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Abstract

number alterations.

Allele-specific gene expression, ASE, is an important aspect of gene regulation. We developed a novel method
MBASED, meta-analysis based allele-specific expression detection for ASE detection using RNA-seq data that
aggregates information across multiple single nucleotide variation loci to obtain a gene-level measure of ASE,
even when prior phasing information is unavailable. MBASED is capable of one-sample and two-sample analyses
and performs well in simulations. We applied MBASED to a panel of cancer cell lines and paired tumor-normal
tissue samples, and observed extensive ASE in cancer, but not normal, samples, mainly driven by genomic copy

Background
Transcriptional activity at the different alleles of a gene in
a non-haploid genome can differ considerably. Both gen-
etic and epigenetic determinants govern this allele-specific
expression (ASE) [1] and impairment of this highly regu-
lated process can lead to disease [2]. To understand the
biological role of ASE and its underlying mechanisms, a
comprehensive identification of ASE events is required.
Recent advances in sequencing technology enable investi-
gation of entire genomes at increasingly fine resolution.
Whole exome DNA sequencing (WES) or whole genome
DNA sequencing (WGS) allows identification of single
nucleotide mutations or polymorphisms in all exonic
regions or the entire human genome, respectively, while
messenger RNA sequencing (RNA-Seq) enables quantita-
tive analysis of gene expression. The expression state of
the heterozygous loci detected in WES or WGS assays can
be investigated in a matched RNA-Seq sample from the
same individual, leading to a detailed map of the ASE
activity. This approach allows the investigator to uncover
the instances of complete or near allele silencing, which
would be impossible using only RNA-Seq data.
Next-generation sequencing of short reads is prone to
technical biases, for example, over- or under-representation
of certain sequence motifs or inhomogeneous mapping,
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which must be overcome for effective ASE detection [3-5].
In addition, data from multiple heterozygous single nucleo-
tide variants (SN'Vs) in the same gene must be integrated,
and the large number of tested genes requires appropriate
statistical treatment of the multiplicity of tested hypotheses.
Despite these obstacles, next-generation sequencing tech-
nology has been recently used to identify putative sites of
ASE within and between samples [4,6-14]. Previous work
using short reads to detect ASE focused either on model
organisms [11,13] or on normal human tissues or cell lines
[4,10,12], although limited studies have explored the ASE
landscape in cancer [15,16]. Further, there is currently no
standard and robust way to aggregate information across
SNVs into a single measure of ASE for an entire transcript
isoform or gene. Most published studies either tested ASE
at the SNV-level, sometimes requiring agreement across
SNVs within a gene [3,6,7,10,12,17,18], or used available
phasing information to sum reads across SNVs [4]. A re-
cent study [13] incorporated phased SNV-level information
into a gene-level statistical model, allowing for extra vari-
ability due to alternative splicing effects on allelic ratios at
individual SNVs. However, with the exception of limited
samples such as those from the HapMap Project [19], most
specimens do not have SNV phasing information. In some
cases, population genetics-based approaches and existing
databases can be used to phase common single nucleotide
polymorphisms (SNPs) [20]. However, the ability to phase
common SNPs into individual haplotypes, whether based
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on previous knowledge or a statistical method, does not
apply to somatic mutations in cancer. This makes it chal-
lenging to assign the ASE status to the mutant allele and
reduces the ability to study the ASE of mutation-carrying
genes.

To overcome these difficulties, we developed a novel
ASE detection method, called MBASED. MBASED as-
sesses ASE by combining information across individual
heterozygous SN'Vs within a gene without requiring a priori
knowledge of haplotype phasing; therefore, it can be ap-
plied to a wide array of existing RNA-Seq data sets, most
of which do not have phasing information available. When
phasing information is present, MBASED takes advantage
of it to increase the power of ASE detection. In practice,
even with modest sequencing depths, a large number of
genes show more than one detectable heterozygous exonic
SNV in RNA-Seq data, highlighting the importance of
having a framework for aggregating expression infor-
mation across individual loci.

To robustly estimate gene-level ASE from SNV-level
RNA-Seq read counts, MBASED employs a meta-analytic
approach [21], used originally to combine information
from several studies into a global effect estimate. Our ap-
proach can be used in both one-sample and two-sample
analyses, making MBASED a versatile tool for investigat-
ing allele-specific expression, both within an individual
sample and in the context of differential ASE.

We applied MBASED to a panel of human lung cancer
cell lines and paired tumor-normal lung and liver tissue
samples. None of our samples had haplotype phasing
information available, exemplifying a typical situation in
gene expression studies. Our goal was to investigate the
landscape of ASE in cancer and to identify potential in-
stances of ASE contributing to cancer phenotypes. Previ-
ous studies of ASE in cancer were limited by sample size
[15] (three paired tumor-normal samples) or concen-
trated on detecting monoallelic expression in the context
of loss of heterozygosity events [16]. In this study we
present a general view of ASE, monoallelic or otherwise,
in a panel of 25 cancer samples across 2 tissue types, in-
cluding direct tumor/normal comparisons. We observed
high rates of ASE (9 to 26%) in tumor tissue samples
relative to normal tissue samples (0.5 to 2%), as well as
variable ASE rates in cancer cell lines (1 to 31%). We
found the observed elevated ASE rates in cancer samples
to be mainly driven by underlying changes in genomic
copy number and allelic composition. Numerous instances
of genes with recurrent ASE in cancer were attributed to
recurrent genomic alterations involving known cancer
genes, for example, T7P53 and KRAS. We found a number
of mutations with known or suspected roles in cancer,
including L858R mutation in EGFR and several G12A and
G12C mutations in KRAS, to exhibit overexpression of the
mutant allele, highlighting potential ASE contribution to
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cancer phenotypes. Joint analysis of tumors and matched
normal samples did not reveal any instances of loss of
imprinting, although several instances of loss of ASE in
tumor were observed, including a switch of the overex-
pressed allele in the mono-allelically expressed pro-
apoptotic factor BCL2L10. Our comprehensive analysis
revealed a rich landscape of ASE in cancer and highlighted
the flexibility and usefulness of our proposed method
MBASED for ASE detection.

Results and discussion

MBASED: meta-analysis based allele-specific expression
detection

First, we give an overview of our method, MBASED, with
detailed descriptions provided in Materials and methods
and in Supplementary methods in Additional file 1. Given
RNA read counts supporting reference and alternative
alleles at individual SNVs within a unit of expression,
MBASED provides an estimate of ASE and a correspond-
ing P-value. A unit of expression can be a gene, a tran-
script isoform, an exon, or an individual SNV: MBASED
is agnostic with respect to the nature of the unit provided
by the user. In this work, we choose the gene as a unit of
ASE, which we define as the union of all exons forming
individual transcript isoforms.

