alliance for Genomics and Health; [http://genomicsandhealth.org]
19. Kim SY, Speed TP: Comparing somatic mutation-callers: beyond Venn

diagrams. BMC Bioinformatics 2013, 14:189.
20. O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L, Hakonarson

H, Johnson WE, Wei Z, Wang K, Lyon GJ: Low concordance of multiple
variant-calling pipelines: practical implications for exome and genome
sequencing. Genome Med 2013, 5:28.

21. Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and
genotyping. Nat Rev Genet 2011, 12:363–376.

22. Taking pan-cancer analysis global. Nat Genet 2013, 45:1263.
23. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S,

Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou WC, Corbeil J, Del Fabbro
C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA,
Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall
G, Haussler D, Hiatt JB, Ho IY, et al: Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species.
Gigascience 2013, 2:10.

24. Brownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, Flannery KC,
Dechene ET, Towne MC, Savage SK, Price EN, Holm IA, Luquette LJ, Lyon E,
Majzoub J, Neupert P, McCallie D Jr, Szolovits P, Willard HF, Mendelsohn NJ,
Temme R, Finkel RS, Yum SW, Medne L, Sunyaev SR, Adzhubey I, Cassa CA,
de Bakker PI, Duzkale H, Dworzy Ski P, Fairbrother W, et al: An international
effort towards developing standards for best practices in analysis,
interpretation and reporting of clinical genome sequencing results in
the CLARITY challenge. Genome Biol 2014, 15:R53.

25. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y: Identifying personal
genomes by surname inference. Science 2013, 339:321–324.

26. Good BM, Su AI: Games with a scientific purpose. Genome Biol 2011,
12:135.
27. Lee J, Kladwang W, Lee M, Cantu D, Azizyan M, Kim H, Limpaecher A,
Yoon S, Treuille A, Das R, Ete RNAP: RNA design rules from a massive
open laboratory. Proc Natl Acad Sci U S A 2014, 111:2122–2127.

28. Boutros PC, Ewing AD, Ellrott K, Norman TC, Dang KK, Hu Y, Kellen MR,
Suver C, Bare JC, Stein LD, Spellman PT, Stolovitzky G, Friend SH, Margolin
AA, Stuart JM: Global optimization of somatic variant identification in
cancer genomes with a global community challenge. Nat Genet 2014,
46:318–319.

29. Dudley JT, Butte AJ: In silico research in the era of cloud computing.
Nat Biotechnol 2010, 28:1181–1185.

30. Lambin P, van Stiphout RG, Starmans MH, Rios-Velazquez E, Nalbantov G,
Aerts HJ, Roelofs E, van Elmpt W, Boutros PC, Granone P, Valentini V,
Begg AC, De Ruysscher D, Dekker A: Predicting outcomes in radiation
oncology - multifactorial decision support systems. Nat Rev Clin Oncol
2013, 10:27–40.

31. Chin L, Gray JW: Translating insights from the cancer genome into
clinical practice. Nature 2008, 452:553–563.

32. Khleif SN, Doroshow JH, Hait WN: AACR-FDA-NCI Cancer Biomarkers
Collaborative consensus report: advancing the use of biomarkers in
cancer drug development. Clin Cancer Res 2010, 16:3299–3318.

33. van’t Veer LJ, Bernards R: Enabling personalized cancer medicine through
analysis of gene-expression patterns. Nature 2008, 452:564–570.

34. Starmans MH, Pintilie M, John T, Der SD, Shepherd FA, Jurisica I, Lambin P,
Tsao MS, Boutros PC: Exploiting the noise: improving biomarkers with
ensembles of data analysis methodologies. Genome Med 2012, 4:84.

35. Starmans MH, Fung G, Steck H, Wouters BG, Lambin P: A simple but highly
effective approach to evaluate the prognostic performance of gene
expression signatures. PLoS One 2011, 6:e28320.

36. Venet D, Dumont JE, Detours V: Most random gene expression signatures
are significantly associated with breast cancer outcome. PLoS Comput
Biol 2011, 7:e1002240.

37. Boutros PC, Lau SK, Pintilie M, Liu N, Shepherd FA, Der SD, Tsao MS, Penn
LZ, Jurisica I: Prognostic gene signatures for non-small-cell lung cancer.
Proc Natl Acad Sci U S A 2009, 106:2824–2828.

38. Bentzien J, Muegge I, Hamner B, Thompson DC: Crowd computing: using
competitive dynamics to develop and refine highly predictive models.
Drug Discov Today 2013, 18:472–478.

39. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z, Chu TM,
Goodsaid FM, Pusztai L, Shaughnessy JD Jr, Oberthuer A, Thomas RS, Paules
RS, Fielden M, Barlogie B, Chen W, Du P, Fischer M, Furlanello C, Gallas BD,
Ge X, Megherbi DB, Symmans WF, Wang MD, Zhang J, Bitter H, Brors B,
Bushel PR, Bylesjo M, et al: The MicroArray Quality Control (MAQC)-II
study of common practices for the development and validation of
microarray-based predictive models. Nat Biotechnol 2010, 28:827–838.

40. Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Kumar Dey K, Hoeng J, Koeppl
H, Martin F, Meyer P, Nandy P, Norel R, Peitsch M, Rice JJ, Romero R,
Stolovitzky G, Talikka M, Xiang Y, Zechner C, IMPROVER DSC Collaborators:
Strengths and limitations of microarray-based phenotype prediction:
lessons learned from the IMPROVER Diagnostic Signature Challenge.
Bioinformatics 2013, 29:2892–2899.

41. Acute Myeloid Leukemia Outcome Prediction Challenge; [https://www.synapse.
org/#!Synapse:syn2455683]

42. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G,
Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D,
Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N,
Venkatesan K, Ayivi-Guedehoussou N, Solé X, Hernández P, Lázaro C,
Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, et al: Network modeling
links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007,
39:1338–1349.

43. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson
T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks
predicts breast cancer outcome. Nat Biotechnol 2009, 27:199–204.

44. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM:
Inference of patient-specific pathway activities from multi-dimensional
cancer genomics data using PARADIGM. Bioinformatics 2010, 26:i237–i245.

45. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G:
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci U S A 2010, 107:6286–6291.

46. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison
KR, Consortium D, Kellis M, Collins JJ, Stolovitzky G: Wisdom of crowds for
robust gene network inference. Nat Methods 2012, 9:796–804.

http://www.sagebase.org/synapse
http://genomicsandhealth.org
https://www.synapse.org/#!Synapse:syn2455683
https://www.synapse.org/#!Synapse:syn2455683


Boutros et al. Genome Biology 2014, 15:462 Page 10 of 10
http://genomebiology.com/2014/15/9/462
47. Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G:
Crowdsourcing network inference: the DREAM predictive signaling
network challenge. Sci Signal 2011, 4:mr7.

48. HPN-DREAM breast cancer network inference challenge; [https://www.synapse.
org/#!Synapse:syn1720047]

49. Maier R, Zimmer R, Kuffner R: A Turing test for artificial expression data.
Bioinformatics 2013, 29:2603–2609.

50. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C,
Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A,
Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L,
Goodsaid FM: Evaluation of DNA microarray results with quantitative
gene expression platforms. Nat Biotechnol 2006, 24:1115–1122.

51. Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS,
Glonek G, Adelson DL: A comparative analysis of algorithms for somatic
SNV detection in cancer. Bioinformatics 2013, 29:2223–2230.

52. Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T,
Bergeron JJ, Group HTSW: A HUPO test sample study reveals common
problems in mass spectrometry-based proteomics. Nat Methods 2009,
6:423–430.

53. ‘t Hoen PA, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY,
Laros JF, Buermans HP, Karlberg O, Brännvall M, GEUVADIS Consortium,
den Dunnen JT, van Ommen GJ, Gut IG, Guigó R, Estivill X, Syvänen AC,
Dermitzakis ET, Lappalainen T: Reproducibility of high-throughput mRNA
and small RNA sequencing across laboratories. Nat Biotechnol 2013,
31:1015–1022.

54. Steijger T, Abril JF, Engstrom PG, Kokocinski F, Consortium R, Akerman M,
Alioto T, Ambrosini G, Antonarakis SE, Behr J, Bertone P: Assessment of
transcript reconstruction methods for RNA-seq. Nat Methods 2013,
10:1177–1184.

55. Ransohoff DF: Proteomics research to discover markers: what can we
learn from Netflix? Clin Chem 2010, 56:172–176.

56. Waters H: New $10 million X Prize launched for tricorder-style medical
device. Nat Med 2011, 17:754.

doi:10.1186/s13059-014-0462-7
Cite this article as: Boutros et al.: Toward better benchmarking: challenge-
based methods assessment in cancer genomics. Genome Biology 2014 15:462.

https://www.synapse.org/#!Synapse:syn1720047
https://www.synapse.org/#!Synapse:syn1720047

	Abstract
	Challenge design and dynamics
	Analyzing genome assembly and structural variants
	Finding genomic biomarkers that are associated with phenotype
	Inferring biological networks underlying cancer phenotypes
	The truth is hard to find
	Closing considerations
	Abbreviations
	Competing interests
	Acknowledgements
	Author details
	References

