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Abstract

Background: Mismatch repair deficient colorectal adenomas are composed of transformed cells that descend from
a common founder and progressively accumulate genomic alterations. The proliferation history of these tumors is
still largely unknown. Here we present a novel approach to rebuild the proliferation trees that recapitulate the
history of individual colorectal adenomas by mapping the progressive acquisition of somatic point mutations
during tumor growth.

Results: Using our approach, we called high and low frequency mutations acquired in the X chromosome of four
mismatch repair deficient colorectal adenomas deriving from male individuals. We clustered these mutations
according to their frequencies and rebuilt the proliferation trees directly from the mutation clusters using a
recursive algorithm. The trees of all four lesions were formed of a dominant subclone that co-existed with other
genetically heterogeneous subpopulations of cells. However, despite this similar hierarchical organization, the
growth dynamics varied among and within tumors, likely depending on a combination of tumor-specific genetic
and environmental factors.

Conclusions: Our study provides insights into the biological properties of individual mismatch repair deficient
colorectal adenomas that may influence their growth and also the response to therapy. Extended to other solid
tumors, our novel approach could inform on the mechanisms of cancer progression and on the best treatment
choice.
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Background
According to the model of clonal evolution, a solid and
monoclonal tumor develops from a single mutated cell
that progressively forms a mass of genetically heteroge-
neous cancer cells [1]. The initial phases of tumor ex-
pansion can be represented as a rooted binary tree [2]
where daughter cells inherit all mutations of the parent,
acquire new ones, and pass old and new mutations to
the progeny (Figure 1A). The genomic modifications de-
tectable in the final population are those inherited in the
cell lineages that survived extinction, and the frequency
of each mutation depends on the fraction of cells
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bearing it. Clonal mutations have the highest frequency
because they were present in the founder cell at the root
of the tree and are then inherited in all tumor cells. Sub-
clonal mutations were instead acquired during the for-
mation of the tumor mass. In case of neutral evolution,
the frequency of subclonal mutations depends on the
time when they were acquired: the earlier the acquisi-
tion, the higher the frequency. In case of mutations oc-
curring in cells under selection, instead, the frequency
does not directly reflect the acquisition time and muta-
tions occurred later can have high frequency. In either
case, the frequency of each somatic mutation is propor-
tional to the fraction of mutated cells. Thus, the tumor
mutation profile, that is, the collection of clonal and
subclonal mutations, harbors the relics of the tumor
evolutionary history and can be used to reconstruct the
tumor proliferation tree (Figure 1B). Keys for a reliable
tree reconstruction are a sensitive detection of subclonal
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Figure 1 Evolutionary model of tumor clonal expansion. (A) Expansion of a monoclonal adenoma represented as a rooted binary tree [2]. Colored
dots indicate somatic mutations that progressively occur during tumor development and are inherited by the surviving progeny. (B) Tree recapitulating
the proliferation as inferred from the mutation profile. The combination of nodes in the tree reveals the occurrence of selection and cell death during
tumor proliferation.
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mutations and a reliable estimation of their frequency. A
few labs including ours have shown that next generation
sequencing (NGS) can be readily used to identify subclo-
nal mutations [3-5]. Sensitivity of NGS in detecting rare
mutations increases with the depth of coverage, that is,
with the number of times a given nucleotide position is
sequenced. This property of NGS has been applied to re-
build tumor evolution through the identification of alter-
ations occurring in the genome of single cancer cells
[6-8] or in the whole cancer cell population [9-14].
These studies aimed to investigate genetic heterogeneity
within primary tumors [7,8,11], and between primary
tumors and metastases [6,9,10]. More recently, the mu-
tation clonal-subclonal hierarchy has been used to re-
build carcinogenesis in prostate cancer [12] and multiple
myeloma [13].
Here, we rebuilt the early phases of tumor development

in four mismatch repair (MMR) deficient colorectal aden-
omas using the mutation profiles of the corresponding
cancer cell population. We focused our analysis on colo-
rectal adenomas because these tumors progress through a
well-defined multistep genetic and histopathological suc-
cession of events [15]. Moreover, although there are a few
reports of a possible polyclonal origin of polyps (see
for example [16]), colorectal adenomas are thought to des-
cend from one cell of origin located at the basis of the
colon crypt [17-20]. Finally, owing to defects to the mis-
match repair system, these tumors have high mutation
rate owing to the mutator phenotype, but low chromo-
somal instability [21-23]. To infer the mutation profiles
of these tumors, we deep sequenced the X chromosome
of male patients. The high depth of coverage and the
presence of only one copy of the X chromosome allowed
the identification of subclonal mutations with a precise
estimate of their frequency. We developed a novel ap-
proach to call high and low frequency mutations, to clus-
ter them according to their frequencies and to finally
rebuild the proliferation trees directly from these mutation
clusters. The trees from the four patients recapitulated the
evolutionary history of the original tumor and allowed to
estimate the dynamics of their growth. We propose that
similar analyses may be extended to other solid tumors to
better understand the mechanisms of their development
and to suggest the most effective therapeutic approach.

Results
Mutation profiles of the X chromosome in four MMR-
deficient colorectal adenomas
We captured all protein-coding exons and selected inter-
genic regions of the X chromosome for a total of more
than 17 Mbp of DNA from four MMR-deficient aden-
omas and matching normal counterparts deriving from
four distinct male patients (samples A1, A2, A3, A4,
Table 1). Using Illumina deep sequencing, we produced
a total amount of more than 3 billion raw reads. After
alignment to the reference human genome and in ac-
cordance to literature [24,25], around 50% of the raw
reads (corresponding to around 60% of all aligned reads)
were mapped on target and the mean depth of coverage
was higher than 300× in all samples (Figure 2A). In
order to identify subclonal mutations at low frequency,
we developed a novel analytical pipeline able to detect
mutations and exclude possible errors. The pipeline was
composed of initial filtering steps to remove PCR dupli-
cates, sequencing, and alignment errors that have a
sample-specific occurrence likely due to the sequencing
performances (Figure 2B). In particular, we noticed that
in the frozen sample A1 mismatches with good quality



Table 1 Sample description

Sample Age
(years)