For a given gene, MBASED provides a framework for
aggregation of SNV-level information into a single meas-
ure of ASE. The meta-analytic approach adopted by
MBASED relies on specification of gene haplotypes, which
may be unknown for many data sets. In one-sample ASE
analysis, when true haplotypes are unknown, MBASED
uses RNA read counts at individual SN'Vs within a gene to
phase SNVs into two haplotypes. We adopt a pseudo-
phasing approach that assigns an allele with a larger read
count at each SNV to the ‘major” haplotype, with the im-
plicit assumption that ASE is consistent in one direction
along the length of the gene. This procedure is not
intended to faithfully reconstruct the true underlying
haplotypes in all cases, but we expect it to do so for
genes showing sufficiently strong ASE. We quantify the
allelic imbalance within a sample as the major allele
(haplotype) frequency (MAF) of the gene. The ASE detec-
tion then becomes a problem of identifying genes with
MATF >0.5. Phased counts from the ‘major’ haplotype are
transformed into normally distributed scores, and scores
from individual SNVs are combined into a single gene-
level score using a meta-analytic approach. This score is
then used to obtain an estimate of underlying allelic
imbalance. The meta-analytic statistical inference requires
the correct specification of gene haplotypes in order to
assign proper statistical significance to the observed ASE.
Consequently, the pseudo-phasing procedure employed by
MBASED in cases of uknown true haplotypes leads to anti-
conservative nominal P-values (Materials and methods).
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We address this problem by employing internal simula-
tions to adjust the reported significance levels. For genes
showing strong ASE, we expect our phasing procedure to
result in an accurate estimate of MAF, while internal
simulations will eliminate most of the allelically balanced
genes that may exhibit strong nominal significance due to
pseudo-phasing. The basic principles of MBASED in
absence of phasing information are illustrated in Figure 1.

In two-sample ASE analysis, the goal is to detect differ-
ential allelic imbalance between paired samples from the
same individual. MBASED treats this problem in an asym-
metric way, by designating one of the two samples as the
sample of interest, for example, tumor sample in a tumor
versus normal comparison. If true haplotypes are unknown,
then for any gene that exhibits tumor-specific ASE, only
the tumor read counts are informative for separating hap-
lotypes into ‘major’ and ‘minor’. In such cases, MBASED
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phases alleles at individual SNVs into two haplotypes
based exclusively on the sample of interest (tumor, in this
case). If normal-specific ASE is under study, for example,
when investigating loss of imprinting, then the normal
sample can be designated as the sample of interest. Differ-
ences between ‘major’ allele frequencies at individual SN'Vs
in the two samples are used as measures of between-sample
ASE. SNV-level scores are combined into a gene-level score
using meta-analysis, analogous to the one-sample approach.
This composite score provides an estimate of gene-level
MAF difference between the samples. As in our one-
sample approach, internal simulations are used to assign
statistical significance to the observed allelic imbalance, in
cases of uknown true haplotypes.

We adopt the approach of DerSimonian and Laird
[21] in establishing a meta-analysis framework for com-
bining information across SNVs. This approach views

~

>

SNV1 SNV2 SNV3 SNV1

_ Gene g, DNA i Gene g, RNA Inferred Haplotypes
S A S -
Bl Reference Allele B Reference Allele SNV1 | SNV2 | SNV3

S B Alternative Allele =R B Alternative Allele .

= = Major

33 33 (counts)

(@) G c (@] G C Mi

To A . T G inor

o G A ) G (counts)

o o A A
&1 &1 Meta-analysis MAF estimate:
o - o

SNV2

T,, = 0.65

SNV3

Gene g, RNA (simulated)

Simulations

g Distribution of Tsim, rr
m Reference Allele Inferred Haplotypes S
8- W Alternative Allele ° P, ase=3.1x107
c SNV1 [ SNV2 | SNV3 i
33 &g s
O © Major S8 3
(counts) 5 - 2
B —) g 5
Minor 6 LU o
@« o | (counts) x10 g s
A 3 m‘ 066 068 ' 070
J Meta-analysis MAF estimate: °

T, pr = 0.53

r T T T 1
0.50 0.55 0.60 065 0.70 0.75
Tsi m;,FT

Figure 1 Overview of MBASED algorithm (one-sample analysis). The two-sample approach is similar and is described in the text. (A) When
true haplotypes are unknown, MBASED pseudo-phases SNVs within a gene by creating a major haplotype out of the alleles with larger RNA read
counts at each SNV. A meta-analytic approach is then used to aggregate ASE information across individual SNVs to produce a meta-analysis
estimate of major haplotype frequency (MAF), T¢. (B) Keeping total read counts at each SNV constant, we simulate reference allele counts from a
null distribution with an underlying haplotype frequency ratio of 1:1, and then pseudo-phase the alleles into haplotypes based on simulated read
counts. Repeating this process 10° times we obtain an estimate of null distribution of Tr and assign a final ASE P-value, Pg,se 1O gene g as the
observed fraction of simulated estimates that are as extreme as or more extreme than Trr.
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the true unobserved treatment effect (in our case, ASE)
at each observational unit of a common phenomenon
(SN'Vs of a gene) as a random variable with a common
mean. The estimate of that mean is obtained by combin-
ing information across individual units and represents a
measure of the global effect (gene-level ASE). Within
this framework, MBASED also reports the P-value cor-
responding to the constancy of the treatment effect stat-
istic, Q, for multi-SNV genes in both one-sample and
two-sample analyses. Q measures the observed extent of
inter-SNV variability of ASE within a single gene (het-
erogeneity). The small reported P-values indicate genes
with individual SN'Vs showing significantly inconsistent
estimates of ASE. Such patterns can arise due to differ-
ences in ASE between various transcript isoforms of a
gene [13], and therefore MBASED provides metrics
for assessing the extent of isoform-specificity of the
observed gene-level ASE.

Situations where one allele is favored in the read count
data, even in absence of underlying ASE, have been
reported in RNA-Seq data, due, for instance, to enrich-
ment protocols, technological artifacts or a choice of a
short read aligner [3,4]. We refer to such cases as in-
stances of pre-existing allelic bias. When supplied with
the values of probabilities of observing each allele at
individual SNVs under conditions of no ASE, MBASED
can incorporate such pre-existing biases into its estimates
of ASE (Supplementary methods in Additional file 1), and
we further provide functionality to estimate these probabil-
ities from the data set itself. Our algorithm is implemented
in the R [22] package MBASED. Further details are found
in Materials and methods, Supplementary methods in
Additional file 1, and the package vignette.

Robust allele-specific expression detection by MBASED
To demonstrate the performance of MBASED in the ab-
sence of phasing information, we analyzed multiple sets
of simulated data, in which artificially introduced allele-
specific expression patterns were assigned to different
genes at various allele preferences and expression levels.
We selected a pair of matched tumor-normal samples
from our panel (HCC individual 2) and recorded all of
the detected exonic heterozygous SNVs in both samples,
retaining information about the total RNA coverage of
each SNV, while discarding the observed reference and
alternative allele counts in each sample. We chose a real
data set as the basis for our simulations to ensure that
the simulated data sets had realistic distributions of both
the number of heterozygous SNVs per gene and the read
coverage per SNV.

We assessed the performance of the one-sample MBASED
algorithm using the tumor sample. Briefly, we divided all
tested genes in the sample into 25 strata based on 5 levels
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of each of the 2 covariates of interest: the number of SNVs
in a gene (1, 2, 3, 4, or 5+) and the average coverage of
SNVs in a gene (10 to 20, 20 to 30, 30 to 40, 40 to 50, or
50+ reads/SNV). The stratification was done to ensure
that we tested MBASED across a variety of settings.
Within each stratum, we randomly assigned a specified
fraction f of the genes (for example, 25%) to be ASE true
positives (TPs), and the rest of the genes were assigned
to be ASE true negatives (TNs). We then simulated read
counts for SNVs in ASE TN genes from the null distri-
bution (MAF =0.5), while for SNVs in ASE TP genes
the counts were simulated from a signal distribution,
where we varied signal strength (MAF) from 0.7 to 0.9
(Materials and methods). We then ran MBASED on
each simulated data set and declared any gene with a
Benjamini-Hochberg [23] (BH) adjusted P-value <0.05
to exhibit ASE. We performed 100 simulations for each
combination of simulation settings, and Figure 2 illus-
trates average (over simulations) MBASED performance
for f=25%.

We found that the true positive rate (TPR) increased
with read coverage and underlying ASE strength (MAF),
as well as with the number of SNVs in a gene. We con-
trolled the overall false discovery rate (FDR) at the nom-
inal level of 5%, indicating that the P-value adjustment
was effective. MBASED performed well even in low in-
formation settings. For example, >90% of ASE TP genes
with 2 SNVs and 20 to 30 reads/SNV were recovered in
simulations with MAF =0.8. In analyzing real data, we
required that a gene exhibit an estimated MAF >0.7 in
addition to passing the statistical significance cutoff in
order to be declared as exhibiting ASE (Materials and
methods). As expected, this additional effect size cutoff
reduced the TPR drastically for underlying ASE strength
MAF =0.7 (overall TPR fell from 55% to 37%), but had
no appreciable effect on the TPR for higher values of
MAF (data not shown).

Similarly, we performed simulations in the two-sample
setting (Figure 3; Materials and methods). We observed
the dependence of the TPR on read coverage and the
number of SN'Vs per gene similar to one-sample simula-
tions, although for a given combination of simulation
settings the two-sample method had somewhat lower
power.

MBASED employs beta-binomial distribution to model
read count data (Materials and methods), which accounts
for extra-binomial variability (overdispersion) often ob-
served in allelic counts in RNA-Seq data sets [4,13,14].
We used the levels of overdispersion similar to those
observed in real data (Materials and methods) while per-
forming simulations, and note that MBASED performance
improves as the amount of overdispersion decreases and
the separation between signal and noise distributions of test
statistic increases (Figures S1 to S4 in Additional file 1).
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Figure 2 Performance of MBASED on simulated data in one-sample analysis. Genes were broken into 25 strata, based on number of SNVs
in a gene and average number of reads per SNV. Within each strata 25% of genes were randomly chosen to exhibit ASE. For each SNV in a true
positive ASE gene, one allele was randomly assigned to major haplotype and the corresponding read counts were simulated as described in
Materials and methods. MBASED was run on the simulated data and genes with Benjamini-Hochberg adjusted P-values <0.05 (false discovery rate
(FDR) control of 5%) were declared ASE. The average (across 100 simulations) true positive rate (TPR) and FDR within each strata and for each
level of ASE signal (MAF used for ASE true positive genes) are shown. The overall TPR and FDR levels are obtained by giving each stratum weight
proportional to the fraction of genes in that stratum (that is, these values are heavily weighted towards genes with few SNVs and low coverage,
common in our data), and the average values are given in panel titles, along with their estimated standard errors (SE). MBASED performs very well

at higher coverage levels and higher ASE extent.

We also tested the performance of MBASED in the
setting of pre-existing allelic bias, by assuming that at each
SNV under conditions of no ASE the probability of ob-
serving reference allele count, P,.; was >0.5 (global refer-
ence bias). We found the results to be very close to those
observed in the no-bias simulations (Figures S5 and S6 in
Additional file 1). We conclude that the MBASED method
is robust in detecting ASE genes in samples with unknown

true haplotypes, with detection power increasing with
observed gene coverage and the number of detected
heterozygous SN'Vs in a gene.

We further assessed the performance of MBASED in a
situation where the true underlying haplotypes are known.
We obtained previously published lymphoblastoid cell line
RNA-Seq data and a list of phased genomic variants for
(non-cancer) individual NA12878, genotyped together with



Mayba et al. Genome Biology 2014, 15:405
http://genomebiology.com/2014/15/8/405

Page 6 of 21

Coverage (Reads/SNV)

o 10-20 & 20-30 ¢ 30-40 x 40-50 * 50+

Effect Size (MAF)
— 07 — 08 — 09

MBASED TPR: MAF=0.7,
overall TPR=34.9% (SE=0.22%)

MBASED TPR: MAF=0.8,
overall TPR=67.4% (SE=0.19%)

MBASED TPR: MAF=0.9,
overall TPR=87.6% (SE=0.12%)

MBASED FDR: MAF=0.7,
overall FDR=4.3% (SE=0.15%)

100
90
80
70
< 60 S s
14 . x x
] & 2
30
20 +
10
o -
T T T T T T T T T T T T T T T
1 2 3 4 5+ 1 2 3 4 5+ 1 2 3 4 5+
# SNV per gene # SNV per gene # SNV per gene

MBASED FDR: MAF=0.8,
overall FDR=4.1% (SE=0.1%)

MBASED FDR: MAF=0.9,
overall FDR=4.2% (SE=0.09%)

20

15 4

FDR(%)
FDR(%)

20

15 4

10

FDR(%)

# SNV per gene

# SNV per gene

Figure 3 Performance of MBASED on simulated data in two-sample analysis. Simulations were performed similar to the one-sample case, as
described in Materials and methods. MBASED was run on the simulated data and genes with Benjamini-Hochberg adjusted P-values <0.05
(false discovery rate (FDR) control of 5%) were declared ASE. The average (across 100 simulations) true positive rate (TPR) and FDR within each
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strata and for each level of ASE signal (MAF used for ASE true positive genes) are shown. The overall TPR and FDR levels are obtained by giving
each stratum weight proportional to the fraction of genes in that stratum (that is, these values are heavily weighted towards genes with few SNVs
and low coverage, common in our data), and the average values are given in panel titles, along with their estimated standard errors (SE). MBASED

performs well at higher coverage levels and higher ASE extent, but its power is limited for the low-coverage, low-signal scenarios.

both parents as part of the 1000 Genomes Project [12].
We pre-processed the data analogously to other samples
in our panel (Materials and methods) and applied
MBASED both with (‘phased’) and without (‘non-phased’)
specifying the true haplotypes. Overall, we tested 2,560
genes for ASE, including 1,104 (40%) with >1 heterozy-
gous loci. Using the cutoffs of 0.7 on estimated MAF
and 0.05 on adjusted P-value, MBASED found 110 genes
to show ASE in the ‘phased’ setting and 115 genes in

the ‘non-phased’ setting, of which 108 were in common,
indicating a high degree of consistency (Figure S7 in
Additional file 1; Additional file 2). The small number
of observed discrepancies was due to higher power of
MBASED to detect ASE in general, and isoform-specific
ASE in particular, when true haplotypes are known. A de-
tailed discussion of the observed differences between run-
ning MBASED with and without prior knowledge of true
haplotypes is provided in the Supplementary discussion in
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Additional file 1. We further note that running MBASED
without supplying the true haplotypes resulted in correct
haplotype reconstruction of 40/47 (85%) ASE genes with
multiple SNVs. Further investigation revealed that of
seven instances where haplotype reconstruction failed, six
were likely due to alignment artifacts (Supplementary
discussion in Additional file 1).

