PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Extracellular DNA

ArticleInfo		
ArticleID	:	4411
ArticleDOI	:	10.1186/gb-spotlight-20020227-01
ArticleCitationID	:	spotlight-20020227-01
ArticleSequenceNumber	:	77
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–2–27OnlineDate: 2002–2–27
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Bacteria can organize into structured communities, called biofilms, that protect them from antibiotics and from immune attack by the host. The biofilms are embedded in a matrix containing a complex mixture of macromolecules including exopolysaccharides and proteins. In the February 22 Science, Whitchurch *et al.* report that extracellular DNA is a major component of the biofilms of *Pseudomonas aeruginosa* (*Science* 2002, **295**:1487). They demonstrate that adding DNase I to *P. aeruginosa* cultures inhibited biofilm formation and bacterial colonization. The enzyme could also dissolve established biofilms. The extracellular DNA is thought to be derived from membrane vesicles. Whitchurch *et al.* propose that DNase I treatment may be beneficial to prevent biofilm formation in infection-linked diseases such as cystic fibrosis.

References

- 1. Bacterial biofilms: a common cause of persistent infections.
- 2. Science, [http://www.sciencemag.org]