PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

INK and ARF in chicks

ArticleInfo		
ArticleID	:	4668
ArticleDOI	:	10.1186/gb-spotlight-20030106-01
ArticleCitationID	:	spotlight-20030106-01
ArticleSequenceNumber	:	20
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–1–6OnlineDate: 2003–1–6
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

The mammalian CDKN2A locus contains a gene that encodes two unrelated proteins: the cyclindependent kinase inhibitor p16^{INK4a} and ARF, a regulator of p53 stability. In the Early Edition of the Proceedings of the National Academy of Sciences Kim *et al.* report that the chicken genome lacks an INK4a orthologue and has a truncated *ARF* gene (*Proc Natl Acad Sci USA* 2002, 10.1073/ pnas.0135557100). Sequencing of genomic and cDNA clones revealed the structure around the chicken *CDKN2A* locus. The chicken genome lacks the INK4a-specific primary exon1a. Furthermore, splicing of the chicken ARF transcript generates a stop codon and a truncated 60-residue protein. This truncated chicken ARF protein was localized to the nucleolus and increased p53 stability in human cells.

References

- 1. The INK4a/ARF network in tumour suppression.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]