PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

DNA repair within nucleosomes

ArticleInfo		
ArticleID	:	3858
ArticleDOI	:	10.1186/gb-spotlight-20001211-02
ArticleCitationID	:	spotlight-20001211-02
ArticleSequenceNumber	:	295
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–12–11 OnlineDate : 2000–12–11
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan Weitzman

Email: jonathanweitzman@hotmail.com

DNA lesions are repaired by a cut-and-remove process called nucleotide excision repair. An *in vitro* biochemically defined system has been developed in which six repair factors are sufficient to excise damage from naked DNA. In the December Molecular and Cellular Biology, Hara *et al.* use this system to examine the effect of DNA organization into nucleosome structures on the DNA repair process (*Mol Cell Biol* 2000, **20**:9173-9181). A nucleosome structure was assembled by mixing human histone proteins with a 136 bp DNA fragment containing a (6-4) photoproduct lesion. The nucleosome was then used as a damaged substrate using the reconstituted human excision assay or human whole-cell extracts. DNA damage within the nucleosome core was repaired at about 10% the rate of naked DNA. Hara *et al.* also showed that there are no additional accessibility factors that are specific for nucleotide excision repair. Hence, chromatin compaction presents a significant impediment to the human excision nuclease.

References

- 1. DNA excision repair.
- 2. Molecular and Cellular Biology, [http://www.intl-mcb.asm.org]

This PDF file was created after publication.