PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Transfecting with antibodies

ArticleInfo		
ArticleID	:	3688
ArticleDOI	:	10.1186/gb-spotlight-20000523-02
ArticleCitationID	\Box	spotlight-20000523-02
ArticleSequenceNumber	\Box	125
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–05–23 OnlineDate : 2000–05–23
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

The various available transfection methods suffer from low efficiency, lack of specificity for a particular cell type, and a tendency to kill many of the target cells. Bildirici *et al.* offer a solution in the 18 May Nature, using antibody-coated beads (*Nature* 2000, **405**:298). DNA enters the cells after agitation of a bead-cell mixture tears holes in the cell membrane. Transfection efficiency ranges from 40 to 80% with less than 20% cell killing, and the DNA is targeted to cells with the relevant cell surface marker. This targeting will be particularly important for *ex vivo* gene therapy applications.

References

1. Nature magazine, [http://www.nature.com/nature/]

This PDF file was created after publication.