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Individualizing kinase-targeted cancer therapy:
the paradigm of chronic myeloid leukemia
Anna M Eiring1 and Michael W Deininger1,2*
Abstract

The success of tyrosine kinase inhibitors in treating
chronic myeloid leukemia highlights the potential of
targeting oncogenic kinases with small molecules. By
using drug activity profiles and individual patient
genotypes, one can guide personalized therapy
selection for patients with resistance.
tion and complexity in therapy response and resistance,
Introduction
Small molecules that inhibit oncogenic signaling path-
ways are redefining cancer therapy. Potential therapeutic
targets have been identified in all physiological pro-
cesses, reflecting the diversity of mechanisms that pro-
mote malignant transformation. In particular, tyrosine
and serine/threonine kinases have attracted much atten-
tion, which is not surprising given their fundamental
role in regulating eukaryotic cellular signaling [1]. Acti-
vating mutations in tyrosine and serine/threonine ki-
nases have been identified in many types of cancer and
associated with the malignant phenotype, providing a
strong therapeutic rationale for the development of
small molecule inhibitors that block their activity [2].
The biggest clinical successes to date are the BCR-ABL1
tyrosine kinase inhibitor (TKI) imatinib and its successor
compounds, dasatinib, nilotinib, bosutinib and ponatinib
(Figure 1). These drugs have transformed chronic-phase
chronic myeloid leukemia (CML-CP) from a lethal can-
cer into a chronic disorder that is compatible with a
largely normal span and quality of life.
Chronic myeloid leukemia (CML) is caused by the

chimeric tyrosine kinase BCR-ABL1, which results from
the t(9;22)(q34;q11) chromosomal translocation and is
visible cytogenetically as the Philadelphia chromosome
[3]. Resistance to imatinib is frequently caused by
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mutations in the tyrosine kinase domain of BCR-ABL1,
and because the approved TKIs differ in their activity
against specific mutants, the clinical selection of TKIs
can be driven by BCR-ABL1 genotype, providing a prime
example of personalized therapy in oncology.
Here, we discuss TKI therapy for CML to illustrate the

challenges of molecularly targeted cancer therapy, focus-
ing on therapy individualization, the role of clonal evolu-

and how the lessons learned from CML may be applied
to TKI therapy in other types of cancer.
Development of BCR-ABL1 TKIs for CML
Most patients are diagnosed in CML-CP, during which
the myeloid cell compartment is expanded but cellular
differentiation is maintained [4]. Without effective ther-
apy, CML-CP inexorably progresses to blast phase CML
(CML-BP), a disease that resembles an acute leukemia,
with complete block of terminal differentiation and a
poor prognosis. Murine models indicate that BCR-ABL1
is required and sufficient to induce CML-CP, whereas di-
verse additional mutations have been implicated in pro-
gression to CML-BP (Table 1) [3,5–16].
Clinical trials with the first BCR-ABL1 inhibitor, ima-

tinib, were initiated in 1998. The striking activity of ima-
tinib led to rapid regulatory approval for the treatment
of patients with CML for whom interferon-α therapy had
failed (in 2001), and subsequently to approval for the
treatment of newly diagnosed patients (in 2003). Pa-
tients with CML-CP who begin treatment with imatinib
at diagnosis have an 8-year overall survival of approxi-
mately 85%, with an acceptable quality of life [17,18].
Nevertheless, imatinib has limitations: imatinib treatment
fails for some 25 to 30% of CML-CP patients because of
primary or acquired resistance, and for additional patients
due to intolerance [19].
To overcome resistance to imatinib, three second-

generation inhibitors have been developed (Figure 1).
Dasatinib, nilotinib and bosutinib provide durable salvage
therapy for about half of the patients for whom imatinib
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Figure 1 Tyrosine kinase inhibitors (TKIs) approved for the treatment of chronic myeloid leukemia. (a) The crystal structure of the ABL1
kinase domain is shown in complex with the indicated TKI. Highlighted residues indicate mutations that confer resistance to the indicated TKI
in vitro. Orange (moderate) and red (severe) spheres indicate the level of TKI resistance. (b) The chemical structures of the TKIs. Adapted with
permission from O’Hare et al. [3].
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fails in CML-CP, but not for those with progression
to CML-BP [20,21]. Subsequent studies that compared
dasatinib or nilotinib with imatinib in frontline CML-CP
revealed more profound responses and reduced rates
of transformation to CML-BP for the second-generation
Table 1 Mutations associated with CML-BP

Mutation Percentage prevalence Reference

Double Ph chromosome 38% [6]

Isochromosome 17q 30% (myeloid) [7]

Trisomy 8 53% (myeloid) [7]

Trisomy 19 23% (myleoid) [7]

p53 mutations 20-30% (myeloid) [8]

p16 mutations 50% (lymphoid) [9]

NUP98-HOXA9 translocations NR [10]

AML-EVI1 translocations NR [11]

GATA-2 mutations 18% (lymphoid) [12]

RUNX1 mutations 38% (myeloid) [13]

CDKN2A/B mutations 50% (lymphoid) [14]

IKZF1 mutations 55% (lymphoid) [14]

ASXL1 mutations 20.5% (myeloid) [16]

TET2 mutations 7.7% (myeloid) [16]

WT1 mutations 15.4% (myeloid) [16]

NRAS/KRAS mutations 5.1/ 5.1% (myeloid) [16]

Ph, Philadelphia; NUP98, nucleoporin 98 kDa; HOXA9, homeobox A9; AML,
acute myeloid leukemia; EVI1, ecotropic viral integration site 1; GATA-2, GATA
binding protein 2; RUNX1, runt-related transcription factor 1; CDKN2A/B,
cyclin-dependent kinase inhibitor 2A/B; IKZF1, IKAROS family zinc finger 1;
ASXL1, additional sex combs like transcription regulator 1; TET2, tet methylcytosine
dioxygenase 2; WT1, wilms tumor 1; NRAS, neuroblastoma RAS viral oncogene
homolog; KRAS, Kirsten rat sarcoma viral oncogene homolog; NR, not reported.
TKIs, but have yet to show differences in overall survival
[22,23]. The most recent addition to the CML armament-
arium is the third-generation TKI ponatinib [24]. This
drug is highly active, even in patients with resistance to
multiple TKIs. However, as for all other BCR-ABL1 inhibi-
tors, although responses are durable in CML-CP, they are
only transient in CML-BP [25]. In 2014, most patients di-
agnosed with CML-CP can expect to achieve durable re-
sponses to TKIs, and their long-term prognosis is good. A
minority of patients, however, do not respond effectively
to multiple TKIs or progress to CML-BP. Thus, although
TKIs have improved the survival and quality of life for
many CML patients, a better understanding of TKI resist-
ance and the mechanisms leading to blastic transform-
ation will be crucial for improving outcomes.
Resistance to TKIs
TKI resistance in CML involves two fundamentally dif-
ferent mechanisms. First, BCR-ABL1 kinase-dependent
resistance is driven by reactivation of BCR-ABL1 kinase
activity. This typically occurs as the result of missense
mutations in the kinase domain that impair drug binding
through steric hindrance or conformational changes, or
through BCR-ABL1 genomic amplification [26]. Other
mechanisms include impaired drug influx or increased
drug efflux. For example, OCT-1, a cation transporter,
has been implicated in transmembrane transport of ima-
tinib, and reduced activity or expression of this protein
is associated with drug resistance [27,28]. Conversely,
high expression of MDR1 is associated with nilotinib re-
sistance [29].
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Second, BCR-ABL1 kinase-independent resistance is
thought to occur when alternative signaling pathways
are activated that maintain cell proliferation and viability
despite continued suppression of BCR-ABL1 kinase ac-
tivity (Figure 2) [3]. Evidence suggests that both extrinsic
and intrinsic mechanisms are involved in BCR-ABL1
kinase-independent resistance and may activate the same
downstream signaling molecules. Multiple extrinsic and
intrinsic signals and pathways have been implicated, in-
cluding JAK/STAT [30–32], phosphatidyl inositol 3′ kin-
ase (PI3K) [33], Wnt/β-catenin [34–36], SHP-1 [37],
SRC family kinases such as Lyn [38], and polymorphisms
of the pro-apoptosis protein BIM [39]. The mechanistic
heterogeneity of BCR-ABL1 kinase-independent TKI re-
sistance poses a diagnostic and therapeutic challenge.
Hence, individualized TKI therapy as it exists today cen-
ters on BCR-ABL1 kinase domain mutations, and BCR-
ABL1 kinase-dependent resistance will be the focus of
this review.
Figure 2 Multiple mechanisms of tyrosine kinase inhibitor (TKI) resist
mechanisms of TKI resistance, including BCR-ABL1 kinase-dependent mech
Certain tyrosine kinase mutations impart increased or decreased fitness on
resistance to first- and second-generation TKIs. Cells that carry resistance m
secretion of paracrine factors (such as the cytokine IL-3), so that even cells
resistance through intrinsic activation of alternative signaling pathways or t
green dots denote paracrine factors produced by leukemic cells or the bon
BCR-ABL1 kinase domain mutations
Differential TKI activity against BCR-ABL1 mutants
More than 50 different BCR-ABL1 mutations have been
identified in patients with clinically manifest resistance
to imatinib, but a much smaller set of mutations ac-
counts for most acquired resistance [3]. Solving the
structure of the ABL1 kinase domain crystallized with
imatinib was critical to understanding mutation-based
TKI resistance [40]. Unexpectedly, imatinib was found
to bind an inactive conformation of ABL1, with the acti-
vation loop in a closed conformation and extensive
downward displacement of the ATP-binding loop. Mul-
tiple residues are engaged by imatinib through hydrogen
bonds or hydrophobic interactions, providing ample op-
portunity for point mutations to impair drug binding. In
contrast to imatinib, which is vulnerable to a large num-
ber of different mutations, the spectrum of resistance
mutations is much more limited for the second-
generation TKIs, dasatinib, nilotinib and bosutinib [3].
ance in chronic myeloid leukemia. The schematic portrays multiple
anisms (top) and BCR-ABL1 kinase-independent mechanisms (bottom).
the BCR-ABL1 kinase. Other mutations such as T315I impart high-level
utations may impart resistance on neighboring bystander cells by
with native BCR-ABL1 become TKI resistant. Last, CML cells may acquire
hrough interaction with the bone marrow microenvironment. Red and
e marrow microenvironment.
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For dasatinib, a type I inhibitor, resistance is reduced by
binding to the active ABL1 conformation [41], which
places less stringent requirements on inhibitor binding
and hence is less liable to mutational escape. Although
the conformation of ABL1 that is bound by nilotinib re-
sembles that of the ABL1-imatinib complex, a much-
improved topographic fit provides additional free energy,
thereby moving many BCR-ABL1 mutants into the range
of achievable nilotinib plasma concentrations [42]. Inter-
estingly, bosutinib binds both the active and inactive
conformations of ABL1 kinase [43].
Despite many improvements, all second-generation

