PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Vasculature mapping

ArticleInfo		
ArticleID	:	4400
ArticleDOI	:	10.1186/gb-spotlight-20020213-02
ArticleCitationID	:	spotlight-20020213-02
ArticleSequenceNumber	:	66
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–2–13OnlineDate: 2002–2–13
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

A few years ago Renata Pasqualini and Erkki Ruoslahti developed an in vivoselection method to identify peptides that target specific vascular beds following intravenous administration of random peptide phage-display libraries in mice. In the February issue of Nature Medicine, Pasqualini's group at the MD Anderson Cancer Center in Texas report the application of '*in vivo* phage display' to characterize the human vasculature (*Nature Medicine* 2002, **8**:121-127). They injected a large-scale, random peptide library into a terminally ill patient and collected tissue samples 15 minutes post-infusion. They recovered phage from different organs and carried out a high-throughput analysis of over 4,000 phage inserts. Comparison of the selected tripeptide motif frequencies revealed a non-random, tissue-specific distribution. They then used a phage-overlay histological assay to validate peptide sequences specific for prostate or skin tissues. This study represents a first step towards a well-characterized map of the heterogeneity within the human vasculature, opening up the possibilities for targeted drug delivery strategies.

References

- 1. Organ targeting in vivo using phage display peptide libraries.
- 2. Nature Medicine, [http://medicine.nature.com]
- 3. MD Anderson Cancer Center, [http://www.mdanderson.org]