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Deciphering intratumor heterogeneity and
temporal acquisition of driver events to refine
precision medicine
Crispin Hiley1,2†, Elza C de Bruin3†, Nicholas McGranahan3,4† and Charles Swanton1,3*
Abstract

The presence of multiple subclones within tumors
mandates understanding of longitudinal and spatial
subclonal dynamics. Resolving the spatial and
temporal heterogeneity of subclones with cancer
driver events may offer insight into therapy response,
tumor evolutionary histories and clinical trial design.
Here, we summarize recent findings on the relevance of
Tumor heterogeneity
The identification of somatic events and mutational
processes that drive a cancer is increasingly important for
precision cancer diagnosis and therapy. To date, sequen-
cing efforts have identified several hundred cancer-driver
mutations and genomic aberrations across multiple cancer
types [1-4]. Sequencing studies have also shed light on the
extent of tumor diversity, not only among tumors from
different patients (intertumor heterogeneity) but also within
individual tumors (intratumor heterogeneity). Pathologists
have long recognized heterogeneity within tumors at the
morphological level, and heterogeneity at the genetic level
was first shown several decades ago by cytogenetic analyses
(as reviewed by Navin and Hicks [5]), but more recent
sequencing studies have provided deeper insights into the
full extent of intertumor and intratumor heterogeneity. It is
increasingly recognized that tumors consist of multiple
genetically distinct subclones that often evolve following a
pattern of branched evolution.
There is a need, therefore, not only to determine which

driver events occur in a tumor but also to understand
their relative timing during tumor evolution. Moreover,
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our understanding of how changes in the prevalence of
different subclones over time impact upon therapeutic
response and clinical outcome remains limited. There is an
increased realization of the need to understand a tumor’s
evolutionary history using both spatial and longitudinal
genomic information and to identify driver events and mu-
tational processes that contribute to tumor initiation,
maintenance, progression and subclonal diversification.

subclonal driver events. We also describe how subclonal
diversity might contribute to the limitations of targeted
therapies and how it can be leveraged to study the evolu-
tionary history of a tumor and to optimize clinical trial
design.
Intratumor heterogeneity and cancer evolution
Subclonal populations of tumor cells arise from either
random genetic drift or from the selection of cells that
have a phenotypic advantage within a particular environ-
ment (for in-depth reviews on the causes of heterogeneity,
the impact of genetic drift and modes of evolution, see
[6-9]). In brief, tumor evolution can follow either a
branched or a linear pattern, both of which can result in
intratumor heterogeneity (Figure 1). A linear evolutionary
pattern, whereby successive acquisition of advantageous
mutations results in fitter clones that outgrow ancestral
clones, results in a relatively homogeneous tumor. Some
heterogeneity can result from linear evolution if a new
clone has not yet fully outcompeted its predecessor. Cases
of linear evolution have been observed in multiple mye-
loma (MM) [10] and acute myeloid leukemia (AML) [11].
A branched pattern of evolution, in which multiple dis-
tinct subclones co-exist and evolve simultaneously within
a tumor, will result in a heterogeneous tumor in which
there is potential for multiple subclonal driver events.
Branched tumor evolution has been found in many tumor
types, including breast [12], ovarian [13], prostate [14],
pancreatic [15,16], and bladder cancers [17], as well as in
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Figure 1 Evolution of three tumors. The left panel shows the
evolutionary history of each tumor, the middle panel represents a
snapshot of the tumor at a given time, and the right panel shows
the potential future development. Tumor A shows a linear evolution
pattern; tumors B and C display a branched pattern. Single snapshots
of Tumors B and C may suggest that they have identical evolutionary
processes, but their past and future evolution actually follow
different patterns.
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chronic lymphocytic leukemia (CLL) [18], MM [10,19],
AML [20], glioma [21] and clear cell renal cell carcinoma
(ccRCC) [22,23].
The subclonal diversity within a tumor if viewed as a

snapshot, rather than longitudinally, provides little infor-
mation about the future evolutionary routes that subclo-
nal populations might take. Has the dominant subclone
within a tumor outcompeted less fit minor subclones or
is a new fitter subclonal population emerging (Figure 1)?
A greater understanding of the evolutionary timings and
‘life histories’ of tumors might shed light on the most
clinically significant subclones and reveal common rules
that govern tumor evolution both within and across can-
cer subtypes.

Intratumor heterogeneity illuminates a tumor’s
life history
Deciphering genetic intratumor heterogeneity can reveal
the temporal composition of genetic events that take place
during the disease course. Bioinformatics tools such as
ABSOLUTE [24] and PyClone [25] integrate data on vari-
ant allele frequency, local copy number and tumor purity,
and can give estimates of the clonality of somatic events,
even within individual tumor biopsies. These estimates
can be refined through multi-region sequencing ap-
proaches that reveal both the clonality and the spatial
composition of tumor subclones, showing that mutations
can be clonal in one tumor region but completely absent
in another tumor region [13,16,22]. Nevertheless, regions
within a tumor still contain many cells, and clonality ana-
lysis will be unable to resolve the subclonal composition
of a tumor beyond the resolution of the sample taken and
used for analysis. When comparing samples containing
many cells, multiple permutations of the distribution of
mutations, or changes in copy number, across the individ-
ual cells can result in similar variant allele frequencies and
local copy numbers among samples (Figure 2). Therefore,
single-cell sequencing will ultimately be required to
determine unequivocally the true number of different
subclones within a population and to characterize them
without aggregating the results from multiple cells within
a sample.
With regards to evolutionary timing, clonal somatic

mutations that are present in all tumor cells will have
been acquired relatively ‘early’ in tumorigenesis, before
or during the appearance of the most-recent common
ancestor. These early mutations are a mix of both driver
events that contributed to tumor initiation and passenger
mutations that may have preceded transformation. Con-
versely, subclonal mutations, which are present in only a
subset of tumor cells, represent ‘later’ events occurring
after the appearance of the most-recent common ancestor
and so after tumor initiation. Clonal and subclonal muta-
tions can be further temporally dissected by looking at
chromosomal amplifications; mutations acquired before
amplification will be present on at least two chromosome
copies, whereas mutations acquired after amplification
will be present on only one copy [26-28] (Figure 3).
In breast and pancreatic cancers, the majority of known

mutational and copy number driver events are relatively
early events [15,16,27,29]. In ccRCC, however, the majority
of identified driver mutations were found to be subclonal.
In fact, inactivating mutations in the Von Hippel-Lindau
tumor suppressor gene and loss of heterozygosity at
chromosome 3p were the only somatic events occurring
‘early’ in ten ccRCC tumors analyzed [22]. Conversely,
mutations in certain driver genes, including BAP1 (BRCA1
associated protein-1), PTEN (phosphatase and tensin
homolog), PIK3CA (phosphatidylinositol-4,5-bisphosphate
3-kinase, catalytic subunit alpha), SETD2 (SET domain
containing 2) and TP53 (encoding tumor protein p53),
were always subclonal, and thus probably involved in
ccRCC progression. Selection for mutations in these genes
during later stages of ccRCC development is evidenced by



Sample 1

Copy number = 3
Variant allele frequency = 0.33
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Figure 2 Somatic aberrations in cancer cell populations. The DNA copy number and number of mutant alleles (red stars) within single
cancer cells can be difficult to discern when looking at a whole population of cancer cells. Samples 1-3 on average each have three copies of a
particular chromosome, and a variant allele frequency of 0.33, but the collection of cancer cells in each population are vastly different. Single-cell
sequencing may be required to elucidate the underlying population structure.
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the observation that different subclones acquire mutations
in the same gene in parallel.
Driver events are not always clonally dominant across

