PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

A protein kinase switch

ArticleInfo		
ArticleID	:	3782
ArticleDOI	:	10.1186/gb-spotlight-20000929-01
ArticleCitationID	:	spotlight-20000929-01
ArticleSequenceNumber	:	219
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–29 OnlineDate : 2000–09–29
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Kinase inhibitors are plagued by a lack of specificity. Now in the 21 September Nature Bishop *et al.* tackle the problem by building on their earlier work, in which they modified the ATP-binding sites of Src-family tyrosine kinases to accept either nucleotide analogs or modified kinase inhibitors. In the new work the researchers mutate kinases from four distinct kinase families by replacing a bulky residue with a small residue. This change provides enough room for the binding of inhibitor analogs, which are larger than their parent inhibitors and thus do not inhibit wild-type kinases (*Nature* 2000, **407**:395-401). The *in vivo* specificity is demonstrated using expression arrays. Most kinases contain a bulky residue analogous to the one mutated in this study, and thus should be amenable to the kinase-sensitization strategy.

References

- 1. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors.
- 2. Nature, [http://www.nature.com/nature/]
- 3. Engineering Src family protein kinases with unnatural nucleotide specificity.