PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Silencing in mice

ArticleInfo		
ArticleID		4550
ArticleDOI		10.1186/gb-spotlight-20020808-01
ArticleCitationID		spotlight-20020808-01
ArticleSequenceNumber	\Box	216
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–8–8 OnlineDate : 2002–8–8
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

In an Advanced Online Publication in Nature Genetics, Lewis *et al.* describe a simple technique for silencing gene expression in postnatal mice using RNA interference (RNAi) (*Nature Genetics* 29 July 2002, doi:10.1038/ng944). The authors exploited a 'high-pressure delivery' technique to deliver siRNA (short interfering RNA) to the organs of postnatal mice. They injected plasmid solutions into the tail vein and monitored expression of co-injected constructs encoding a firefly luciferase reporter gene. They achieved up to 90% inhibition levels in the liver, spleen, kidney, lung and pancreas. Inhibition of gene expression in the liver was dose-dependent - as little as 0.05 µg siRNA caused a 36% reduction in luciferase gene expression. Lewis *et al.* also show that injecting siRNA could effectively inhibit transgene expression.

References

- 1. Nature Genetics, [http://www.nature.com/ng]
- 2. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*.

This PDF file was created after publication.