Germline mutation Tumor histology MMR
immunohistochemistry

MSI BRAF somatic
mutationsb

KRAS somatic
mutationsc

Other somatic
modificationsUnstable/Total Markers

A1 44 MSH2: c.(?_-68)_792 +
?del (deletion of exons
1 to 4)

Low-grade tubular
adenoma with focal
high-grade dysplasia,
≥50% tumor contenta

Loss of MSH2 5 BAT25, BAT26, NR21,
NR24, MONO-27

Wild type Wild type -

A2 50 MSH2: c.2738delC Flat adenoma with low
to high dysplasia

Loss of MSH2 3 BAT26 (minor fraction),
NR21, MONO-27

Wild type Wild type -

A3 77 - 85% well differentiated,
early adenocarcinoma with
up to severe dysplasia

Loss of MLH1 4 BAT26, BAT25, NR24,
MONO-27

V600E Wild type MLH1 hypermethylation

A4 48 MSH2: c.1216C > T 60% adenomatous tissue,
25% well-differentiated
adenocarcinoma extending
into the muscular layer

Loss of MSH2 4 BAT26, NR21, NR24,
MONO-27

Wild type Wild type -

For each sample, age at the time of tumor resection, germline mutation, tumor histology, immunohistochemistry of mismatch repair (MMR) proteins, measure of microsatellite instability (MSI), and somatic mutation in
colorectal cancer hotspots are reported. Germline mutations are described according to the Human Genome Variation Society (http://www.hgvs.org/mutnomen). MSI was assessed by checking for a panel of five
unstable microsatellite markers (BAT25, BAT26, NR21, NR24, and MONO-27).
aTumor content was inferred from the MSI spectrum [26].
bMutation V600E was screened by TaqMan assay in samples A2, A3, A4 and by direct sequencing of BRAF exon 15 in sample A1.
cKRAS exons 2 and 3 were sequenced in all samples, except for sample A1 where only exon 2 was screened.
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Figure 2 Sequencing throughput and strategy for variant calling. (A) Uniformity of coverage in the exonic and intergenic targeted regions.
The mean coverage in each sample is highlighted in red. More than 50% of targeted regions were sequenced at least at 300× coverage in all
four tumors. (B) Pipeline for variant calling. First, filters for quality scores and for propensity to accumulate errors were applied. Second, statistical
tests were applied to account for the coverage and quality score of the variant site (Bernoulli distribution and Chernoff bound) and for the error
accumulation of the surrounding region (Binomial distribution). Each test was performed on forward and reverse reads independently, and the
resulting four Ps were adjusted using Bonferroni correction. Candidate variants were retained if they passed all filters on mismatches and all
statistical tests of the variant calling. The resulting ensemble of all somatic mutations at various frequencies constituted the adenoma mutation
profile. (C) Variation of the quality score at different positions along the read. In sample A1 mismatches were evenly distributed along the read,
with a slight decrease towards the end. In the other samples there was higher occurrence of mismatches at the beginning and at the end of the
read, indicating that these positions were prone to accumulate errors. (D) Cumulative percentage of mismatches at each read position for base
calls with quality score ≥30. In each sample, we only considered the portion of the reads where a linear correlation was observed. This
corresponded to positions (20 to 76) for sample A1 and to positions (20 to 60) for samples and A2, A3, A4.
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score (Q ≥30) were overall evenly distributed with a
slight decrease toward the end of the reads, while in the
three FFPE samples there was an accumulation of mis-
matches at the beginning and at the end of the reads
(Figure 2C). For this reason, in each of the four samples,
we only retained positions with a uniform mismatch dis-
tribution along the read (Figure 2D). We then performed
the proper variant calling only on the retained positions.
We took into account the coverage and the quality score
of each variant site using the Bernoulli distribution and
the Chernoff bound, and measured the propensity of the
surrounding regions to accumulate errors with the bino-
mial test (Figure 2B and Methods). We adjusted for mul-
tiple comparisons using Bonferroni correction and only
mutations that passed all tests were further retained.
Germline mutations were identified and discarded after
comparison with the normal counterpart of each aden-
oma. All remaining mutations underwent visual inspec-
tion and the final pool of clonal and subclonal mutations
constituted the mutation profile of the tumor (Figure 3A,
Table 2, and Table S1 in Additional file 1). For each sam-
ple, we validated representative mutations and assessed
overall high accuracy, ranging from 85% to 100% (Table 3
and Figure S1 in Additional file 2). We also detected the
same low frequency mutations in multiple paraffin sec-
tions of the same tumor, thus confirming the monoclo-
nal origin of the analyzed cancer cell populations.
In all samples, the signature of somatic mutations

showed the typical pattern of MMR-deficient tumors
[23,30], with a prevalence of C:G to T:A transversions
when compared to SNPs and to the rest of mismatches
(Figure 3B). Interestingly, the number of somatic vari-
ants of the four mutation profiles was in agreement with
the degree of genomic instability as inferred from the
MSI spectrum (Tables 1 and 2). In particular, sample A1,
which was a highly unstable adenoma, also showed the
highest number of mutations. On the contrary, the mu-
tation frequency of sample A2 was of around three mu-
tations per mega base pairs, which is in the range of
mutation frequency of MSI low CRCs [23]. We also
reassessed the MMR status of sample A2 and confirmed
the loss of MSH2 and the low levels of MSI (Figure S2
in Additional file 2). These observations indicate that
our strategy succeeded in recapitulating the mutation
landscape of each tumor both qualitatively and quantita-
tively. In all samples, the vast majority of the detected
mutations (638 out of 771 total mutations, Table S1 in
Additional file 1) fell in intergenic regions, while 49
out of the 133 mutations that hit protein-coding exons
also led to amino acid changes. Three of these non-
synonymous mutations modified known cancer genes
(MSN, NRK, GPR112) [27-29,31]. Interestingly, GPR112
has been already reported as a potential driver gene in
CRC [28] (Figure 3C and D).
In addition to single nucleotide variants, we also iden-
tified high frequency small insertions and deletions
(indels, Table 2). Again in line with what has been previ-
ously reported [30], we observed a lower occurrence of
indels in comparison to single nucleotide modifications.
Four of these indels occurred in coding exons and led to
the frameshift of the corresponding codon (Table S2 in
Additional file 3). Owing to the difficulty of correctly
assessing their frequency, indels were not used for re-
building the proliferation trees.
In addition to the whole set of single nucleotide vari-

ants, in each tumor we identified a gold set of highly re-
liable mutations with frequency ≥4% and supported
by more than six reads starting at different genomic po-
sitions (Table S1 in Additional file 1). The lower bound
of frequency was set because we could not determine
whether mutations with frequency <4% were true or not,
due to sensitivity limits of the TaqMan assay that we
used for the orthogonal validation. The support of more
than six reads starting at different positions excluded
variants that, although true, could have inaccurate fre-
quency estimation due to PCR amplification (Figure S1
in Additional file 2). As described below, in each tumor
we used the gold set as a control and rebuilt in parallel
two independent tumor proliferation trees using the
whole and the gold sets of mutations.

Mutation clusters from mutation profiles
Although MSI CRCs are usually stable towards rear-
rangements and copy number alterations [21-23], we
measured the copy number status of the X chromo-
somes to control for possible alterations that would
affect the mutation frequency estimation. We selected
eight regions broadly distributed along the entire length
of the X chromosome (Figure S3 in Additional file 2)
and assessed their copy numbers by TaqMan copy num-
ber variation assays. We observed no copy number vari-
ation in any of the regions in all analyzed tumors (Table
S3 in Additional file 4), thus assessing the integrity of
the X chromosome. These results also confirmed that all
mutations that we detected were hemizygous because
they lay on the X chromosome of male patients and no
copy number variation was observed. Therefore, the fre-
quency of each mutation directly reflected the fraction
of mutated alleles in the tumor cell population and,
hence, the fraction of mutated tumor cells. This ranged
from all cells in the case of clonal mutations to less than
3% in the case of rare mutations present in a small por-
tion of the cell population (Figure 4A and Table S1 in
Additional file 1).
Because we inferred mutation frequency directly from

Illumina reads and intended to use it for the reconstruc-
tion of the tumor proliferation trees, we evaluated Illu-
mina accuracy in quantifying mutation frequency. To
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Table 2 Mutation profiles and indels of the four adenomas

Sample Filtering steps Variant calling SNPs Somatic mutationsa Gold setb Mutations/Mbpc Indelsd

A1 9,717 9,021 8,586 367 359 21 80

A2 7,681 7,194 7,095 56 37 3 2

A3 10,632 8,704 7,328 168 87 10 20

A4 10,594 8,826 8,516 180 172 11 31
aMutations retained after manual inspection.
bMutations with frequency ≥4% and occurring in >6 different read positions.
cMbp on target are 17.2, 16.7, 16.5, and 17.1 for A1, A2, A3, and A4, respectively.
dOnly high frequency indels are shown (frequency ≥20%). Overall, only three indels introduced frameshifts and likely activated the non-sense mediated decay
(Table S2 in Additional file 3). These modifications were not considered for clustering and tree reconstruction because their frequency cannot be
precisely measured.
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Table 3 Accuracy of variant calling

Sample All mutations 4% ≤ Frequency <10%

Tested Validated Accuracy Tested Validated Accuracy

(% total) (% total)

A1 24 (7%) 24 100% 4 (25%) 4 100%

A2 11 (20%) 9 82% 2 (9%) 2 100%

A3 20 (12%) 17 85% 4 (6%) 2 50%

A4 14 (8%) 13 93% 3 (14%) 3 100%

Overall 69 (9%) 63 91% 13 (10%) 11 85%

Mutations were randomly selected and tested with either Sanger sequencing (frequency ≥10%) or TaqMan assay (4% ≤ frequency <10%). TaqMan results for
mutations with frequency <4% were inconclusive, likely due to the detection limit of the assay (see Table S1 in Additional file 1). Accuracy was estimated as the
fraction of confirmed variants over the total pool of tested variants.
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this aim, we quantified 10 dilutions (from approximately
4% to approximately 41%) of a homozygous germline
mutation with the corresponding wild type genotype
using qPCR. We then deep-sequenced each dilution with
Illumina and measured the corresponding mutation fre-
quency as the number of mutated reads over the total
reads that covered that position. We found that qPCR
and Illumina measures were highly comparable also for
very low mutation frequencies (R2 = 0.995, Figure 4B
and Table S4 in Additional file 5), thus confirming that
Illumina deep sequencing is able to correctly measure
mutation frequency. To account for the experimental
error in the Illumina frequency estimations, we mea-
sured 95% confidence interval for each of the 10 dilu-
tions using a binomial distribution with mean = np,
where n was the observed depth of coverage obtained
with Illumina sequencing and p was the frequency of the
variant allele as measured by qPCR. We observed that
the values of frequency measured with Illumina always
fell within the 95% confidence intervals (Figure 4B), thus
showing that the experimental uncertainty in Illumina
frequency estimation can be modelled with a binomial
distribution. Consequently, we accounted for the experi-
mental error associated with the Illumina frequency of
each mutations observed in the four tumors by measur-
ing 95% confidence interval with a binomial distribution
(Figure 4C). We used these confidence intervals to clus-
ter mutations into discrete groups following a multi-step
procedure (Figure 4C). First, we identified as cluster
seeds mutations with either a confidence interval that
did not overlap with that of any other mutation or, in
case of overlap, with the smallest confidence interval. By
definition, the seeds had the most accurate frequency es-
timations and defined the number of distinct clusters in
each sample. Second, we assigned mutations to a given
seed if the corresponding frequency confidence intervals
unambiguously overlay only with that seed. Finally,
we assigned all remaining mutations to the cluster with
the highest probability measured using a binomial test
(Figure 4C). At the end of this procedure, each cluster
was composed of mutations whose frequencies were
more similar to each other than to those of any other
cluster (Figure 4D and Table S5 in Additional file 6). We
verified that at least for high frequency mutations, the
number of observed mutations per cluster was compar-
able to the expectation in all four samples (Figure 4E
and Table S5 in Additional file 6). For low frequency
mutations, instead, the observed mutations were fewer
than expected, likely because these mutations require
higher coverage to be detected with high confidence and
are more difficult to distinguish from random errors. It
should be noted, however, that low frequency mutations
only populate clusters that correspond to the leaves of
the trees and do not affect the inner branches (see
below). The overall good correspondence between ob-
served and expected number of mutations per cluster
confirms that the obtained mutation profiles captured a
representative portion of all somatic mutations that were
progressively accumulated in the X chromosome during
clonal expansion.
We further investigated clustering reliability and its