Finally, we compared the performance of MBASED
with that of Skelly et al. [13], which is to our knowledge
the only currently published ASE detection method that
allows for variable ASE within a gene. Since the method
of Skelly et al. requires that the true haplotypes be known,
we used NA12878 RNA-Seq data for this comparison and
supplied the true haplotypes to MBASED (Materials and
methods). The method of Skelly et al. identified 103 ASE
genes (posterior P(ASE) >0.95, posterior median MAF >0.7),
compared to 110 identified by MBASED, including 94 that
were common to both methods (Additional file 2). Of the
nine genes identified as ASE by the method of Skelly ez al.
only, all have estimated MBASED MAF >0.8, but fall short
of the significance cutoff due to low read coverage (10 to
12 reads/SNV, MBASED ASE P-values 0.05 to 0.17). Of
the 16 genes identified as ASE by MBASED only, 15 show
posterior P(ASE) >0.95 according to the method of Skelly
et al., with posterior median MAF values of 0.58 to 0.7.
The lower MAF estimates of Skelly et al. are due to its
no-ASE prior imposed on the data. A detailed discussion
of the observed differences between MBASED and the
method of Skelly et al. is provided in the Supplementary
discussion in Additional file 1. We conclude that the two
methods produce qualitatively and quantitatively similar
results on this data set. We note, however, that MBASED
can perform in situations when the true haplotypes are
unknown, a major advantage over the method of Skelly
et al. In addition, MBASED allows for the effects of
pre-existing allelic bias and disambiguates the technical
and biological contributions to overdispersion in the data
(Materials and methods), while the method of Skelly et al.
combines the two.

Cancer samples exhibit high levels of allele-specific
expression

We applied the MBASED method to a panel consisting
of 18 lung cancer cell lines, 3 non-small cell lung cancer
(NSCLC) tumor tissue samples, 4 hepatocellular carcin-
oma (HCC) tumor tissue samples, and 7 matched normal
samples for the tumor tissues (Table S1 in Additional file 3)
for a total of 25 cancer (21 lung and 4 liver) and 7 normal
samples. None of the samples in the panel had known
haplotypes. One-sample MBASED analysis was performed
for each of the 32 samples and two-sample analysis was
performed for tumor/normal and normal/tumor compari-
sons of 7 paired samples. Within each sample (or a pair of
samples for two-sample analysis) only the genes containing
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informative heterozygous SNVs were tested for ASE
(Materials and methods). Any gene with a BH adjusted
MBASED P-value <0.05 and estimated MAF >0.7 was
declared as exhibiting ASE in one-sample analysis. Simi-
larly, any gene with a BH adjusted MBASED P-value <0.05
and estimated MAF difference >0.2 was declared as exhibit-
ing sample-of-interest-specific ASE in two-sample analysis.
This assignment provided one way of determining a set of
genes in which to further characterize ASE in downstream
analysis. All genes with adjusted inter-SNV ASE variability
P-value <0.05 were flagged as possibly subject to isoform-
specific ASE effects. Further details of the analysis pipeline
are provided in Materials and methods, and the full results
of MBASED application to the samples in our panel are
available in Additional files 4 and 5. We note that the
power of MBASED to detect mild levels of ASE is limited
in the low coverage setting (right panels of Figures 2 and
3), common in our data, and the ASE levels reported here
likely underestimate the true extent of ASE in samples
under study.

We found evidence for extensive ASE in the majority
of cancer samples in the panel (Figure 4A,B). One-
sample analysis revealed 9 to 26% of all tested genes in 7
tumor samples as showing ASE, considerably higher
than the 0.5 to 2% ASE rate observed in 7 matched nor-
mal samples. The extent of ASE in lung cancer cell lines
was highly variable (1 to 32%) and was correlated with
the sample RNA-Seq coverage levels (data not shown).
In contrast, no such correlation was observed for tissue
samples, which had higher RNA sequencing depth (Table S1
in Additional file 3).

Of genes that exhibited ASE in the one-sample analysis
of tumors and that also were tested for ASE in the two-
sample analysis, 48 to 77% showed tumor-specific ASE
(Figure 4C). By comparison, a much smaller fraction of
genes showing ASE in one-sample analysis of normal sam-
ples were found to show normal-specific ASE (3 to 32%),
despite higher RNA-Seq coverage of the normal sample in
five out of seven sample pairs (Table S1 in Additional file
3). This indicates that while most of ASE observed in nor-
mal samples is retained in the tumor, a large fraction of
the ASE observed in the tumors has developed during the
tumorigenesis process.

Across our 32 samples, we found that in one-sample
MBASED analysis 22 out of 2,080 ASE genes with multiple
heterozygous SNVs showed evidence of isoform-specific
ASE. We note that the significance test based on hetero-
geneity statistic Q has lower power in the settings of low
read coverage and few SN'Vs, common in our data, and we
likely underestimated the extent of isoform-specific ASE.
Since 20 of these genes were found in the liver samples
(7 in the normal, 13 in the tumor), there might be more
isoform-specific ASE occurring in the liver, although
none of these genes exhibited liver-specific expression.
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Alternatively, it is possible that we were hindered in our
detection of isoform-specific ASE by the low sequencing
depth, since liver samples had the highest RNA-Seq
coverage in our data set. In the two-sample MBASED
analysis, 16 out of 701 ASE genes with multiple hetero-
zygous SN'Vs showed evidence of isoform-specific ASE,
including 12 in the liver samples (11 in the normal, 1 in

the tumor). The biological significance of the observed
instances of isoform-specific ASE is unclear and is
further complicated by the observation that 10 out of 22
genes with one-sample isoform-specific ASE and 5 out
of 16 genes with two-sample isoform-specific ASE were
represented by only one transcript isoform. This obser-
vation may be due to incompleteness of the current set
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of gene models or to the variance of SNV-level measures
of ASE in those genes exceeding what is allowed by our
statistical model.

Overall, the normal samples exhibited limited extent
of ASE, using our chosen cutoffs, while the cancer sam-
ples showed much higher ASE rates, with isoform-specific
ASE playing a limited role, if any.

