PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Imprinting with insulation

ArticleInfo		
ArticleID	:	3692
ArticleDOI	:	10.1186/gb-spotlight-20000531-02
ArticleCitationID	:	spotlight-20000531-02
ArticleSequenceNumber	:	129
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2000-05-31OnlineDate: 2000-05-31
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

On the chromosome inherited from the mother, the mammalian *H19* gene is active even as the upstream *Igf2* gene is silenced. The reverse pattern of expression occurs on the paternal chromosome. Paternal *H19* expression is silenced by promoter methylation, whereas paternal *Igf2* expression relies on an enhancer located downstream of *H19*. In the 25 May Nature Bell and Felsenfeld, and Hark *et al.*, find that, on the maternal chromosome, the enhancer's access to the *Igf2* promoter is blocked by an intervening insulator (*Nature* 2000, **405**:482-485; 486-489). This block is effected by the binding of the zinc-finger protein CTCF to the hypomethylated maternal insulator. The paternal insulator, however, is methylated and therefore does not bind CTCF or block interactions between the enhancer and the *Igf2* promoter.

References

1. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2.

2. Nature magazine hompeage, [http://www.nature.com/nature/]

This PDF file was created after publication.