PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Phototrophs at sea

ArticleInfo		
ArticleID	\Box	4396
ArticleDOI		10.1186/gb-spotlight-20020208-01
ArticleCitationID		spotlight-20020208-01
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	62
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage		2
ArticleHistory	:	RegistrationDate : 2002–2–8 OnlineDate : 2002–2–8
ArticleCopyright		BioMed Central Ltd2002
ArticleGrants	\Box	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Aerobic phototrophic bacteria need oxygen for growth and for synthesis of bacteriochlorophyll *a*. In the February 7 Nature Béjà *et al.* report analysis of the photosynthetic gene clusters and operon organization in uncultivated marine bacteria (*Nature* 2002, **415**:630-633). They found evidence for considerable phototroph diversity and for unexpected proteobacterial subgroups. They performed reverse-transcriptase-coupled-PCR and genomic analysis of bacterial artificial chromosomes to identify photosynthetic genes in samples of mixed bacterioplankton from Monterey Bay in California and from the North Pacific Ocean. Their results demonstrate that plankton assemblages are made up of multiple, distantly related bacterial groups that participate in oceanic aerobic, bacteriochlorophyll-based photosynthesis. Such culture-independent genomic techniques will reveal the richness of uncharacterized marine ecosystems.

References

- 1. Aerobic anoxygenic phototrophic bacteria.
- 2. *Nature*, [http://www.nature.com]