PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Ain't got rhythm

ArticleInfo		
ArticleID	:	4695
ArticleDOI	:	10.1186/gb-spotlight-20030210-01
ArticleCitationID	:	spotlight-20030210-01
ArticleSequenceNumber	:	47
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–2–10OnlineDate: 2003–2–10
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

In the February 6 Nature Mohler *et al.* report the discovery of mutations in the gene encoding ankyrin-B (known as ankyrin 2) in patients suffering from cardiac arrhythmia and inherited long-QT syndrome (*Nature* 2003, **421**:634-639). An A-to-G transition results in a glutamic acid-to-glycine substitution. Mice heterozygote for a null mutation in *ANKB* also displayed cardiomyocyte defects, cardiac arrythmia and sudden death after exercise. The ankyrin-B protein appears to be important for regulating expression of the sodium pump, the sodium/calcium exchanger, inositol-1,4,5-triphospate receptors, as well as Ca²⁺ signalling. This is the first report of a mutation in congenital long-QT syndrome that affects a protein other than an ion channel or channel subunit.

References

- 1. Nature, [http://www.nature.com]
- 2. Ankyrins.
- 3. Molecular and cellular mechanisms of cardiac arrhythmias.