dependence on the experimental errors of mutation fre-
quency measurements. To this aim, we set up a simula-
tion study where we randomly altered the frequency of a
given fraction of the total mutations (from 10% to 100%)
within its 95% confidence interval for 1,000 times. We
then clustered mutations at each iteration and eventually
obtained a distribution of clusters in the 1,000 simula-
tions (Figure S4 in Additional file 2). Up to 40% of var-
ied mutations, the majority of simulations (606
simulations for A1; 709 for A2; 557 for A3; 625 for A4)
had the same number of clusters observed in the real
data in all four samples (Figure 4F). The percentage of
mutations that could be varied without detecting any
difference between observed and expected clusters was
even higher in samples A1, A2, and A4 (Figure S4 in
Additional file 2). Finally, in order to exclude the possi-
bility that the simulations were biased towards seeds, we
confirmed that the seeds were not the only mutations
with small confidence intervals (Figure S5 in Additional
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mutations. (E) Expected and observed somatic mutations for each cluster. The expected number of mutations per cluster was calculated as the number of
observed mutations over the fraction of positions with coverage equal or higher than the minimum coverage for those positions. The number of observed
mutations reflected that of expected mutations, except for low frequency mutations that were less than expected. These mutations were under-represented
in our datasets likely because they are more difficult to identify and to distinguish from random errors. (F) Clustering performance. Shown are the distributions
of the number of clusters obtained from 1,000 simulations. At each iteration, the frequency of 40% random mutations was varied within 95% confidence
intervals, and mutations were re-clustered with our method. In all samples, the median of the distribution is equal to the observed number of clusters. Except
for sample A3, the clustering of all other samples is robust even upon modification of higher percentage of mutations (Figure S4 in Additional file 2).
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file 2). Altogether, these results indicate that the cluster-
ing method was robust even upon massive perturbation
of mutation frequencies and succeeded in reliably group-
ing mutations with similar frequency.

Tumor proliferation trees from mutation clusters
In order to infer the proliferation tree from the clusters
of mutations, we relied on the model of tumor clonal
evolution. The underlying assumptions of this model
were that: (1) there is direct parent-descent relationship
between cells of the tumor bulk; and (2) the only visible
mutations in the final populations are those that sur-
vived the death of the whole cell lineage (Figure 1A and
Extended Methods in Additional file 2). One direct con-
sequence of this model is that each cluster identified
from the four tumor profiles collected mutations present
in a similar fraction of cells. In case of neutral evolution,
these mutations also occurred at the same time of tumor
expansion. In case of mutations acquired in cells under
selection, no direct relationship could be inferred be-
tween frequency and insertion time. However, in either
of the two scenarios, mutation frequency corresponded
directly to the fraction of cells with that mutation be-
cause, for a mutation to be present in a given number of
cells, a minimum number of divisions must have oc-
curred. This number does not correspond to the exact
number of cell divisions, rather it is based on the criter-
ion of minimum evolution that minimizes the path of di-
visions needed to observe a given mutation frequency in
the final population (Figure 1B). Another consequence
of the parent-descent relationship between cells is that
the mean frequency of each cluster can be directly
exploited to identify the root, the external nodes (leaves)
of the tree, and the path to connect them (Figure 1B). In
particular, we identified the combination of nodes de-
scending from the root and from all other clusters in
each sample (Ntot) by dividing the frequency of each
cluster by the frequency of the lowest cluster (see
Methods and Extended Methods in Additional file 2). It
should be noted that this model does not imply that all
mutations of one cluster occurred at the same time, but
only that they are distributed among a defined number
of nodes, which again recapitulate the minimum number
of divisions that were needed to observe this frequency
in the final population. The time for covering this path
can be very different between each pair of parent-
descend nodes depending on selection.
Starting from the combination of nodes Ntot that de-

rived from the clusters of each sample, we developed a
recursive algorithm that connected the nodes and recon-
structed the corresponding proliferation tree compatible
with Ntot (Figure 5A and Methods). For each tumor we
rebuilt two trees, one using the clusters obtained from
the entire set of mutations and the other using those
obtained from the mutations of the gold set. Notably,
the two trees were always identical at the main branches
and minor differences, if any, were detected only at the
leaves of the trees (Figure 5B and Figure S6 in Add-
itional file 2). This confirms that even if we detected a
number of low frequency mutations lower than expected
(Figure 4E), this did not affect the main branches of the
trees. In addition, it also shows that also the frequency
of very rare mutations is reliably estimated, although we
had no orthogonal method to validate it.

Robustness of proliferation tree reconstruction
We have several indications that our method led to a ro-
bust tree reconstruction. First, in all four samples we
could always identify at least one binary tree that was
compatible with Ntot, and this is not expected to occur
by chance (P =1.1 × 10-4, see Methods). Second, we iden-
tified only one tree in samples A1, A2, and A4 and four
almost identical trees in sample A3, despite there was a
high number of possible trees that were compatible with
the observed number of external nodes (ranging from
286 trees for sample A2 to more than 12,000,000 trees
for sample A3 [2,32], see Methods). Third, we performed
a series of simulations in which we randomly removed a
given fraction of mutations (from 1% to 20% of the total)
for 1,000 times, clustered the remaining mutations and
rebuilt the corresponding trees. At the end of the simu-
lations, we counted how many different combinations of
nodes were obtained. For both the gold and the whole
sets of mutations, the combination of nodes observed in
real data was also the most frequent in the simulations
(Figure S7 in Additional file 2). In addition, the second
most frequent combination differed from the observed
one only for one node. These results show that our tree
reconstruction was stable also upon removal of a sub-
stantial fraction of mutations and that the signal con-
tained in the tumor mutation profile of each adenoma
was robust enough to allow the clear and unambiguous
identification of the corresponding proliferation tree.

Properties of the four proliferation trees
One recurrent feature shared in all four trees was their
asymmetric growth meaning that one of the two
branches of the tree contributed to the final population
more than the other (red dots in Figure 5B). Notably,
this feature was present also in sample A2, despite this
tree was poorly informative due to the low number of
mutations. These results suggest that the majority of the
tumor cell population is composed of one dominant
subclone that prevailed over the others from the early
phases of tumor progression and that cells of the tumor
bulk have different proliferative potential. Therefore, the
mutation profile of each tumor harbors the traces of the
selection that occurred during clonal expansion. Next,
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Figure 5 Proliferation trees. (A) Pipeline for tree reconstruction. Mean cluster frequencies were used to identify the root and to enumerate the
external nodes (leaves) descending from each cluster. Once the combination of nodes (Ntot) was identified for each tumor, the tree was rebuilt using a
recursive algorithm. As explained in the text, the algorithm was based on the parent-descent relationship between nodes of a full binary tree, which
resembles the parent-descent relationship between cells, and implies that each parent node led to two descending nodes. The algorithm started from the
root of the tree and progressed down to the leaves by generating pairs of nodes according to the combination found in Ntot. In the shown example, the
first two nodes that directly descended from root A are node B, which led to two leaves, and node C, which leads to one leaf E and to node D. Node D, in
turn, produces two leaves E. (B) Proliferation trees of the four samples. Each circle represents one node of the tree. In the dominant branch, mutations can
be assigned to a given node (red) and the circle size is proportional to the number of mutations. Filled circles identify nodes supported by the gold sets
(mutations with frequency ≥4% and in >6 different read positions). Of the four highly similar trees of sample A3 that were compatible with the obtained
combination of nodes (Figure S6 in Additional file 2), only the one that makes no a priori assumption on the proliferation history is shown.
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we analyzed the distribution of mutations along the
branches of each tree and noticed that a variable number
of mutations was introduced in the different nodes of
the four samples (Figures 4D and 5B). The uneven dis-
tribution of mutations among the nodes can be biologic-
ally explained with the occurrence of cell death and/or
asymmetrical cell divisions at that point of tumor
growth. If after cell division only one daughter cell sur-
vives and maintains the capability of transferring the
genetic information to the progeny, the total number of
cells for that cycle will not increase and mutations
accumulated at that stage of tumor development will
have similar frequency in the final population. Therefore,
the number of mutations in the nodes may provide use-
ful information on the tumor growth history. In samples
A1 and A4, more than 80% of all somatic mutations
could be unambiguously assigned to the early nodes of
the dominant branch (Figure 5B). This suggests that the
initial growth of these tumors was not exponential; ra-
ther the dominant subclone required a certain amount
of time before eventually prevailing. Mutations in sample
A3 were instead more evenly distributed along the
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dominant branch and the corresponding tree showed
a dense branching already from the early phases
(Figure 5B). These features are compatible with a rapid
establishment of the dominant subclone and with a sud-
den initiation of tumor proliferation. Although no infer-
ence is possible for sample A2 because there is only one
unambiguous node of the dominant branch, the com-
parative analysis of the other three tumors indicates that
the growth potential of the dominant subclone is highly
variable among samples.

Discussion
Our study aimed at rebuilding the proliferation history
of four adenomas from the mutation profile of the X
chromosome. The trees that we obtained show that each
tumor is a dynamic system that grows following a spe-
cific path. One recurrent feature of the proliferation
trees of all four tumors is the asymmetric growth that
can be explained with the progressive establishment of a
dominant subclone that composes most of the tumor
bulk (red dots of Figure 5B), while the rest of the mass
is formed of minor subclones (black dots). It should be
noted that, since we only sequenced the X chromosome
of four patients, driver mutations responsible for the se-
lective advantages of the dominant subclone are unlikely
to be among the mutations that we identified and used
for the tree reconstruction. Nonetheless, we were able to
detect different selection pressures acting on sister
branches of the tree and the appearance of the dominant
subclone in one of them. Our method does not require
the presence of driver mutations among the ones used
for tree reconstruction: when one or more driver muta-
tions occur somewhere in the cancer genome and give
selective advantages, this is reflected in the number and
frequency of the detected mutations in the final popula-
tion and, eventually, in the obtained tree.
The genetic heterogeneity between dominant and

minor subclones of the four tumors suggests functional
heterogeneity among the cells that constitute the bulk of
solid tumors, similarly to what has been shown for
breast and CRC [11,33], leukemia [34,35], and multiple
myeloma [13]. Heterogeneity of the colorectal tumor
bulk has been so far ascertained through the isolation of
colon cells that express stem-like properties [36,37],
through the capacity of primary CRC to differentiate
into multiple lineages [38], and through the identifica-
tion of transcriptional heterogeneity [39]. We now add
the formal evidence that cells of MMR-deficient tumors
are genetically heterogeneous and do not contribute
equally to the initial phases of tumor growth.
Despite the common hierarchical organization, the

