PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

A proven role for methylation

ArticleInfo		
ArticleID	:	4487
ArticleDOI		10.1186/gb-spotlight-20020522-02
ArticleCitationID	:	spotlight-20020522-02
ArticleSequenceNumber	:	153
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–5–22OnlineDate: 2002–5–22
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Cytosine methylation has been proposed to modulate tissue-specific expression, but compelling evidence has been hard to find. In an Advanced Online Publication in Nature Genetics, Futscher *et al.* describe a clear example of cell type-specific gene regulation by DNA methylation (*Nature Genetics* 20 May 2002, DOI:10.1038/ng886). They studied the maspin gene SERPINB5, expression of which is restricted to epithelial cells, and show, by bisulfite sequencing, that CpG sites in the *SERPINB5* promoter were unmethylated in maspin-positive cells. Chromatin immunoprecipitation experiments using antibodies specific for acetylated histones H3 and H4 revealed depleted acetylation in methylated *SERPINB5*-negative cells. Demethylation of the promoter by DNA methyltransferase inhibitors reactivated *SERPINB5*expression. These results indicate a clear relationship between cytosine methylation, histone acetylation and tissue-specific regulation.

References

- 1. Cytosine methylation and mammalian development.
- 2. Nature Genetics, [http://www.nature.com/ng/]
- 3. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells.

This PDF file was created after publication.