all cancer subtypes. For example, loss of the tumor sup-
pressor PTEN has been identified, by sequencing and
fluorescence in situ hybridization analyses, as a subclo-
nal event in prostate tumors but often as a clonal event
in triple negative breast cancer [14,29,30]. Similarly,
TP53 mutations were usually identified as early events
in triple negative breast tumors and cutaneous squa-
mous cell carcinomas [28,29] but predominantly as
subclonal in CLL and ccRCC [18,22]. Nevertheless, to
define a clonal mutation truly as an initiating event, sin-
gle cell analysis would be required to reconstruct the
evolutionary lineage of a sample. For example, the etio-
logical significance in MM of the chromosomal trans-
location t(11;14) was further evidenced by the fact that
this was the sole abnormality in some subclones and that
genetic variegation of this mutation in an initial clone
had resulted in the tumor heterogeneity [31].
Deciphering genetic intratumor heterogeneity sheds

light not only on the temporal acquisition of somatic
driver events, but also on the temporal dynamics of mu-
tational processes. Analysis of breast cancers found that
early mutations were dominated by C-to-T transitions,
predominantly in a CpG context, probably reflecting
spontaneous deamination of methylated cytosines [32].
Mutation pre-amplification

Mutation post-amplification

Figure 3 Timing of mutations. The number of copies of a mutation can
chromosome doubling event will be present on multiple chromosome cop
present on only one chromosome copy.
By contrast, in ccRCC, C-to-T transitions at CpG sites
were enriched in late mutations [22]. Later in breast
cancer evolution, novel mutational processes, such as
mutagenesis by APOBEC (apolipoprotein B mRNA-
editing, enzyme-catalytic, polypeptide-like 3G) cytidine
deaminases, were found to dominate in certain samples
[32]. Intriguingly, in MM, the contribution of APOBEC-
edited mutagenesis was found to either increase or
decrease over time, depending on the sample [10],
whereas in bladder cancer, the contribution of APOBEC
remained relatively stable between pairs of superficial
noninvasive and mucosa- or muscle-invasive tumors
from two patients [17].
Taken together, these studies highlight the diversity in

tumor evolutionary processes, with variation in both the
temporal acquisition of driver mutations and the muta-
tional signatures themselves observed both within and
between tumor types. As more samples are analyzed, it
will be important to validate which driver genes are al-
ways clonal (that is, on the trunk of a tumor’s evolution-
ary tree) and which may occur later in tumor evolution,
driving subclonal expansions. Early drivers may serve as
optimal therapeutic targets in future drug-development
strategies [33]. Importantly, whereas a clonal driver mu-
tation in a tumor is fixed and will remain clonal unless
subject to copy number loss later in tumor evolution,
a subclonal driver mutation may become clonal, evade
shed light on when it occurred. A mutation that is acquired before a
ies, whereas a mutation acquired after the doubling event will be
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detection or disappear entirely at a later stage of tumor
evolution. Thus, a subclonal driver is more dynamic
than a clonal driver. Longitudinal studies are needed to
shed light on whether there are epistatic relationships
between driver events and to explore the possibility of
sets of evolutionary rules that determine how tumor cell
populations change over time within each cancer type.
The existence of such evolutionary rules is supported by
evidence of the parallel evolution of distinct subclones
within the same tumor, each harboring distinct somatic
events that affect the same gene or signal transduction
pathway, and by pairwise associations between different
driver events [22,31,34]. Conceivably, if rules regarding
the temporal acquisition of somatic driver events can be
defined - taking into account the tumor microenviron-
ment, the host genome and early somatic events in tumor
evolution - they could inform therapeutic strategies. Simi-
larly, a greater understanding of whether mutational pro-
cesses, such as APOBEC-mediated mutagenesis, generally
occur transiently or accumulate gradually over time may
shed light on how specific cancers should be monitored
and treated [35].

Clinical relevance of spatial and temporal
heterogeneity
Heterogeneity between primary and metastatic lesions
has profound implications for approaches to genomic
research and patient care, as does the heterogeneity
of clones within a single sample that changes over
time because of cell-intrinsic mechanisms such as gen-
omic instability or selective pressures from tumor-directed
therapy.
Spatial heterogeneity in solid tumors can result in

significant sampling bias. In high-grade serous ovarian
cancer, multi-region sampling of six patients prior to
treatment demonstrated the diversity of somatic mutation,
copy number and gene expression within each patient
[13]. Other than TP53, few driver genes were ubiquitous
in the multiple sampled regions from each patient. In
ccRCC, multiple biopsies are required to better define the
true extent of genomic heterogeneity and clinically rele-
vant mutations. For example, mutations in the mam-
malian target of rapamycin kinase that confer resistance
to everolimus can be found in some but not all tumor
regions [22,23].
Sequencing studies have demonstrated heterogeneity

of driver events between primary tumor and metastatic
sites. Similar heterogeneity has also been demonstrated
for clinically relevant biomarkers [12,16,23]. A retro-
spective review of HER2 (v-erb-b2 avian erythroblastic
leukemia viral oncogene homolog 2) status in primary
breast cancer and metastatic relapses showed significant
discordance [36]. Patients with stage IV breast cancer
who received HER2-directed therapy due to having had
HER2-positive early breast cancer and who on retro-
spective analysis were found to have a HER2-negative
metastatic relapse had shorter overall survival compared
to those who had a true HER2-positive metastatic relapse.
Sequencing of recurrent high-grade gliomas, after earlier
surgical resection and sequencing of low grade lesions,
showed that almost half of the high-grade relapses did not
come from the previously resected low-grade glioma but
from an ancestral clone that predated the low-grade com-
ponent [21]. Many potentially therapeutically targetable
driver mutations, such as BRAF (B-Raf proto-oncogene,
serine/threonine kinase) V600E, that were present in the
primary low-grade lesion, were not present in the recur-
rent high-grade relapse. Multi-region sequencing and
expression analysis from glioblastoma multiforme (GBM)
patients have also shown that heterogeneity results in the
presence of multiple tumor subtypes, as identified by gene
expression classifiers, within the same tumor [37,38]. This
questions the utility of such classification systems and
gene expression signatures to define individual GBM
subtypes.
The sequencing of two temporally separated CLL

samples from treated and untreated patients showed that
many of these tumors underwent clonal evolution and
that the presence of a subclonal driver was an independ-
ent risk factor for disease progression [18]. Conversely,
in myelodysplastic syndrome, driver mutations had a
similar prognostic significance whether they were clonal
or subclonal; the absolute number of driver mutations
rather than clonality had the biggest implications for
outcome [34]. The impact of intratumor heterogeneity
and the clonality of driver mutations on prognosis and
response to precision medicine has not been studied
prospectively. A UK-based longitudinal observational
study, Tracking Non-small Cell Lung Cancer Evolution
Through Therapy (TRACERx), has been launched to
assess this [39]; 842 patients will have whole-exome
sequencing (WES) of multiple regions of their resected
primary tumor, as well as of cell-free DNA (cfDNA) and
circulating tumor cells (CTCs) at multiple time points
throughout follow-up. Patients who suffer disease recur-
rence will be consented for repeat tumor sampling in
order to define the evolutionary routes of individual
tumors. This national study may provide insight into the
role of intratumor heterogeneity and the (sub)clonality
of driver events on outcome, reveal the origins of the
lethal subclone and begin to define selection pressures
initiated by therapy.

Clonal evolution, heterogeneity and cancer therapy
A number of studies have demonstrated that treatment
can act as a selection pressure in some malignancies,
driving clonal evolution and selecting for certain sub-
clones. This emphasizes the importance of longitudinal
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tumor sampling strategies to depict tumor genomic
landscapes. In acute lymphoblastic leukemia, copy num-
ber abnormalities (CNA) were strikingly different between
samples taken at diagnosis and after relapse following
chemotherapy [40]. On retrospective analysis, the cells
responsible for relapse were present as a subclonal popu-
lation at diagnosis; chemotherapy had selected for a popu-
lation with CNA in genes involved in the regulation of the
cell cycle and B-cell development. In CLL, cancers were
more likely to have undergone clonal evolution in patients
treated with chemotherapy than in untreated patients
[18]. In non-small cell lung cancer (NSCLC), patients who
relapsed with MET-amplified epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant
disease following treatment with an EGFR inhibitor
harbored a low-frequency subclone (<1% of cells) with
MET amplification prior to treatment, which was selected
for during therapy [41]. Notably, a subclonal population
with MET amplification at such a low frequency would be
difficult to identify in a heterogeneous biopsy sample.
Conceivably, these patients may have benefited from com-
bination EGFR TKI and MET inhibition to forestall selec-
tion of the drug-resistant subclone.
Similarly, the presence of the EGFR T790M mutation,

which is associated with resistance to EGFR TKI therapy,
has been demonstrated prior to treatment with EGFR
inhibition in patients with NSCLC [42]. In this study,
matrix-assisted laser desorption/ionization mass spectrom-
etry and next-generation sequencing (NGS) were used to
detect the presence of low-frequency (<5% of cells) T790M
mutations in pre-treatment samples that were not detected
using standard Sanger sequencing. They found that a
greater prevalence of the T790M subclonal population was
detected in post-treatment biopsies and, in the context of
selection due to EGFR TKI, the T790M mutation acted as
a driver of subclonal expansion.
In a study of patients with colorectal cancer, multiple

somatic mutations in KRAS (Kirsten rat sarcoma viral
oncogene homolog), which are associated with resistance
to anti-EGFR antibody therapy, could be detected non-
invasively through cfDNA analysis during the acquisition
of drug resistance, and were predicted to be present in a
subclone prior to treatment [43]. By contrast, a recent se-
quencing study of five patients with RAF/MEK-inhibitor-
resistant BRAF melanoma found no evidence of a pre-
existing resistant subclonal population, suggesting that
resistant tumor cells had developed de novo on treatment, or
that resistant subclones were present in the pre-treatment
tumor at frequencies that were below the limits of detection
[44].
Cancer therapies not only can act as the selection

pressure to drive tumor evolution along a certain lineage
if pre-existing subclones possess genotypes that are asso-
ciated with a drug-resistant phenotype [18,19] but also
can generate new subclonal driver events. For example,
temozolamide, the standard first-line therapy for GBM,
induces mutations in tumor DNA. Some are deleterious
for the cell and result in death, others neutral and act as
passenger mutations, but others such as mutations in
mismatch repair (MMR) genes are potentially advanta-
geous for tumor cells. Some GBM tumors treated with
temozolamide exhibited a mutator phenotype, resulting
from mutations in MMR genes, and were found to har-
bor driver mutations in RB1 (encoding retinoblastoma 1),
PIK3CA and PTEN that bore the signature of temozola-
mide-induced mutagenesis [21,45].
Greater understanding of resistance mechanisms

(Table 1) suggests that more emphasis should be placed
on the longitudinal analysis of tumors in the clinical set-
ting and on the use of combination or adaptive sequential
therapy to manage the selection of resistant subclones
[46]. The use of combinations of precision therapies to
forestall resistance will result in a greater burden of
toxicity for patients and has implications for health eco-
nomics. It remains unclear whether such approaches will
sufficiently address the presence of subclonal drivers in
advanced disease. In this regard, immune-modulatory
strategies seem compelling in order to adapt to the chan-
ging cancer genomic landscape.
In some cases, it is becoming clear that resistance to

therapy can be mediated by more than one resistant
subclone. In colorectal cancer, different mutations in
KRAS (exon 12 and 13), associated with resistance to
EGFR monoclonal antibody therapy, were found in the
same patient [43]. In anaplastic lymphoma kinase (ALK)-
positive, crizotinib-treated NSCLC patients, resistance was
driven by multiple mechanisms, such as secondary ALK
mutations, amplification of KIT or the EML4-ALK fusion
gene itself and EGFR pathway activation, with multiple
resistance mechanisms sometimes found simultaneously
within the same tumor [47]. Paradoxically, precision medi-
cines may have a detrimental effect in the presence of
polyclonal disease with subclonal driver events. BRAF
inhibition has been shown to have significant anti-tumor
efficacy in BRAFV600E mutant cancers. In BRAF wild-
type cells, however, activation of extracellular-signal-
regulated kinase signaling with the use of BRAF inhibitors
can promote tumorigenesis [53]. In the context of a
polyclonal tumor where a BRAF-activating mutation
is subclonal in nature with the presence of BRAF
wild-type subclones, BRAF inhibition might promote
the growth of the BRAF wild-type population, particularly
if these subclones harbor KRAS or NRAS (neuroblastoma
RAS viral (v-ras) oncogene homolog) driver mutations
[19]. The potential emergence of polyclonal resistance and
the presence of subclonal drivers should be considered
when designing clinical trials to forestall resistance to
targeted agents.



Table 1 Mechanisms of resistance to common cytotoxic chemotherapies and precision medicines

Systemic agent Target Resistance mechanism

Platinum-based chemotherapy DNA Decreased mismatch repair proficiency (e.g.↓MLH1 & ↓MSH2)

● cisplatin

● carboplatin Increased efficiency of other modes of DNA repair (e.g. nucleotide
excision repair – ↑ERCC1, trans lesion synthesis – ↑POLH, homologous
recombination – BRCA1/2 restoration)● oxaliplatin

Microtubule-targeting chemotherapy Tubulin Drug efflux via increased expression of MDR-1

Changes in microtubule structure (e.g. mutations in β-tubulin and
overexpression of βIII-tubulin

● docetaxel

● vinorelbine
Chromosomal instability

EGFR TKi EGFR TK domain Resistance mutation, e.g. T790M

● erlotinib MET amplification

● gefitinib EGFR amplification

Transformation to small cell lung cancer

EGFR monoclonal antibody EGFR extracellular domain Acquired KRAS or NRAS mutation

Activation of PIK3CA/PTEN pathway● cetuximab

● panitumumab Inhibition of cetuximab binding, e.g. EGFR-S492R

BRAF TKi BRAF-V600E Elevated BRAF/CRAF/COT1 expression

● vemurafenib

● dabrafenib Acquired mutation in other elements of the MAPK pathway
Persistent activation of other kinases, e.g. EGFR and PDGFRβ

ALK TKi EML4-ALK Secondary EML4-ALK mutations or rearrangements

● crizotinib CD74-ROS1 rearrangement

● ceritinib

See [46-52] for more detailed review. ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene, serine/threonine kinase; BRCA1/2, encoding breast cancer 1/2, early
onset; COT1, cancer Osaka thyroid oncogene 1; CRAF, Raf-1 proto-oncogene, serine/threonine kinase; EGFR, epidermal growth factor receptor; EML4, echinoderm
microtubule associated protein like 4; ERCC1, excision repair cross-complementation group 1; MAPK, mitogen-activated protein kinases; MDR1, multi-drug resistance 1;
MET, MET proto-oncogene, receptor tyrosine kinase; MLH1, mutL homolog 1; MSH2, mutS homolog 2; PDGFR, platelet-derived growth factor receptor; PIK3CA, PI3K
catalytic subunit α; POLH, DNA polymerase H; PTEN, phosphatase and tensin homolog; ROS1, ROS proto-oncogene 1; TKi, tyrosine kinase inhibitor.
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The extent to which the presence of subclonal drivers
and intratumor heterogeneity impacts upon the different
responses witnessed with both systemic chemotherapy
and precision medicines remains unclear [23,54-57].
Mixed responses to drug treatments are common and
there is no consensus in clinical decision-making in this
context [58]. Should the treating physician switch systemic
therapy, add a second systemic therapy to combat resist-
ance, advocate locoregional approaches with surgery
or radiotherapy, or monitor clinically insignificant pro-
gression and continue therapy with the caveat that non-
responding lesions might act as an evolutionary sink that
later contribute to more widespread progression? Further
cataloguing of clonal and subclonal drivers and common
mechanisms for resistance to treatment, together with
adapting clinical trial design to the challenges of tumor
evolution may improve patient care in the future.

