PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Cancer drug resistance

ArticleInfo		
ArticleID	:	4130
ArticleDOI	:	10.1186/gb-spotlight-20010626-01
ArticleCitationID	:	spotlight-20010626-01
ArticleSequenceNumber	:	201
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2001–06–26OnlineDate: 2001–06–26
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

STI-571 is an Abelson tyrosine kinase (Abl) inhibitor that is being tested in clinical trials to treat chronic myeloid leukemia (CML). A chromosomal translocation in CML patients results in production of the Bcr-Abl fusion protein, which is constitutively active and oncogenic. In the June 21 ScienceXpress, Gorre *et al.* report on the mechanism of relapse in STI-571 patients (*Sciencexpress* 2001, 10.1126/science.1062538). They found that patients in STI-571 remission had reactivated Bcr-Abl activity; 3 of the 11 patients had amplified copies of the oncogenic *BCR-ABL* gene. Two thirds of patients tested harboured a single point mutation within the ATP-binding site of Bcr-Abl. Thus the *BCR-ABL* gene appears important in both the initiation and the maintenance of tumorigenicity. Identifying mutated alleles may help to detect drug-resistant clones prior to clinical relapse.

References

- 1. Sti571: a gene product-targeted therapy for leukemia
- 2. ScienceXpress, [http://www.sciencexpress.org]