PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Notch-ing up cancer genes

ArticleInfo		
ArticleID	:	4703
ArticleDOI	:	10.1186/gb-spotlight-20030219-01
ArticleCitationID	:	spotlight-20030219-01
ArticleSequenceNumber	÷	55
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–2–19OnlineDate: 2003–2–19
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

Notch receptor signalling has been implicated in cell-fate decisions and differentiation in a variety of tissues. In an Advanced Online Publication in Nature Genetics Nicolas *et al.* define a tumour suppressor function for the mouse *Notch1* gene (*Nature Genetics*, 18 February 2003, doi:10.1038/ng1099). As *Notch1* is essential for embryonic development, they used a tissue-specific inducible gene-targeting approach to specifically delete the *Notch1* gene in the skin. *Notch1* ablation led to epidermal hyperproliferation and the development of basal cell carcinoma-like tumors. This was unexpected as active Notch signalling has been shown to cause tumors in other tissues. The *Notch1*-less mice were also susceptible to chemically induced carcinogenesis. Tumors lacking Notch1 were associated with decreased levels of the cyclin dependent kinase inhibitor $p21^{Cip1}$ and elevated levels of the transcription factor Gli2 and components of the β -catenin/Wnt signaling pathway.

References

- 1. Notch signaling: cell fate control and signal integration in development.
- 2. Nature Genetics, [http://www.nature.com/naturegenetics]