The impact of heterogeneity and tumor evolution
on the use of biomarkers for patient stratification
The identification prior to therapy and subsequent man-
agement of low-frequency subclones harboring driver
events that influence clinical outcome is clearly a major
challenge. Such subclones may be present at a low fre-
quency within one biopsy, could be spatially separated
within a primary tumor or might be differently distributed
in the primary tumor and its metastases. In recent years,
clinical trial designs have moved from stratification that is
based on histology to classification by molecular subtype
[59,60]. The next generation of clinical trial design has
seen the development of basket trials (MATCH, I-SPY,
FOCUS4 and MATRIX) that contain multiple molecular
subgroups, each treated with a different therapy, that are
based on pre-specified somatic aberrations. These trials
often have an adaptive design that allows removal of
poorly performing arms during the course of the trial [61].
A potential limitation of this approach is that, in the meta-
static setting, molecular biomarker analysis for patient
stratification is often performed on archival material,
which may not reflect the current state of disease. This
strategy may readily identify clonally dominant drivers
that occur earlier in tumor evolution, but its ability to
detect subclonal drivers will depend on the prevalence of
that subclone within the tissue taken for analysis.
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Patients from the UK-based TRACERx multi-region
sequencing longitudinal observational study of NSCLC
who relapse with locally advanced or metastatic disease will
be eligible for the Deciphering Anti-tumor Response and
evolution With INtratumour heterogeneity (DARWIN)
clinical trials program (Figure 4). Patients will be allocated
into molecularly stratified subgroups at the time of relapse
with the a priori knowledge of the clonal frequency of the
driver event at the time of surgery and at relapse, the latter
being provided by analysis of a repeat biopsy of the meta-
static site and by cfDNA and CTC analysis. These analyses
will help to determine whether targeting clonally dominant
drivers improves progression-free survival and how subclo-
nal driver events impact upon disease progression and
drug resistance. In the future, knowledge of dominant and
subclonal drivers and resistance mechanisms may allow
more optimal treatment allocation. WES will also allow
assessment of the protein-coding mutational burden and
the potential neo-antigenic repertoire of each tumor. This
information can then be correlated to the response to
immunotherapy of those without an actionable mutation
for which there is an approved precision medicine.
Without the use of single-cell approaches, addressing

whether subclonal populations that have resistance to
therapy are present prior to treatment or are selected
during therapy is hindered by the limit of detection
of low-frequency cancer cell populations. Conventional
Sanger sequencing can detect variants down to the level
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tumors. Distinguishing early and late somatic events may
allow a better understanding of the genes and mutational
processes that are involved in tumor initiation in compari-
son with those involved in maintenance and metastasis,
which in turn might inform new therapeutic avenues.
Moreover, the distinction of clonally dominant events
from subclonal driver events might allow the acceleration
of drug development towards targeted early, truncal
drivers of disease. Although targeting clonally dominant
drivers may make intuitive sense, some trunk drivers may
only be relevant for tumor initiation and targeting these
drivers after clonal diversification might not be efficacious.
Furthermore, the origins of the ‘lethal’ subclone or sub-
clones might be determined by somatic events that occur
later in tumor evolution and not in the dominant clone.
Therefore, efforts to limit disease progression might
require a greater understanding and optimal targeting of
subclonal driver events.
High-throughput functional assessment of validated

mutations will be important to assess the significance of
these mutations and to avoid wasting resources on the
further investigation of sequencing artifact or passenger
mutations. The wealth and depth of data may allow us
to find unanticipated gene-gene interactions and might
reveal new unappreciated cancer drivers that are involved
in epistatic interactions [66]. Clinical translation of these
findings will be key. Novel clinical trial approaches that
consider clonal evolution in the context of cancer diversity
may shed light on the efficacy of unexpected combination
therapies and provide evidence for adaptive therapy to
avoid the selection of drug-resistant subclones [39,67-69].
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