PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Where do jaws come from?

ArticleInfo			
ArticleID	:	4439	
ArticleDOI	:	10.1186/gb-spotlight-20020403-02	
ArticleCitationID	:	spotlight-20020403-02	
ArticleSequenceNumber	:	105	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2002–4–3OnlineDate: 2002–4–3	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	÷		
ArticleContext	:	130593311	

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The origin of the vertebrate jaw is something of a mystery. In the March 28 Nature, Martin Cohn from the University of Reading suggests that *Hox* gene expression may be at the origin of jaw evolution (*Nature* **416**:386-387). In jawed vertebrates (gnathostomes) the jaw and pharyngeal skeleton is derived from migrating cranial neural crest cells. Cohn studied the lamprey, a primitive jawless fish related to gnathostomes, in which the branchial arch is also neural-crest-derived. He cloned lamprey *Hox* genes and found gene expression in the mandibular arch (not seen in other vertebrates). He also noted a loss of *Hox* gene colinearity, as the *HoxL6* expression domain extends anterior to the boundary of *HoxL5*. This loss of spatial colinearity was also seen in the cephalochordate amphioxus. As *Hox* gene expression can inhibit jaw formation, he proposes that loss of *Hox* expression in early gnathostomes may have facilitated the chondrification of the first arch crest that led to the formation of ventral madibular cartilage.

References

- 1. Nature, [http://www.nature.com]
- 2. University of Reading , [http://www.reading.ac.uk]