PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Hopping along DNA

ArticleInfo		
ArticleID	:	3725
ArticleDOI	:	10.1186/gb-spotlight-20000713-02
ArticleCitationID	:	spotlight-20000713-02
ArticleSequenceNumber	:	162
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–07–13 OnlineDate : 2000–07–13
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Oxidative damage yields isolated electrons and their corresponding 'holes' that can migrate along DNA. In the 6 July Nature Lewis *et al.* determine rate constants of \sim 5x107 s-1 and 5x106 s-1, respectively, for forward and return hole transport from a single guanine base to a double guanine base across a single adenine (*Nature* 2000, **406**:51-53). These rates mean that electrons do not linger long enough to participate in strand-cleavage reactions. But the electrons move too slowly to avoid charge recombination, so DNA cannot act as a useful molecular wire.

References

- 1. Distance-dependent electron transfer in DNA hairpins.
- 2. Nature, [http://www.nature.com/nature/]

This PDF file was created after publication.