Allele-specific expression in cancer is linked to large-scale
genomic changes

We assessed the copy number (CN) state and allelic im-
balance (AI) at the DNA level for all cancer samples
(Materials and methods). We found that a large fraction
of observed ASE in cancer samples could be attributed
to underlying changes in genomic composition. This ob-
servation has previously been reported in a single sample
of oral cancer [15]. The profiles of these changes appeared
to be markedly different between cell lines and tissue sam-
ples, with cell lines showing more genomic CN gains and
AI (both in CN-gained and CN-neutral regions), but fewer
CN losses than tumor tissue samples (Figure 5A). How-
ever, these observed differences might be due to different
platforms used for CN and Al assessments of tissue sam-
ples and cell lines (Materials and methods). Genomic Al
and CN changes accounted for >65% of ASE-exhibiting
genes in all 18 cell lines (including 17 cell lines with >83%),
and >55% of ASE-exhibiting genes in 6 out of 7 tumor
tissue samples (Figure 5B), showing cancer ASE to be a
phenomenon mainly driven by large-scale DNA alter-
ations. The single exception among the tumor tissues
came from NSCLC individual 2, which exhibited ASE in
17% of tested genes (similar to other cancer tissue
samples; Figure 4B), but had 87% of these ASE-exhibiting
genes fall outside of regions of CN alteration or detected
Al This suggests that alternative mechanisms for upregu-
lation of ASE may exist in cancer (for example, allele-
specific silencing through DNA methylation) and may be
at play here. However, we cannot rule out the alternative
possibility that the CN calling algorithm did not perform
well on this sample. In 5 out of 7 tumor tissue samples, 6
to 25% of ASE-exhibiting genes fell into regions of CN
loss, indicating that the detected ASE in those genes might
be due to normal contamination or tumor heterogeneity,
as no heterozygous variants should be detected in such
regions in the absence of admixture.

Recurrent instances of cancer-specific ASE point to
regions of recurrent genomic alterations

We identified instances of cancer-specific ASE based on
the MBASED two-sample analysis of tumor-normal pairs.
A selection of such genes is shown in Figure 6A. Gener-
ally, genes with recurrent cancer-specific ASE tended to
cluster together when found on the same chromosome.
For example, chromosome 12 genes ETNKI, GOLT1B and
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ITPR2 are located in close proximity to KRAS and we
found the KRAS-containing segment of chromosome
12 to be lost in two samples and gained in another sam-
ple, while an additional two samples exhibited allelic
imbalance of the entire chromosome 12 (Figure S8 in
Additional file 1). As the result, all four genes (ETNK1,
GOLTI1B, KRAS, and ITPR2) were found to show recur-
rent cancer-specific ASE. In another example, all five
chromosome 17 genes showing recurrent cancer-specific
ASE were located on a portion of the chromosome with
lower CN than the rest of chromosome 17 in all 7 tumor
tissue samples (Figure S9 in Additional file 1). This
frequently lost genomic segment also contained the
known tumor suppressor gene TP53, consistent with the
recurrent CN loss. In this instance, it is likely that normal
admixture gave rise to detected heterozygous variants in
these tumor samples, and that we would not detect any
ASE under conditions of high tumor purity. In the case of
chromosome 8, a segment was commonly present in a
lower CN than the rest of the chromosome, but we were
unable to definitively associate it with a known oncogenic
driver. Finally, in some cases (for example, chromosomes
14 and 16) most of the chromosomes showed Al in mul-
tiple samples, giving rise to recurrent ASE. Genes with re-
current ASE in cancer cell lines also showed enrichment
for certain chromosomes (Figure 6B). However, it was
difficult to associate these recurrent events with common
genomic aberrations, due to a considerably richer and
more complicated pattern of CN alterations in cell lines
(Figure 5A).

Based on these and similar observations, we conclude
that the instances of recurrent ASE in our cancer samples
were often driven by recurrent modifications of the under-
lying genomic CN state, affecting known driver genes in
some cases.

Selective overexpression of mutant alleles in cancer
samples

We further investigated the interaction between the ASE
and mutations in cancer. The ability of MBASED to per-
form ASE detection without prior knowledge of haplotype
phasing allowed us to assess ASE of mutation-containing
genes based on information from both SNPs and muta-
tions. We then used MBASED haplotype calls to assign a
mutation to the ‘major’ or ‘minor’ haplotype. From the 25
cancer samples, we identified 691 non-synonymous som-
atic (or putative somatic in the case of cell lines; Materials
and methods) variants that are potentially ‘functional, that
is, variants that were classified as ‘deleterious’ by SIFT
[24] or ‘damaging’ by PolyPhen [25] or were predicted to
result in translation stop gain or loss by Variant Effect Pre-
dictor [26] (Table S2 in Additional file 3). Of these vari-
ants, 291 presented the mutant allele as major, including
41 that fell into ASE-exhibiting genes. Overexpressed
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Figure 5 Summary of genomic state of genes showing ASE in cancer samples. (A) Proportion of autosomal genome falling into different
categories of underlying copy number (CN) and allelic imbalance (Al) states. Cell lines show more CN gains and fewer CN losses than tissue
samples. (B) Proportion of ASE autosomal genes falling into different categories of underlying CN and Al states. CN gain (cell lines) and loss
(tissues) regions are enriched for ASE genes. The large extent of ASE genes in regions of CN loss in tissues is most likely explained by
heterozygosity detection due to normal tissue admixture. The vast majority of ASE genes in tumor tissue samples from NSCLC individual 2
(second from left) fall into CN-neutral, no-Al regions, but the sample exhibits ASE levels comparable to the other two NSCLC patients
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functional mutant alleles included a number of known
or suspected contributors to oncogenesis (Table 1).

We observed five instances of functional mutations that
alter codon 12 of KRAS, a known oncogenesis-driving
event [27]. In three out of five cases, the mutant allele was
significantly over-represented, while in another instance

(NSCLC cell line H2009) the over-representation was
borderline significant (MAF = 0.66, BH adjusted P-value =
0.1). This suggests the selective pressure to produce a
large number of constitutively activated forms of KRAS.
We also observed the over-representation of known activat-
ing mutation L858R in the kinase domain of EGFR (as well
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Figure 6 Selected instances of recurrent cancer-specific ASE. For both panels, columns are samples and rows are genes. Gene status in each
sample is plotted. Note that the non-ASE category (blue) may include genes that fall just short of our ASE cutoffs, as well as genes where low
coverage reduces our power to detect ASE. Genes in the non-tested category (gray) lack informative SNVs for ASE assessment in that sample.

(A) Selected genes that show tumor-specific ASE (black dot) in multiple cancer tissue samples. Genes were chosen based on whether ASE was
gained in tumor tissue samples relative to normal tissue samples, according to two-sample MBASED analysis. We require that the gain of ASE occurs in
at least 3/7 tumor samples. Genes are grouped by chromosome (rightmost column) and ordered top-to-bottom in order of chromosomal location.
Note that gene RNF167 shows ASE in both normal and tumor samples in HCC individual 4; however, different haplotypes are overexpressed in the
two samples. (B) Selected genes that show ASE in multiple lung cancer cell lines. Genes were chosen based on whether ASE was detected based on
one-sample MBASED analysis. We require that the ASE occurs in at least 4/18 cell lines and does not occur in any of the 7 normal samples (to exclude,
for example, imprinted genes). Genes are grouped by chromosome (rightmost column) and ordered top-to-bottom in order of chromosomal location.

