PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Bloom-in' flies

ArticleInfo		
ArticleID	:	4039
ArticleDOI	:	10.1186/gb-spotlight-20010403-04
ArticleCitationID	:	spotlight-20010403-04
ArticleSequenceNumber	:	110
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001-04-03OnlineDate: 2001-04-03
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	÷	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Bloom syndrome is a disease characterized by increased tumorigenesis, immunodeficiency and partial sterility. It is caused by mutations in the BLMgene, which encodes a helicase. In the March 30th Science, Kusano *et al.* describe characterization of the Drosophila Dmblm homolog of *BLM* (*Science* 2001, **291**:2600-2602). They show that *Dmblm* corresponds to mus309, which was originally identified in a mutagen-sensitivity screen. Disrupting the *Dmblm* gene causes mutagen sensitivity and female sterility, whereas transgenic flies expressing *Dmblm* rescue the *mus309* phenotypes. Kusano *et al.* also show that transgenic flies expressing the DNA-repair gene *Ku70* could rescue *mus309* phenotypes, implicating Dmblm in the pathways that repair double-strand DNA breaks. Consistently, *mus309* male sperm show evidence for increased nondisjunction and chromosome loss.

References

- 1. Molecular genetics of Bloom's syndrome.
- 2. The Bloom's syndrome gene product is homologous to RecQ helicases.
- 3. Science, [http://www.sciencemag.org]

4. Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene.

5. Third-chromosome mutagen-sensitive mutants of Drosophila melanogaster.

This PDF file was created after publication.