PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Translocation in a carcinoma

ArticleInfo		
ArticleID	:	3753
ArticleDOI	:	10.1186/gb-spotlight-20000830-02
ArticleCitationID	:	spotlight-20000830-02
ArticleSequenceNumber	:	190
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–08–30 OnlineDate : 2000–08–30
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Chromosomal translocations that encode fusion oncoproteins are common in leukemias/lymphomas and sarcomas, but not in carcinomas, which constitute up to 90% of human cancers. In the August 25 Science, Kroll *et al.* report the detection of a Pax8-PPARγ1 fusion in five of eight thyroid follicular carcinomas (*Science* 2000, **289**:1357-1360). Pax8 is a transcription factor essential for formation of the thyroid follicular epithelial lineage, whereas the peroxisome proliferator-activated receptor (PPAR) γ1 can inhibit the growth and promote the differentiation of cancer cell lines. Based on *in vitro* studies, the fusion proteins appear to be acting as dominant negatives, interfering with the normal activity of PPARγ1. The identification of Pax8-PPARγ1 may help in the differentiation of follicular carcinomas (potentially malignant) and follicular adenomas (benign, and lacking in the fusion oncoprotein).

References

- 1. Chromosomal translocations in human cancer.
- 2. Science magazine, [http://www.sciencemag.org/]