as a novel mutation in the same domain in the same [28], suggesting that this mutation might also be constitu-
individual), and a mutation in the FAT domain of mTOR, tively activating. The potential instances of overexpressed
a major regulator of cell-signaling pathways. The FAT inactivating mutant alleles include a mutation in the trans-
domain is a binding site for the mTOR inhibitor DEPTOR  activation domain of the tumor suppressor EAF2 [29], and
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Table 1 Some instances of overexpressed functional mutant alleles
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Gene Mutations (sample) Affected CN Al ASE Details
domain MAF P-value (adj.)
KRAS G12C (NSCLC ind. 1) GTP-binding Gain Yes 0.87 <le-6 Reported in COSMIC, known activating
G12C (H358) GTP-binding Gain Yes 073 le2 mutations
G12C (H23) GTP-binding Gain Yes 0.75 <le-6
G12A (H2009) GTP-binding Gain Yes 0.66 Te-1 Falls short of significance cutoffs
EGFR Q787K (NSCLC ind. 2) Kinase Gain No 0.74 2e-5 Both mutations in same sample, on
L858R (NSCLCind. 2)  Kinase Gain No 074 265 same haplotype. LA8R ks reported In
RADI18 Q59H (HCC ind. 1) RING-type ZF Gain No 0.75 6e-5 Mutations in this motif results in
hypersensitivity to mutagens
EAF2 S207F (HCCind. 1) Transactivation Gain No 0.77 2e-5 Tumor suppressor (inducer of apoptosis
via p53)
MTOR V1801G (H522) FAT Gain Yes 0.88 5e-3 Mutated domain is a binding site for
MTOR inhibitor
MYH9 K1248N (NSCLC ind. 2) Coiled coil Neutral No 0.82 <le-6 Outside of CN gain/loss or Al regions
MYO18A R426C (HCC ind. 1) Unannotated Neutral No 0.71 4e-2
TIMPT R136H (HCC ind. 2) NTR Neutral No 0.89 <le-6
FAS T3191 (HCC ind. 4) Unannotated Neutral No 0.87 7e-3
CCDC50 T459A (H650) Unannotated Neutral No 0.82 <le-6

Affected domain: based on canonical RefSeq transcript information and UniProt annotation. CN: genomic copy number status. Al: presence of genomic allelic
imbalance. ASE MAF and P-value (adj.): MBASED-derived estimate of major haplotype frequency and the corresponding (adjusted) P-value.

a mutation in the ring-finger motif of gene RADI8, which
is involved in post-replication DNA damage repair [30].

Out of 41 instances of functional mutations with the
mutant allele in the major haplotype of ASE-exhibiting
genes, five fell outside of regions of genomic copy number
change and/or allelic imbalance (Table 1, last 5 rows), in-
cluding mutations in cancer-related genes MYH9, TIMPI,
and FAS. However, it is unclear what the exact conse-
quences of these mutations were for protein functionality,
and what advantage to tumorigenesis, if any, was con-
ferred by overexpression of the mutant allele.

The overexpression of mutant alleles that might confer
some advantage to tumor cells was not universal. We
found a small number of examples of functional mutant
alleles that were expected to contribute to tumor pheno-
type but were not overexpressed. For example, cell line
H441 contained a mutation in codon 12 of KRAS, but
unlike the other four instances of this mutation (Table 1),
this mutant allele was under-represented relative to the
wild-type allele. We also found two instances of known
activating mutations in residue 61 of NRAS [27], with no
evidence of ASE in one case and strong evidence for
overexpression of the wild-type allele in the other.

In summary, we found multiple examples of ASE where
the overexpressed allele was either a known or suspected
activating mutation in an oncogene or an inactivating mu-
tation in a tumor suppressor gene. In almost all such cases
the observed ASE arose from underlying DNA CN alter-
ations. We observed some instances where the mutations

expected to contribute to the cancer phenotype were
underexpressed. It is possible that in such cases the muta-
tion was crucial to early oncogenic processes, but that at
later stages of tumor evolution the dependence of the cells
on the mutant form of the protein was reduced.

Tumor samples show loss of ASE in approximately 15% of
normal ASE genes and elevated ASE on chromosome X

We observed 89 instances of monoallelic expression
(ASE with estimated MAF >0.9) in 74 genes across 7
normal samples in our panel. In 36 of these instances
(corresponding to 28 genes) the matched tumor sample
contained at least one common informative SNV in that
gene, enabling us to test these genes for tumor-normal
allelic imbalance using the two-sample MBASED ap-
proach. We found that in 5 out of 36 tested cases (13.9%),
the observed monoallelic ASE (MAE) was specific to a
normal sample and was lost in a tumor (Figure S10A in
Additional file 1), but there were no instances of recurrent
loss of MAE in tumor tissue samples. One example was
gene ABPI in HCC individual 4 (Figure S10B in Additional
file 1). A previously described translocation event adjacent
to ABPI in this sample [31] might be a contributing
factor to the observed loss of MAE. We also found one
instance of an MAE pattern reversed between normal
and tumor, in the BCL2L10 gene in HCC individual 4
(Figure S10C in Additional file 1). BCL2L10 encodes a
pro-apoptotic factor and has been implicated in 5-
azacytidine resistance in acute myeoloid leukemia and
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myelodysplastic syndrome patients [32]. The two alleles
differ by a pair of SNVs in a 3’ UTR, but it is not clear if
the observed switch of ASE pattern was due to differential
functional efficiency of the two alleles or if one of the
alleles was more oncogenic.

Extending this analysis to all instances of ASE in normal
samples, including non-monoallelic, we found 161 cases
of ASE in normal samples that could be tested for tumor-
normal allelic imbalance. In 30 (18.6%) cases, the observed
ASE was normal-specific, with 16 (53.3%) such instances
not attributable to underlying CN alterations, including
four out of five loss-of-MAE cases. The extended analysis
also did not reveal any genes with recurrent normal-
specific ASE.

Loss of imprinting has been previously reported in can-
cer [33]. We cross-referenced a list of known imprinted
genes [34] against the list of genes with loss of ASE in
tumor samples, and found no instances of loss of imprint-
ing (Figure S10A in Additional file 1). In general, we found
that out of 55 known imprinted genes, only 7 could be
tested for ASE in 3 or more normal samples. We found
that two of these seven genes (FAMS50B and NDN) showed
monoallelic expression in all tested instances, while the
other five genes (GNAS, IGF2, NAA60, SLC22A18, and
SLC22A3) did not show any evidence of ASE. These ob-
served patterns could be due to the previously reported
tissue-specificity of imprinting [35].

In addition to imprinting, another known source of ASE
is chromosome X inactivation in female cells. We found
that all but one of our nine female samples showed much
higher rates of ASE on chromosome X than in the rest of
the genome (Figure S11 in Additional file 1; Fisher exact
test P-value <0.02 for chromosome X versus autosomal
ASE rate comparison for all eight samples). The sole ex-
ception was a female cell line, H2009, that suffered a loss
of a copy of chromosome X and exhibited no ASE on that
chromosome. We found that the rates of ASE in chromo-
some X genes in the two normal female tissue samples
were low (<8%), consistent with the existence of several
clonal lines in each sample, with different copies of the
chromosome inactivated in different clones [17]. On the
other hand, all female cancer samples (after excluding
H2009) showed high rates of ASE on chromosome X
(54 to 100% of tested genes). In some cases, including
both female tumor tissue samples, this elevated rate
could be attributed to underlying CN alterations. How-
ever, two of the cell lines did not show any CN changes
or Al on chromosome X (data not shown), suggesting
that a monoclonal expansion took place in these samples,
giving rise to cell mixture, where one copy of chromo-
some X was preferentially silenced [17].

Overall, we observed a moderate extent of loss of nor-
mal ASE in tumors, with approximately 15% of normal
ASE genes being normal-specific. We did not find any
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instances of recurrent loss of ASE and we also did not
detect any instances of loss of imprinting. The observed
loss of ASE did not appear to be driven by the under-
lying CN alterations, although the exact mechanism and
biological significance of this process remain unclear.
On the other hand, we observed elevated rates of ASE
on chromosome X in cancer samples, occasionally accom-
panied by underlying genomic allelic imbalance. These lat-
ter cases might be due to the previously described high
extent of chromosome X inactivation following monoclo-
nal expansion. Our analysis was limited by a small sample
size and low sequencing coverage. Larger-scale studies are
needed to investigate these issues further.

Conclusions

We developed a novel method, MBASED, for the detection
of allele-specific gene expression, both in a single-sample
analysis setting and in the context of two-sample compari-
son (differential ASE). MBASED leverages all available
information to determine the extent of ASE in a given gene
by combining evidence across SNVs within a gene using a
meta-analysis-based approach. In our study, a high fraction
of genes showed evidence of more than one heterozygous
expressed SNV, highlighting the importance of having an
information aggregation framework. For the eight liver
tissue samples we have examined, which had the highest
levels of both WGS and RNA-Seq coverage among our
samples, 45% to 55% of the genes were multi-SNV, and we
expect these higher percentages to be typical of all deeply
sequenced samples.

A main advantage of MBASED is that it does not rely
on known phasing information and is therefore capable
of using both SNPs and mutations in the analysis. While
the haplotype reconstruction approach employed by
MBASED is far from robust, the use of internal simula-
tions allows the assignment of proper statistical signifi-
cance to the resulting estimates of ASE. Using a sample
with known haplotypes as a control, we find that run-
ning MBASED without supplying the haplotype infor-
mation leads to correct haplotype recovery for 40/41
multi-SNV ASE genes. Further, out of 115 genes declared
to exhibit ASE when haplotypes are withheld, only 7 are
not supported when haplotype information is taken into
account. Of these, six genes either show ASE just below
our significance cutoffs or are cases of spurious ASE likely
due to alignment artifacts. These observations indicate
that lack of knowledge of true haplotypes leads to a very
minor increase in type 1 error rate.

The framework of MBASED supports both within-
sample and between-sample ASE analyses. The latter
functionality allows the user to, for example, identify
differential ASE in tumor/normal comparisons, or to de-
tect instances of ASE not attributable to DNA copy num-
ber changes in RNA versus DNA allelic comparisons. The
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meta-analytic approach taken by MBASED also allows the
user to detect instances of isoform-specific ASE. Since
MBASED is agnostic with respect to the unit of expres-
sion, future studies might look at measuring ASE of indi-
vidual transcripts directly. Finally, the algorithm is capable
of handling pre-existing allelic biases (for example, global
reference bias due to enrichment protocol or alignment
technique that favors the reference allele), without sacri-
ficing performance.

A potential limitation of MBASED is its assumption
of exactly two haplotypes of a gene, but there might be
rare situations of a chromosomal duplication of a variant-
containing gene followed by a further mutation, giving rise
to three distinct haplotypes. In this case MBASED will
then attempt to resolve SNV-level information into two
haplotypes. Another limitation is the reliance of MBASED
on various approximations when incorporating pre-
existing allelic bias and overdispersion into the model
(Supplementary methods in Additional file 1), but this might
not be suitable for extreme values of allelic bias or overdis-
persion levels. Finally, unlike the one-sample MBASED ap-
proach, the two-sample MBASED algorithm does not utilize
a variance-stabilizing transformation prior to employing
meta-analytic data-combining procedure (Supplementary
methods in Additional file 1), exposing the overall estimate
of ASE to potential influence of outliers. Further work is
needed to properly address these limitations.

Applying MBASED to a combined panel of cell lines
and paired tissue-normal samples, we found a large extent
of ASE in cancer samples, driven primarily by underlying
changes in DNA CN or composition (AI). As the result,
the observed instances of recurrent ASE could often be
attributed to recurrent genomic alterations.

The ability of MBASED to include somatic mutations
in the ASE analysis allowed us to look in depth at the
expression patterns of mutant alleles. We discovered
evidence for significant preferential expression of the
activating allele in known oncogenes (for example, KRAS
and EGFER). In the case of KRAS, we observed significant
mutant allele overexpression in three out of five mutated
samples, with another sample showing borderline signifi-
cance, suggesting that the overexpression might be the
result of positive selection in tumor evolution. Our ana-
lysis shows that in almost every instance (36 out of 41),
the observed significant overexpression of a mutant al-
lele that was predicted to have functional consequences
in the protein product was due to a CN change or an al-
lelic imbalance event in the underlying genomic regions.
This suggests a limited role for alternative ASE mecha-
nisms (for example, pre- or post-transcriptional suppres-
sion of transcripts carrying wild-type alleles) as drivers
of overexpression events giving rise to cancer phenotype.
Further work is needed to clarify whether the findings
reported here are a general feature of the cancer landscape,

Page 14 of 21

and what role ASE plays in a variety of cancer tissue types
and indications.

A number of technical biases may give rise to false posi-
tives when the ASE state of transcriptomes is assayed with
RNA-Seq [3,5,8]. In an initial analysis we discovered a
large number of genes that showed recurrent ASE across
multiple samples, including some genes with monoallelic
ASE in 20 or more samples. We investigated those genes
in more detail and discovered that we could attribute
ASE recurrence to various artifacts, which we subse-
quently eliminated from the data (Materials and methods;
Supplementary methods in Additional file 1). In some in-
stances, we believe that the observed recurrent ASE might
be due to the errors on the part of the aligner (for ex-
ample, if there exists a known highly homologous region
in the genome). However, in other cases we found evi-
dence that the detected heterozygous variants in the gene
were due to the presence in the sample genome of a hom-
ologous nonexpressed region that was absent from the
reference genome. Since most of those variants are
reported in dbSNP (v.132), an investigator might be led to
believe that such a gene is imprinted or shows monoallelic
expression in a cis-determined fashion. Thus, care needs
to be taken in order to prevent the detection of spurious
instances of ASE, which are likely to dominate any list
of recurrent ASE events.

In addition to presenting a new method for ASE detec-
tion in both one-sample and two-sample analyses, the
current study presents, to the best of our knowledge, the
most comprehensive look at ASE patterns in cancer to
date. As more samples across different cancer types be-
come available, a comprehensive picture of the extent and
role of ASE in oncological diseases will emerge. Simultan-
eously, the patterns and role of ASE and imprinting in
normal tissues will be elucidated and will in turn shed
light on why these would be disrupted in cancer. However,
until the sequencing technologies mature to the point of
allowing the investigator to obtain uninterrupted sequences
of entire transcripts, ASE calling methods will continue to
rely on aggregating information across several loci. There-
fore, the many advantages presented by the MBASED
algorithm make it well-suited for the current stage of
ASE studies of both normal and tumor samples.

Materials and methods

Data collection and processing

We performed WGS on 18 NSCLC cell lines and paired
tumor-normal samples from 3 NSCLC patients, as well
as 4 paired tumor-normal samples from 4 HCC patients,
using Complete Genomics technologies [36], for a total
of 7 normal and 25 cancer samples. All 32 samples have
been previously published [31,37]. We performed RNA-
Seq (75 or 76 bp paired-end) using Illumina GA-IIx for
all samples, and the resulting short reads were aligned to
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the hgl9 version of human genome using the GSNAP
algorithm [38]. All duplicate reads have been reduced to
a single copy in order to avoid the detection of spurious
ASE due to biases in PCR amplification steps of sequen-
cing protocol. CN and Al information on the 18 cell
lines was assayed with Illumina OMNI 2.5 M SNP array
and processed with a modified version of PICNIC algo-
rithm [37]. This analysis produced integer estimates of
total and major allele CN in the segmented genome.
Any region with total CN >2 was declared to be a region
of CN gain, while any region with total CN <2 was
declared to be a region of CN loss. Similarly, any region
with (Major allele CN)/(Total CN) > 0.5 was declared to
be in the state of Al In addition, CN status and Al in-
formation for the seven tumor tissue samples relative to
the paired normal samples was inferred from WGS data
using a dedicated pipeline, as previously described [31,37].
Detailed information about the samples is provided in
Table S1 in Additional file 3.

For each sample, we obtained a list of called SNVs
from the output of the Complete Genomics processing
pipeline and tabulated the reference and alternative
allele counts at each SNV from the aligned DNA and
RNA reads. We eliminated potential homozygous SNVs
by requiring that both the reference and alternative allele
be supported by at least five WGS reads each as well as
by at least 10% of all WGS reads aligned to that SNV.
To avoid spurious SNV calls due to nearby indels [8], we
also eliminated any SN'Vs falling within 10 bp of another
variant. SNVs were assigned to RefSeq genes and only
exonic SNVs were retained, with any SNVs falling into
exons of more than one gene discarded. We further
required that SNVs be covered by at least 10 reads in
RNA-Seq data to ensure sufficient power to detect ASE
and any excessive inter-loci variability. If multiple SN'Vs
were overlapped by common WGS or RNA-Seq reads,
they were merged into a single locus to ensure that the
observed read counts at individual SNVs (loci) of a gene
were independent, as required by the statistical model.

A number of authors have reported the existence of
false positive ASE calls produced by various biases in
short read aligners [3,4]. In order to filter out potential
alignment artifacts we adopted some additional filters
based on Self Chain alignments of the genome to itself
[39-41], the reported frequency of structural variants in
genomic regions provided in the Database of Genomic
Variation [42,43], and on frequency of detected variants
within a gene (see Supplementary methods in Additional
file 1 for in-depth discussion of the filtering pipeline).
The selfChain alignments and DGV variants were down-
loaded from the UCSC Genome Browser database [44]
on 29 November 2012.

For tissue samples, somatic mutations in cancer samples
were identified based on WGS using the CallDiff tool
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provided by Complete Genomics. For cell lines, a filter
based on a large database of known common variants was
applied to SNVs and any SNV passing the filter was
declared ‘putative somatic; as previously described [37].

Variant consequences were obtained for each SNV and
each affected transcript with Variant Effect Predictor [26].
Effect predictors SIFT [24] and PolyPhen [25] were used
to identify deleterious variants among the SN'Vs. Any vari-
ant predicted to be deleterious by either SIFT or PolyPhen
or predicted to result in stop codon gain/loss by Variant
Effect Predictor was declared to have a possible effect on
protein function (‘functional’). The affected protein
domains were determined by consulting the UniProt
database [45].

RNA-Seq data for NA12878 individual was obtained
from the Gene Expression Omnibus (GEO) using accession
number GSE30401 [12]. Only FASTQ files corresponding
to paired-end data were used. Since all sequencing was
done on the same Illumina flow cell, the individual lane
sequencing results were pooled. Phased genomic variants
in hgl9 coordinates were downloaded from [46]. The data
were aligned and filtered analogously to our own panel of
samples (see Supplementary discussion in Additional file 1
for detailed description).

A set of known imprinted genes was downloaded from
geneimprint.com [34] on 15 October 2012.

Statistical methods

One-sample analysis

We employ the gene as a unit of ASE, which we define as
a union of all exons forming individual transcript isoforms.
We assume that for each gene with at least one heterozy-
gous exonic SNV there are exactly two haplotypes, and at
each such SNV we observe ngyy total RNA-seq reads, with
Xrersny reads mapping to the reference allele and X531
reads mapping to the alternative allele such that x,.csny +
Xa5nv = Nsny- For gene g, we denote the true underlying
frequencies of transcript haplotypes by pjap1e and prapoe
MBASED models haplotype 1 allele-supporting counts at
individual SN'Vs as:

Xhap1,snv ~ Beta-Binomial (n = nsnvs B = Figpr snv (phaplg) )
P=Pov):
where
E(Xnaprsnv) = np,
and
Var(XhapLSNv) = u(l-p)n(p(n-1) +1).

We use a beta-binomial model as an alternative to a
standard binomial model in order to incorporate extra-
binomial dispersion observed in RNA-Seq data [13]. We
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parametrize the beta-binomial model in terms of the
mean parameter y and overdispersion parameter p. In
the case of no overdispersion (p = 0), the read counts are
binomial random variables:

Xhap1,snv ~ Binomial (” =nsnv,p=f hap1 SNV (phapl,g))

If the frequency of reads supporting each gene haplotype
reflects the true transcriptome-level haplotype proportions,
then:

fhapl,SNV (phapl,g> = phapl,g'

If, however, the read count-generating probabilities are
affected by the sequencing and/or alignment protocols,
then in general:

fhapl,SNV (phupl,g) iphapl,g'

For example, if the alignment protocol is more likely
to align reference-supporting read,
then:

fhapl,SNV (phaplg) > phupl,g?

if the haplotype 1 allele is reference, and

fhapl,SNV (phupl,g) < phupl,g?

if the haplotype 1 allele is alternative. We refer to such
situations as instances of pre-existing allelic bias. We
find that in our data set the reference allele is consist-
ently somewhat over-represented relative to the ex-
pected fraction of 0.5 (Figure S12 in Additional file 1),
indicating mild levels of pre-existing allelic bias favoring
the reference allele. MBASED is capable of estimating
both the extent of pre-existing allelic bias (f41,snm/0.5))
and overdispersion (pgyy) in the data, and we describe
the estimation strategy we employed for samples in this
study in Supplementary methods in Additional file 1.
For clarity of presentation, we describe in this section
the behavior of MBASED under the settings of no
pre-existing allelic bias and no