PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Tetraspanins in flies

ArticleInfo		
ArticleID	:	4615
ArticleDOI	:	10.1186/gb-spotlight-20021021-01
ArticleCitationID	:	spotlight-20021021-01
ArticleSequenceNumber	:	281
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–10–21OnlineDate: 2002–10–21
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The tetraspanins form a large family of four-transmembrane-spanning proteins that are involved in a wide range of cellular functions in mammals. In the October 15 Proceedings of the National Academy of Sciences Fradkin *et al.* describe characterization of tetraspanin expression and functions in *Drosophila* (Proc Natl Acad Sci USA 2002, 99:13663-13668). The first tetraspanin gene to be identified in flies was Latebloomer (*lbm*), which is expressed in motoneurons and has been implicated in the formation of synaptic contacts at the neuromuscular junction. Analysis of the *Drosophila melanogaster* genome sequence revealed the existence of an additional 34 genes encoding tetraspanins. Fradkin *et al.* performed RNA *in situ* hybridization analysis of tetraspanin expression during *Drosophila* development. The genes show very different expression patterns, but fall into three groups that are expressed in motoneurons. Fradkin *et al.* engineered a deletion of these three tetraspanins are expressed in motoneurons. Fradkin *et al.* engineered a deletion of these three tetraspanins is likely to provide further insights into the function and genetic redundancy of this large gene family.

References

1. Complexes of tetraspanins with integrins: more than meets the eye.

2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

3. Genomewide analysis of the *Drosophila* tetraspanins reveals a subset with similar function in the formation of the embryonic synapse., [http://www.pnas.org/cgi/content/abstract/99/21/13663]

4. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation.