PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Stress-induced recombination

ArticleInfo			
ArticleID	:	4405	
ArticleDOI		10.1186/gb-spotlight-20020219-01	
ArticleCitationID		spotlight-20020219-01	
ArticleSequenceNumber	\Box	71	
ArticleCategory	\Box	Research news	
ArticleFirstPage	\Box	1	
ArticleLastPage	\Box	2	
ArticleHistory	:	RegistrationDate : 2002–2–19 OnlineDate : 2002–2–19	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	\Box		
ArticleContext	\Box	130593311	

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Somatic recombination is a mechanism by which plants can acquire the genetic variability that enables them to respond to environmental stress conditions. In an Advanced Online Publication in Nature Genetics, Lucht *et al.* report the effect of biotic stress on somatic recombination and plant genome stability (February 11, DOI:10.1038/ng846). They used transgenic *Arabidopsis thaliana* lines that carry a disrupted β-glucoronidase (GUS) reporter gene that becomes activated by a homologous recombination event. They sprayed transgenic *Arabidopsis* seedlings with a suspension of the plant pathogen *Peronospora parasitica* and scored for GUS activation. Infected plants had almost twice as many recombination sectors. Lucht *et al.*also demonstrated a similar effect when they used chemical stimuli, or genetic mutations, which mimic biotic stress by activating the plant pathogen-defense mechanism. These results suggest that the induction of somatic recombination may be a general response to stress and may influence the plant's ability to adapt to environmental conditions.

References

- 1. Intrachromosomal homologous recombination in whole plants.
- 2. *Nature Genetics*, [http://www.nature.com/ng]
- 3. Arabidopsis as a model host for studying plant-pathogen interactions.