PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Two breaks make a translocation

ArticleInfo		
ArticleID	:	3703
ArticleDOI	:	10.1186/gb-spotlight-20000616-02
ArticleCitationID	:	spotlight-20000616-02
ArticleSequenceNumber	:	140
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-06-16OnlineDate: 2000-06-16
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

There are multiple ways in which double-stranded breaks (DSBs) in DNA can be repaired or recombine with other DNA molecules. Under some of these conditions it is theoretically possible that a single DSB could invade a region of homology and cause a translocation. But in the 8 June Nature Richardson and Jasin find that mouse cells with a single DSB often repair the break with homologous sequences from another location, but only cells with two DSBs experience translocation events (*Nature* 2000, **205**:697-700). Richardson and Jasin introduce DSBs by adding a rare-cutting restriction enzyme gene and allowing the enzyme to act on a site within an introduced drug-resistance gene. This system should help in studies of how to suppress translocation events.

References

1. Homology-directed repair is a major double-strand break repair pathway in mammalian cells.

2. Nature Magazine, [http://www.nature.com/nature/]

3. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease.

This PDF file was created after publication.