TKIs share a common vulnerability with imatinib, namely
the T315I mutation of the ‘gatekeeper’ residue in ABL1
[3]. Substitution of threonine 315 with isoleucine prevents
the formation of a key hydrogen bond (or van der Waals
interaction in the case of bosutinib) between the kinase
and the TKI drug, resulting in high-level resistance to
multiple TKIs (Figure 2). Additionally, access to a hydro-
phobic pocket that is engaged by all first- and second-
generation TKIs is blocked by this substitution. Ponatinib,
the only third-generation TKI approved to date, is a type
II inhibitor that was designed to avoid T315 by inclusion
of a rigid triple carbon bond (Figure 1) [24]. Higher
concentrations of ponatinib are required for inhibition
of certain BCR-ABL1 mutants (for example, E255V),
but these are still within the range of plasma concentra-
tions achievable in patients, and clinical responses have
been observed in patients who harbor these genotypes
[24]. In vitro assays based on culturing cells that express
randomly mutagenized BCR-ABL1 in the presence of
TKIs are remarkably accurate in predicting clinically
relevant BCR-ABL1 resistance mutations and contact
points between TKIs and the kinase domains. Mutagen-
esis is achieved either by initial expression of a BCR-
ABL1 plasmid in a mutagenic bacterial strain or by
exposing the BCR-ABL1-expressing cells to N-nitroso-
N-methylurea (ENU). Despite the fact that in vivo activ-
ity is dependent on multiple additional factors, includ-
ing bioavailability, achievable plasma concentrations,
transmembrane transport and protein binding, the
in vitro drug sensitivity of cell lines (typically the pro-B
cell line BaF/3, engineered to express BCR-ABL1 mu-
tants in comparison to the native BCR-ABL1 kinase) is
generally correlated with clinical activity (Figure 3). This
allows rational TKI selection on the basis of the pa-
tient’s BCR-ABL1 genotype, and provides an example of
how molecular knowledge can aid the personalization
of cancer therapy.

Low-level BCR-ABL1 mutations
It seems logical that it would be beneficial to detect resist-
ance mutations as early as possible, as appropriate changes
can then be made to treatment strategies at an early stage
to halt the expansion of a resistant clone. Given the low
sensitivity of Sanger sequencing (approximately 20%), con-
siderable effort has been dedicated to designing more sen-
sitive assays that use a range of different technologies,
including denaturing high-performance liquid chromatog-
raphy (HPLC), allele-specific PCR, allele-specific ligation
PCR, MassArray (Sequenom, San Diego, CA, USA) and
most recently next-generation sequencing (NGS) [44–49].
These studies generally suggest that resistance mutations
that are detected at low levels are predictive of less pro-
found responses and subsequent relapse. Nevertheless,
mutations detected at very low levels by allele-specific
or ligation PCR were not predictive of subsequent TKI
resistance [44,49]. Some of these low-level signals may
be false-positive results, but an alternative explanation is
that they might originate from cells that do not have full
leukemogenic potential. Thus, expansion of a mutant
clone to a biologically significant level may be required to
validate its leukemogenic fitness. For instance, kinase do-
main mutations may be acquired by transiently expanding
short-term leukemic stem cells (LSCs) that are unable to
sustain leukemic hematopoiesis. If markers become avail-
able to select BCR-ABL1-positive LSCs, single-cell se-
quencing may supply critical information in this area in
the future. On the other hand, low-level BCR-ABL1
kinase-domain mutations may be a marker of genetic in-
stability, and thus the presence of multiple low-level muta-
tions may predict a poor response to second generation
TKIs [46]. Given these uncertainties, the clinical utility of
high-sensitivity mutation screening is currently unclear
and more prospective studies will be needed to clarify the
value of this technique.
BCR-ABL1 kinase domain mutations and clonal fitness
Several common resistance mutations localize to
critical structural elements of the BCR-ABL1 enzyme,
such as the ATP-binding and activation loops, and
have been shown to alter the catalytic activity of
the kinase. For example, certain ATP-binding loop mu-
tations such as Y253F can increase intrinsic kinase
activity to levels above that of the native kinase
[50,51]. Other mutations, such as M351T, reduce in-
trinsic kinase activity. Results for the T315I mutation
are inconsistent, probably reflecting differences in the
techniques used to purify the proteins that have been
subjected to enzyme-kinetic assays [50,51]. The com-
petitiveness of cells that express BCR-ABL1 kinase
mutants in a given TKI environment will reflect a
balance between the gains afforded by TKI resistance
with changes in kinase catalytic activity (Figure 2).
Reduced kinase activity may be a critical factor that
limits the acquisition of additional mutations and re-
quires further investigation.



Figure 3 Activities of imatinib, bosutinib, dasatinib, nilotinib, and ponatinib against mutated forms of BCR-ABL1. Half maximal inhibitory
concentration (IC50) values for cell proliferation of the indicated TKIs are shown against BCR-ABL1 single mutants. The color gradient demonstrates
the IC50 sensitivity for each TKI relative to its activity against cells expressing native BCR-ABL1. Note that clinical activity is also dependent on
additional factors, such as the drug concentrations achieved in the plasma of patients. Adapted with permission from Redaelli et al. [57].

Figure 4 Silent mutations increase with the total number of
mutations per cell clone. The graph represents the total number
of silent mutations per clone (x-axis) and the percentage of clones
with at least one silent mutation (blue bars). White bars represent
the expected percentage of mutations. Adapted with permission
from Khorashad et al. [52].
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Compound mutations
In Sanger sequencing traces, the presence of compound
mutations (that is, two or more mutations in the same
BCR-ABL1 molecule) is inferred if the percentages of
mutant alleles combined, based on their peak height
relative to that of the native sequence, exceed 100%. If
the combined mutant alleles are less than 100%, Sanger
sequencing cannot distinguish between compound mu-
tations and polyclonal mutations (that is, multiple BCR-
ABL1 mutant clones). A widely used method to ascer-
tain that two mutations localize to the same BCR-ABL1
allele is shotgun cloning of BCR-ABL1 PCR products
followed by sequencing of individual colonies; however,
long-range NGS may provide a less tedious approach in
the future [47].
Colony sequencing has been used to demonstrate lin-

ear clonal evolution in several patients who developed
multidrug-resistant compound mutant clones [52]. Inter-
estingly, the likelihood that an additional mutation is
silent rather than missense increases with the total num-
ber of mutations in the BCR-ABL1 molecule (Figure 4).
This suggests that the fitness of the BCR-ABL1 kinase
must ultimately be compromised by the acquisition of
successive missense mutations, leading to evolutionary
dead ends. From a therapeutic standpoint, this is good
news as it suggests that mutational escape of the primary
target kinase is not unlimited. As the impact on kinase
fitness of two mutations in the same BCR-ABL1 allele is
unpredictable, experimental validation is required [53].
Compound mutations containing a T315I component
confer high-level resistance to all approved TKIs, posing
a considerable clinical challenge [54]. Fortunately, it
seems that most compound mutations identified in pa-
tients are composed from a core set of single resistance
mutations, suggesting that the number of catalytically
viable combinations is limited [55]. The hope is
that structural commonalities exist between subsets of
possible mutations, which will allow the generation
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of TKIs that effectively target multiple compound
mutants.

Bystander effects of BCR-ABL1 kinase mutant clones
Some patients develop clinical resistance, although only
a minority of the BCR-ABL1 amplicons found in such
patients are kinase domain mutants. Two explanations
for this come to mind. First, multiple resistant clones
may co-exist, some with kinase domain mutations and
some with BCR-ABL1 kinase-independent TKI resist-
ance. Second, kinase domain mutant subclones may gen-
erate paracrine factors such as IL-3 that promote the
survival of bystander cells. Evidence for the latter has
been found in vitro for clones carrying the E255K/T315I
compound mutation [56]. If confirmed in vivo, this
could add another level of complexity, as resistant clones
could enhance the fitness of sensitive clones by altering
their microenvironment (Figure 2).

Individualizing TKI therapy for CML
CML is one of few cancers with a close correlation be-
tween morphology and the causal genetic abnormality,
which greatly facilitates the accrual of fairly homogenous
patient populations for clinical studies. As imatinib, nilo-
tinib and dasatinib are all approved for patients with
newly diagnosed CML-CP, drug selection for initial ther-
apy depends on disease risk and co-morbidities. Many
attempts have been made to develop molecular prognos-
tic markers, but the risk stratification of CML-CP pa-
tients is still largely based on clinical scoring systems
such as the Sokal score, which is based on age, platelet
count, spleen size and peripheral blood blast count [4].
Patients who have intermediate or high Sokal risk scores
stand to benefit from second-generation TKIs, in terms
of progression-free survival, whereas patients with low
risk scores have excellent outcomes with all three
TKIs [22]. Patients presenting with CML-BC should be
treated with a second-generation TKI, typically com-
bined with chemotherapy. Certain co-morbidities are
absolute or relative contraindications for certain TKIs.
For example, a prolonged heart-rate corrected QT (QTc)
interval is a contraindication for the use of nilotinib, and
a history of pleural effusions is a contraindication for the
use of dasatinib [22].
Upon disease progression, BCR-ABL1 genotyping is cru-

cial for selection of the optimal TKI as salvage therapy.
Recommendations are based on activity comparisons
in vitro, typically half maximal (IC50) or 90% of maximal
(IC90) inhibitory concentration values determined in BaF/
3 cells expressing BCR-ABL1 mutants. Most commonly,
TKI activity against a mutant is semi-quantifiable in rela-
tion to the native kinase, which permits a relative ranking
of TKI activities despite different dose ranges (Figure 3)
[57]. Although these assays ignore important in vivo
factors, such as protein binding, they are indeed clinically
useful. For example, V299L predicts poor response to
dasatinib, E255K/V poor response to nilotinib, and T315I
failure with imatinib and all second-generation TKIs,
making T315I-mutant CML a prime indication for selec-
tion of ponatinib [3]. It is worth noting, however, that the
correlations are tight only toward the negative side (that
is, prediction of resistance). By contrast, a substantial pro-
portion of patients with ‘sensitive mutants’ fail to respond
to the respective TKI, indicating that resistance is multi-
factorial and presumably involves BCR-ABL1 kinase-
independent mechanisms that are not measured by the
currently available diagnostic assays. Ex vivo screening of
leukemia cells using short hairpin RNAs (shRNAs) that si-
lence kinase sequences or kinase inhibitor library panels
may uncover novel therapeutic targets [58,59]. Ironically,
ponatinib as a ‘pan BCR-ABL1 inhibitor’ with activity
against all single mutants, including T315I, appeared to
avoid the complexity of selecting the appropriate TKI for
salvage; but the drug’s recently reported cardiovascular
toxicity now mandates a thorough balancing of its excel-
lent activity against the risk of potentially serious adverse
events [60].

Translating the CML paradigm to other
malignancies
Kinase-targeted therapies have been approved for a
range of malignancies, but few have shown activity that
is comparable to that achieved in CML (Table 2). The
most convincing results were seen in relatively indolent
conditions, such as chronic lymphocytic leukemia (CLL)
[61], hypereosinophilic syndrome [62], and myeloprolifer-
ative neoplasms with rearrangements of the platelet-
derived growth factor receptors (PDGFRs) [63]. Hairy cell
leukemia, which is almost universally positive for the
V600E mutation in BRAF, may become another ex-
ample, as profound responses have been reported even
in chemotherapy-refractory cases [64,65]. Clinically,
these conditions resemble CML in their chronic course
and in the trend to progress to a more advanced stage.
Biologically, the key similarity may be that constitutive
activation of the target kinase is an early event in dis-
ease evolution, and is both necessary and sufficient for
disease induction. Interestingly, point mutations in the
target kinase BTK have been identified in CLL patients
for whom ibrutinib has failed [66], and FIP1L1-PDGFα
mutations in patients with hypereosinophilic syndrome
for whom imatinib has failed [67]. Point mutations in
FLT3 have also been reported in acute myeloid leukemia
(AML) patients harboring FLT3 internal tandem dupli-
cations who relapsed after a transient response to qui-
zartinib, a potent FLT3 inhibitor, suggesting that at least
some AML patients may acquire these mutations early
during disease evolution [68].



Table 2 Approved indications for kinase-targeted
therapies

Disease Kinase target Approved inhibitors

Chronic myeloid leukemia
(CML)

BCR-ABL1 Imatinib, dasatinib, nilotinib,
bosutinib, ponatinib

Ph acute lymphocytic
leukemia (ALL)

BCR-ABL1 Imatinib, dasatinib, nilotinib,
bosutinib, ponatinib

Mastocytosis KIT Imatinib

Hypereosinophilic
syndrome (HES)

FIP1L1-PDGFRα Imatinib

Chronic eosinophilic
leukemia (CEL)

FIP1L1-PDGFRα Imatinib

PDGFRβ Imatinib

Gastrointestinal stromal
tumors (GIST)

KIT; PDGFRα Imatinib

Melanoma BRAF Vemurafenib

Non-small cell lung cancer
(NSCLC)

EGFR1 Gefinitinib, erlotinib

ALK Crizotinib, ceritinib

Chronic lymphocytic
leukemia (CLL)

BTK Ibrutinib

Mantle cell lymphoma BTK Ibrutinib

BCR, breakpoint cluster region; ABL1, Abelson murine leukemia viral oncogene
homolog 1; KIT, c-kit proto-oncogene; FIP1L1, FIP1-like 1; PDGFRa, platelet-derived
growth factor receptor alpha; PDGFRb, platelet-derived growth factor receptor
beta; BRAF, B-Raf proto-oncogene; EGFR1, epidermal growth factor receptor 1;
ALK, anaplastic lymphoma kinase; BTK, Bruton’s tyrosine kinase.
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At the opposite end of the spectrum of kinase-targeted
therapy in hematologic malignancies is myelofibrosis. Acti-
vation of JAK/STAT signaling is universal in this disease as
a result of mutations in JAK2 [69], calreticulin [70,71], or
MPL [72], and JAK2 inhibitors improve clinical symptoms
and possibly survival. Nevertheless, these drugs have to
date failed to induce profound responses that include re-
duction of the malignant clone or disease burden [73,74].
Several explanations may account for the relatively disap-
pointing results, including the genetic complexity of mye-
lofibrosis, suppression of residual normal hematopoiesis as
a result of JAK2 inhibition and the relatively low potency
of available JAK2 inhibitors [75,76].
The situation is similar in solid tumors. While imatinib

