PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Stem-cell genomics

ArticleInfo		
ArticleID	:	4139
ArticleDOI	:	10.1186/gb-spotlight-20010706-01
ArticleCitationID	\Box	spotlight-20010706-01
ArticleSequenceNumber	\Box	210
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–07–06 OnlineDate : 2001–07–06
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

The surprising plasticity and trans-differentiation of transplanted stem-cells suggest that there may be a set of universal stem-cell genes that govern the undifferentiated proliferative state. In the July 3 Proceedings of the National Academy of Sciences, Terskikh et al. report attempts to define a common stem-cell gene profile by comparing hematopoietic and neural stem-cells (*Proc Natl Acad Sci USA* 2001, **98:**7934-7939). They isolated hematopoietic stem cells (HSC) from mouse bone marrow and created a subtracted cDNA library enriched in HSC genes. High-throughput sequencing identified 223 sequences representing known (40%) and novel genes. There were similarities and differences between these adult HSC genes and those characterized in fetal HSC. The HSC enrichment was demonstrated by PCR, northern and *in situ* hybridization experiments. The genes encode cell-surface proteins (notably two novel seven-transmembrane receptors), nuclear proteins and signalling molecules. Terskikh et al. compared their results with analysis of neural stem cellsand performed microarray analysis to define common stem-cell genes. Some of the HSC-enriched genes were expressed in the germinal zones of the brain, which contain neural progenitor cells. The authors suggest that identifying overlapping stem-cell gene profiles may indicate genes that regulate the common feature of stem cells, namely their capacity for self-renewal.

References

- 1. Translating stem and progenitor cell biology to the clinic: barriers and opportunities
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. The stem-cell database, [http://stemcell.princeton.edu]
- 4. A genetic analysis of neural progenitor differentiation