PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Chromodomains bind RNA

ArticleInfo		
ArticleID	:	3780
ArticleDOI	:	10.1186/gb-spotlight-20000927-01
ArticleCitationID	\Box	spotlight-20000927-01
ArticleSequenceNumber	\Box	217
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–27 OnlineDate : 2000–09–27
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Male flies compensate for having a single X chromosome by doubling the single X chromosome's level of expression. This increase is mediated by MOF, a histone H4 acetyltransferase. MOF, along with other proteins and an RNA called roX2, binds to the male X chromosome. In the 21 September Nature Akhtar *et al.* find that MOF and another dosage compensation protein called MSL-3 use their chromodomains to bind to roX2 and thus to the male X (*Nature* 2000, **407**:405-409). Other chromodomain proteins, which function as chromatin regulators, may also have RNA-binding activity. If this is the case, non-coding RNAs may be more commonly involved in organizing regulatory complexes than has been appreciated to date.

References

- 1. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation.
- 2. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.
- 3. The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila.
- 4. Nature, [http://www.nature.com/nature/]