four proliferation trees show a high variability in their
evolutionary history, as shown by the uneven distribu-
tion of mutations among the nodes in the four trees
(Figure 5B). There are several reasons that likely concur
to this variability. The proliferation history could depend
on the tumor-specific landscape of driver mutations
that confer a variable degree of selective advantage.
Large-scale resequencing screenings of cancer genomes
have so far identified 2,000 mutated genes that poten-
tially play an active role during cancer development
[31,40,41]. Except for key genetic players that are recur-
rently mutated (TP53, PIK3CA, PTEN, KRAS, and a few
others), the large majority of driver genes are tumor-
specific. Thus, since the mutation landscape in cancer is
specific of each tumor type and sample [42,43], also the
proliferation history will be sample specific. Our results
suggesting a sample-specific proliferation history well
agree with a scenario where each cancer type, if not each
lesion, has its own repertoire of mutations that directly
influence the way that particular tumor developed. This
scenario would suggest that the multistep progression
may be needed not only for the adenoma to carcinoma
transition [15] but also for the establishment of the
dominant subclone in the early phases of tumor progres-
sion. In addition to the genetic contribution, the variable
proliferation history could also be due to the macro- and
micro-environment that surrounds and sustains tumor
growth. For example, external factors such as inflamma-
tion are known to support the acquisition of genetic mu-
tations during cancer progression [44] and they could
play a role in determining the growth dynamics. Another
intriguing reason for the variable proliferation history
may reside in the distinct molecular mechanisms that
promote tumorigenesis in different types of MMR-
deficient tumors. In our analysis, sample A3 is the only
sporadic adenoma with hypermethylation of MLH1 and
a non-synonymous mutation in BRAF [45]. Samples A1,
A2, and A4 are instead hereditary non-polyposis colo-
rectal lesions with heterozygous germline mutations in
the MMR genes [46]. Sporadic and inherited MSI CRCs
have heterogeneous clinical and molecular features, in-
cluding age of diagnosis and different polyp morpholo-
gies [47]. Accordingly, it is not surprising that these two
tumor types also show different proliferation histories.
Moreover, sample A3 derives from an older patient and
age at diagnosis might also influence the evolution of
the tumor clone. Even though referred only to one case
of sporadic MMR-deficient tumor, our data suggest that
the outgrowth of the malignant component from a mis-
match deficient polyp with hMLH1 methylation is a
fast event. Such fast growth in the presence of BRAF
mutations can be hypothesized to be relevant in the pro-
gression of right-sided colon tumors, which are difficult
to timely diagnose and effectively prevent [48]. This is
compatible with the adverse outcome of sporadic MMR-
deficient CRCs with a BRAF V600E mutation [49,50].
To support this hypothesis, the growth dynamics of
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more samples of the two cancer types is needed. If con-
firmed, this difference not only will open new scenarios
to our comprehension of the molecular basis of these
two CRC types, but could also directly impinge on pa-
tients, and in particular on the selection of the best
therapeutic approach.
The experimental conditions that we used, in particu-

lar the size of the genomic region and the depth of
coverage, allowed a robust tree reconstruction for le-
sions with high degree of genomic instability, both for
frozen and FFPE samples (A1, A3, and A4). Sample A2,
which was almost stable and had few somatic muta-
tions, showed a tree with few nodes that was poorly in-
formative on the proliferation history. To apply this
approach also to mutationally stable lesions, a larger re-
gion needs to be sequenced at deeper coverage in order
to collect a number of mutations large enough to re-
build an informative tree.

Conclusions
Our analysis of four mismatch repair deficient colorectal
adenomas confirmed the evidence that clonal evolution
is a highly heterogeneous process where different tumor
lesions grow following distinct evolutionary histories.
These differences are likely depending on a combination
of genetic and environmental factors that changed in
each patient or lesion. The uneven distribution of muta-
tions among the nodes of the four proliferation trees
suggests the co-existence of different subpopulations of
cells, which may contribute to the overall evolution of
the disease. Our findings shed light on the main patterns
of evolution that happen during the tumoral subclone
establishment in individual lesions. With the advent of
personalized medicine, it is not far the time when the
genetic signature will be easily derived for each single le-
sion of a patient and used to predict tumor progression,
thus providing a useful support for the cure selection.

Methods
Sample description
Samples used in the study (A1, A2, A3, A4) derived from
four male individuals cured at Centro di Riferimento
Oncologico, Aviano, Italy and Istituto Clinico Humani-
tas, Rozzano, Milan, Italy. All patients signed a written
consent for research and dissemination of results in
compliance with the Helsinki Declaration (CRO-15-
97,29/04/1997 and ICH-25-09, 07/05/2009). A1 was a
frozen sample, while A2, A3, A4 were formalin-fixed
paraffin-embedded (FFPE) samples. The blood (A1 and
A4) and the normal FFPE tissue (A2 and A3) were used
as matching normal reference. KRAS exons 2 and 3
(containing codons 12, 13, and 61 that are frequently
mutated in CRC) were amplified and Sanger sequenced
in DNA from each tumor and corresponding normal
counterpart. PCRs were performed using Taq polymer-
ase (Genespin) or GoTaq Master Mix (Promega), puri-
fied with ExoSap-it (USB Products, Affymetrix), and
sequenced using the ABI PRISM 310 Genetic Analyzer
(Applied Biosystems). In samples A2, A3, and A4, BRAF
V600E mutation was screened using TaqMan SNP
Genotyping Assay (Applied Biosystem). For sample A1,
BRAF exon 15 was amplified and Sanger sequenced in
DNA from tumors and corresponding normal counter-
parts. MSH2 protein expression was checked via immu-
nohistochemistry. Three micromillimeter-thick sections
were cut, deparaffinased, rehydrated, immersed in an
antigen retrieval solution (Diva Decloaker, Biocare Med-
ical) and incubated in the Decloaking Chamber pressure
system for 3 min at 125°C and then 5 min at 90°C. Sub-
sequently, the endogenous peroxidase activity was
quenched using the Peroxidase-1 (Biocare Medical) for
10 min and the non-specificities blocked by means of
the Background Sniper (Biocare Medical) for 20 min at
room temperature. The slides were treated for 1 h at
room temperature with primary antibodies raised against
MSH2 (clone FE11, 1:200, Calbiochem) and subse-
quently incubated with a polymer (MACH 4 Universal
HRP-Polymer, Biocare Medical) for 30 min. 3,3-diamino-
benzidine tetrahydrochloride (Dako) was used as a
chromogen to yield brown reaction products. The nuclei
were lightly counterstained with hematoxylin solution.
The lack of expression of MSH2 was assessed in all tis-
sues under an optical microscope by two histologists, in-
dependently. Sample features are described in Table 1.

Sample preparation, target enrichment, and Illumina
sequencing
Genomic DNA was extracted using the DNAeasy tissue
kit (Qiagen) according to the manufacturer’s protocol
for sample A1 and corresponding blood. For samples
A2, A3, and A4 and FFPE normal counterparts, paraffin
was removed and DNA was then extracted using the
proteinase K digestion and phenol-chloroform purifica-
tion. In each sample, around 2 Mbp exonic regions cor-
responding to 921 genes and around 15 Mbp intergenic
regions were targeted using the SureSelect Human X
Chromosome Panel kit (Agilent) and two SureSelect
custom kits, respectively. Sequence repeats, segmental
duplications, PAR regions, and gaps in the genome as-
sembly were excluded from the design of the custom
kits. In addition, only continuous regions longer than
200 bp and with GC content ranging from 30% to 65%
were selected to optimize the capture efficiency [24,25].
Target capture and sequencing were done following the
manufacturer’s protocol with slight modifications.
Briefly, a variable amount of genomic DNA ranging from
3 to 13 μg was sheared using an ultrasonic disruptor
(Bioruptor, Diagenode). After library preparation with
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Illumina Paired-End DNA Sample Prep Kit, 150 to
300 bp fragments were selected and purified by gel ex-
traction. Fragments were further amplified with 10 to
14 cycles of PCR and 500 ng were hybridized with each
bait library. DNA capture was followed by paired-read
cluster generation on the Cluster Station (Illumina). The
obtained libraries were sequenced on the Genome
Analyzer IIx with the 76 paired end protocol, using six
to nine lanes for each tumor sample and two lanes for
the matching normal sample of A1. The libraries ob-
tained from the normal counterparts of A2, A3, and A4
were sequenced using two lanes of Illumina HiSeq2000
per sample, with the 101 bp paired-end protocol.

Pipeline for variant calling
Paired-end reads were mapped to the human genome
(NCBI36/hg18) using Novoalign [51] allowing a maximum
of three mismatches per read. All reads uniquely mapping
within 75 bp of the targeted regions were considered on
target and retained. A novel approach was developed to call
variants spanning a broad range of frequencies (Figure 2B).
As a first step, variant sites were considered for further ana-
lysis if they were: (1) supported by at least 2 high quality
mismatches both in forward and reverse reads (phred qual-
ity score ≥30); and (2) located in regions of the read where
the cumulative number of mismatches increased linearly.
The first filter discarded amplification errors that tend to
recur always in the same position of identical reads as well
as variant base calls supported by poor quality scores. The
second filter allowed the removal of regions of the reads
that accumulate most sequencing and alignment errors
(Figure 2C and D). Further statistical tests were applied to
remove multiple sources of error. First, the quality score
and the coverage of all aligned bases at each variant site
were used to calculate the probability that r variant base
calls out of n total base calls (coverage) were due to sequen-
cing errors. Each base call i was assumed as a Bernoulli
random variable with success probability pi = 10-0.1xQi,
where Qi is the quality score of base call i. The mean prob-
ability for the sum of n total base calls was measured as:

μ ¼
X
i

pi

The upper bound on the P of observing r base calls
was inferred using the Chernoff bound [52] for any δ >0,
similarly to [53]:

P X > 1 þ δð Þ μ½ � <
eδ

1 þ δð Þ1 þ δ

" #μ

where r = (1+ δ)μ.
Second, the propensity to accumulate errors was mea-

sured in the region around each variant site. To this
aim, the occurrence of the reference base calls at five
and 10 flanking sites were averaged to compute the ex-
pected mean of a binomial distribution. The P to test
that the occurrence of reference base calls at the variant
site is higher than at the flanking sites was computed
using a binomial one-tailed test [4].
Each test was performed on forward and reverse reads

independently, and the resulting four Ps were adjusted
for the number of variant sites in each sample (9,717
variant sites for A1; 7,681 for A2; 10,632 for A3; and
10,594 for A4) using Bonferroni correction. Variant sites
were retained if they showed adjusted P <0.01 in each
test and their frequency was calculated as the number of
variant base calls divided by the coverage at each site.
SNPs were identified after comparison with the normal
counterpart and with several databases (dbSNP130 and
dbSNP131, 1000 genomes project and six personal ge-
nomes). The lower bound of mutation frequency was set
to 2.7%, which is the minimum frequency that was
found in all four samples. The final set of somatic muta-
tions with a depth of coverage >50× underwent further
manual inspection and the possible effects on coding
sites were predicted using SIFT [54]. In all samples, gold
sets of mutations with frequency >4% (lower limit of the
TaqMan assay) and supported by more than six reads
starting at different genomic positions were identified
(Table S1 in Additional file 1).
Somatic indels were identified using VarScan2 [55]

and after comparison of each tumor with the normal
counterpart. All somatic indels were absent in the nor-
mal sample, covered by at least 10 reads, and with fre-
quency ≥20%. The obtained pool underwent manual
inspection for further check.

Variant validation with orthogonal methods
For mutations with frequency higher than 9%, genomic
DNA from tumor samples was amplified by PCR using
the Taq DNA Polymerase (New England BioLabs) and se-
quenced with Sanger in both directions on a 3730xl DNA
Analyzer (Applied Biosystems) using the dRhodamine
chemistry. Mutations with frequency ranging from 4%
to 9% were validated using TaqMan SNP Genotyping
Assays, according to the manufacturer’s protocol, using
the ABI Prism 7900HT Sequence Detection System
(Applied Biosystems). In sample A1, an additional set of
mutations with frequency ranging from 10% to 31% was
also validated with both TaqMan and Sanger sequencing
to prove the reliability of the latter to detect mutations
in this range of frequency.

Analysis of copy-number variation
Copy number status was assessed by quantitative RT-PCR
using the TaqMan Copy Number Assay on a 7900HT Fast
Real-Time PCR System (Applied Biosystems) and the
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Sequence Detection Systems Software 2.2.2. Eight pre-
designed TaqMan probes were selected within the targeted
regions, in proximity of cluster seeds, and broadly distrib-
uted on the entire length of X chromosome (Figure S3 in
Additional file 2 and Table S3 in Additional file 4). Copy
Number Reference Assay TERT (Applied Biosystems, part
number 4403316) was used as a reference. Samples A1,
A3, and A4 were plated in quadruplicates using ap-
proximately 20 ng of DNA for each reaction. Sample A2
could not be tested because no DNA was available for this
sample. Copy-number calling was done with CopyCaller
v2.0 (Applied Biosystems), using the matched normal
counterpart as calibrator. In case of low confidence value
for the copy number assignment, data were reanalyzed
using the mean delta cycle threshold of all samples as a
calibrator (Table S3 in Additional file 4). High degradation
of sample A3 and matched normal N3 resulted in higher
Ct values, as known for FFPE samples [56]. Sample A3
was therefore analyzed separately and no confidence could
be assigned to the detected copy number owing to the low
number of samples.

