PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

The specificity of synthetic siRNAs

		-
ArticleInfo		
ArticleID	÷	4624
ArticleDOI	÷	10.1186/gb-spotlight-20021030-01
ArticleCitationID	:	spotlight-20021030-01
ArticleSequenceNumber	:	290
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	÷	2
ArticleHistory	:	RegistrationDate: 2002–10–30OnlineDate: 2002–10–30
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

The remarkable selectivity of siRNAs (short interfering RNAs) offers the attractive possibility of using siRNA as therapeutic agents that specifically target mutated oncogenic isoforms. In the early Edition of the Proceedings of the National Academy of Sciences, Martinez *et al.* report a proof-of-principle applied to the tumor suppressor protein p53. They designed siRNAs specific for wild-type or cancer-associated mutants of p53 and demonstrated high selectivity. Reduction of mutant protein levels restored wild-type protein to normal levels and wild-type transcriptional activity. This approach might be exploited in a clinical setting by using synthetic siRNAs to target dominant oncogenic mutants or cancer-promoting mutations.

References

- 1. RNA interference is mediated by 21- and 22-nucleotide RNAs.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

3. Synthetic small inhibiting RNAs: Efficient tools to inactivate oncogenic mutations and restore p53 pathways, [http://www.pnas.org/cgi/doi/10.1073/pnas.222406899]