PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Methylation and imprinting

ArticleInfo		
ArticleID		4581
ArticleDOI		10.1186/gb-spotlight-20020916-02
ArticleCitationID		spotlight-20020916-02
ArticleSequenceNumber		247
ArticleCategory		Research news
ArticleFirstPage		1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–9–16 OnlineDate : 2002–9–16
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

A third of human patients with Beckwith-Wiedemann syndrome (BWS) have lost maternal-specific methylation of the *KvDMR1* (differential methylated region) locus, a putative imprinting control region found within the *KCNQ1* gene. In an Advanced Online Publication in Nature Genetics, Fitzpatrick *et al.* provide clear evidence linking *KvDMR1* to imprinted gene expression (*Nature Genetics*, 9 September 2002, DOI:10.1038/ng988). They generated mice in which *KvDMR1* was deleted by gene-targeted homologous recombination. Paternal transmission of the deletion resulted in deregulated imprinting of the genomic locus and reactivation of genes both distal and proximal to *KvDMR1*. Paternal inheritance was also associated with reduced weight. Fitzpatrick *et al.* speculate that elevated levels of maternally expressed genes (such as *Cdkn1c*, encoding a cyclin-dependent kinase inhibitor) account for the growth defect.

References

- 1. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.
- 2. Nature Genetics, [http://www.nature.com/ng/]