Controlled dilutions for assessing Illumina accuracy
Controlled dilutions were performed using a murine
105 bp long region located on chromosome 5 and carry-
ing a single nucleotide polymorphism C/T (SNP
rs32609672, dbSNP build 128). The region was amplified
from the genomic DNA of two mice with CC and TT
homozygous genotypes (FVB/NJ and C57BL/6 J strains),
using a nested PCR approach. First, a 393 bp fragment
was amplified from each genomic DNA and sequenced
with Sanger for genotype confirmation. Subsequently, a
nested PCR was performed to generate the 105 bp long
amplicon, centered on the base of interest. The two
amplicons (CC and TT) were purified using the MinE-
lute PCR Purification Kit (Qiagen) and used for library
preparation with Illumina Paired-End DNA Sample Prep
Kit. The two libraries were pooled in 10 different molar
ratios with C:T proportion ranging from 0.04 to 0.41
(Table S4 in Additional file 5). The concentration of the
two alleles in each pool was quantified by qPCR and was
used to compute the expected values of mutation fre-
quency in the dilution curve. In order to reach a depth
of coverage comparable to the tumor samples, each
murine pool was sequenced on a different Illumina
GAIIx lane together with a human sample in an approxi-
mately 1:1,000 molar ratio. The obtained reads were
aligned to the mouse chromosome 5 (NCBI37/mm9)
using Novoalign [51] allowing a maximum of three mis-
matches per read.

Direct mutation clustering
Ninety-five percent confidence interval of frequency was
measured for each mutation given the coverage for that
position, using a binomial distribution. In this way, pos-
sible uncertainties in frequency estimation due to the
position coverage were taken into account (Figure 4B).
In each sample, cluster seeds were defined as mutations
with non-overlapping confidence intervals or, in case of
overlap, with the smallest confidence interval. Seeds had
the most accurate frequency estimation and defined the
number of distinct clusters for each sample. Starting
from the seeds, mutations were clustered in a two-step
procedure. First, all mutations with a confidence interval
overlaying with only one seed were unambiguously asso-
ciated to that seed. The frequency of unambiguous clus-
ters was calculated as:

f i ¼
Xm
i ¼ 1

ri
. Xm

i ¼ 1

ni

where m is the number of unambiguous mutations of
cluster j, and ri and ni are the number of variant base
calls and the coverage for mutation i, respectively. Sec-
ond, all remaining mutations were assigned to the clus-
ter with the highest P, measured with the binomial test
that compared the frequency of each mutation with the
frequency of each unambiguous cluster. The frequency
of the final clusters was calculated as before, using the
total pool of mutations. This frequency was directly
used for identifying the node combinations of the
trees. Clustering was done independently for the muta-
tions of the gold set and for all mutations (Table S5 in
Additional file 6).

Reconstruction of proliferation trees
To rebuild the proliferation trees directly from the
mutation clusters, we relied on the model of cancer
clonal expansion that represents tumor evolution as a
fully binary tree (Figure 1B). This model is based on two
assumptions:

Assumption 1: there is direct parent-descent relation-
ship between tumor cells. This assumption implies that:
(1) daughter cells inherit all mutations from the parent,
acquire new ones, and pass old and new mutations to
the progeny; and (2) subclones are not independent be-
cause all of them derive from the same cell of origin.
Assumption 2: the only mutations that are detectable
in the final population are the ones that survive the
death of the whole cell lineage. This implies that: (1)
only the proliferation history of subclones that survived
extinctions can be reconstructed; and (2) no
assumption can be made on subclones that died out,
because they did not leave traces (that is, mutations).

One direct consequence of the parent-descent relation-
ship between cells is that the total number of external
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nodes (leaves) that descend from the root (Next) can be
counted as:

Next ¼ f Cmaxð Þ = f Cminð Þ

where f(Cmax) and f(Cmin) are the frequencies of the
highest and lowest clusters, respectively. In our samples,
Next was 15, 9, 20, and 14 for A1, A2, A3, and A4,
respectively (Table S5 in Additional file 6). The number
of possible rooted binary trees increases with Next and
can be identified using the Wedderburn-Etherington
numbers [57,58]. Given the number of external nodes,
the four analyzed samples were compatible with 87,811,
286, 12,826,228, and 32,973 different binary trees,
respectively [2,32].
Similarly, the number of leaves (Nint)i that descend

from each other cluster (Cint)i is:

Nintð Þi ¼ f Cintð Þi = f Cminð Þ

where f (Cint)i represents the frequency of cluster i.
At the end of this procedure, the total combination of

leaves that descend from each cluster (Ntot) is:

Ntot ¼ Next; Nintð Þi; …; 1
� �

where 1 corresponds to f(Cmin) / f(Cmin).
The tree was directly inferred from the combination

Ntot using a recursive algorithm based on the parent-
descent relationship between nodes of a full binary tree,
which resembles the parent-descent relationship be-
tween cells. This relationship implied that each parent
node led to two descendant nodes. The algorithm
started from the root of the tree and progressed down to
the leaves by generating pairs of nodes according to the
combination found in Ntot, as shown in Figure 5A. For
each adenoma, we always obtained at least one binary
tree and all possible trees for the gold set and for all mu-
tations are reported in Figure S6 in Additional file 2.
Since not all combinations of descending nodes may

be connected to form a binary tree, we measured the
probability to obtain a binary tree given the observed
combination of nodes in all four samples. All possible
combinations of internal nodes were enumerated in each
sample as Sn,c = c!/c!(n-c!), where n is the number of
possible values associated to the internal nodes and c is
the number of corresponding clusters. These values
are within 2 and Next-1. Each random combination of
nodes Nr was used for verifying the existence of a tree
with T = {Next, N r, 1} and the number of successful com-
binations was counted. P was calculated as the fraction
of successful combinations out of the total trials in the
four samples.
Data availability
Sequence data for all samples are available from the Euro-
pean Genome-phenome Archive [EGA:EGAS00001000883].
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TaqMan copy number assays that assess the integrity of the X chromosome
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Additional file 5: Controlled dilution experiment. This file contains
the supplementary Table S4 including the results of the controlled
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