is active in metastatic gastrointestinal stromal tumors
(GISTs), which are characterized by mutations in KIT or
PDGFRα, complete responses are rare and resistance
typically develops after 1 to 2 years [77]. Most melano-
mas with BRAF mutations are responsive to RAF inhibi-
tors, such as vemurafenib, but complete responses are
uncommon and remissions are typically transient [78].
Similarly, non-small cell lung cancers (NSCLCs) with
EGFR1 mutations respond to gefitinib or erlotinib [79],
and those with ALK mutations respond to crizotinib or
ceritinib [80,81], but most responses are incomplete and
not sustained [82]. A plethora of mechanisms have been
implicated in the kinase inhibitor resistance of solid
tumors. Although point mutations in the target kinase
do occur (for example, in KIT and PDGFRα in GISTs
[77], or EGRF and ALK in NSCLCs [83,84]), they are
generally less common than alternative pathway activa-
tion, and selection of rational salvage therapies poses a
greater challenge.
Why some malignancies are much more likely than

others to acquire resistance by reactivation of the target
kinase is unknown, but the reason is likely to be multi-
factorial. For example, in the case of BRAF, the specific
mechanism of kinase activation promotes resistance
through heterodimer formation and subsequent RAS
activation [85]. Another factor may be the complexity
of the signaling network operated by the activated kin-
ase. In the case of BCR-ABL1 in CML, it may be chal-
lenging for the leukemia cells to adequately replace a
large multi-domain protein with alternative signaling
pathways, driving resistance toward BCR-ABL1 muta-
tional escape [3]. In other cancers, such as AML, the
presence of multiple fully oncogenic but genetically di-
verse clones may lead to resistance through clonal selec-
tion on therapy; alternatively, a high level of genetic
instability may promote linear clonal evolution toward a
drug-resistant phenotype [86]. In the future, detailed
knowledge of the likely escape mechanisms for a given
therapy may impact drug selection and the sequencing
of active targeted agents.

Conclusions and future directions
Current therapy of CML involves five approved TKIs
that are used according to risk, disease stage, co-
morbidities and BCR-ABL1 genotype, reflecting the high
level of personalization that has already been achieved in
this disease. Kinase domain mutants, with their differen-
tial sensitivity to TKIs, were key drivers for this develop-
ment. Clonal fitness in a given TKI environment and the
intrinsic transforming capacity of the BCR-ABL1 geno-
type are important determinants of drug response and
resistance, providing insights into the complex interplay
between drugs, malignant cells and the host that ultim-
ately determines clinical outcomes. Current approaches
to identifying resistance mechanisms to targeted cancer
therapy are focused on tests that are simple to standardize
for routine diagnostics, such as testing for kinase do-
main mutations in BCR-ABL1. Nevertheless, the detec-
tion and interpretation of low-level mutations, particularly
low-level compound mutations, may be limited by the
recent discovery of artifacts produced by PCR-mediated
recombination events [87], a challenge that has yet to
be overcome.
Characterizing drug resistance that is driven by mech-

anisms outside of the primary drug target is much more
difficult and will predictably require genome-wide scan-
ning technologies, such as whole-genome sequencing, or
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function-first assays, such as inhibitor library screens or
those involving shRNAs or short interfering RNAs (siR-
NAs) [58]. Perhaps the greatest challenge is determining
clonal complexity at diagnosis as much as at emergence
of resistance. Ultra-deep sequencing and sophisticated
mathematical modeling allow for reconstruction of the
clonal architecture, but the resolution of this approach
is ultimately limited by the error rate of the sequencing
technology [88]. Overcoming this limitation will require
single-cell analysis on a large scale, which is currently
prohibitively expensive. In solid tumors, this is further
complicated by topographic heterogeneity, which im-
plies that multiple samples are needed to generate a
representative genetic picture. Isolation and analysis of
tumor cells from the blood might solve this problem in
the future. Once these roadblocks have been cleared,
targeted therapy will predictably move to the next level,
bringing another round of fundamental change to the
practice of oncology.
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