PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Targets for forkhead

ArticleInfo		
ArticleID	:	3721
ArticleDOI	:	10.1186/gb-spotlight-20000710-02
ArticleCitationID	:	spotlight-20000710-02
ArticleSequenceNumber	:	158
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	- -	RegistrationDate: 2000-07-10OnlineDate: 2000-07-10
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Zhu et al. use the power of microarrays in the July 6 Nature to uncover the many targets of the yeast Forkhead (Fkh) proteins (*Nature* 2000, **406**:90-94). On the basis of chromatin immunoprecipitation experiments, the regulation of transcription is either direct (confirmed for at least 4 of 33 co-regulated genes that are active during G2 and M cell cycle phases) or indirect (for a set of M/G1 genes). Aberrant regulation of two genes from the G2/M set, *SWI5* and *ACE2*, apparently causes the aberrant regulation of the M/G1 set of genes. Koranda *et al.* show in an accompanying paper that Fkh works by mediating the binding of a positive regulator Ndd1 and an as yet unidentified negative regulator (*Nature* 2000, **406**:94-98).

References

- 1. Nature magazine, [http://www.nature.com/nature/]
- 2. Five years on the wings of fork head.

3. NDD1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae.