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Abstract

We demonstrate a method for the prediction of chemotherapeutic response in patients using only before-treatment
baseline tumor gene expression data. First, we fitted models for whole-genome gene expression against drug sensitivity
in a large panel of cell lines, using a method that allows every gene to influence the prediction. Following data
homogenization and filtering, these models were applied to baseline expression levels from primary tumor biopsies,
yielding an in vivo drug sensitivity prediction. We validated this approach in three independent clinical trial datasets,
and obtained predictions equally good, or better than, gene signatures derived directly from clinical data.

Background
Identifying and applying molecular biomarkers to pre-
dict response to medication is particularly important for
drugs with a narrow therapeutic index, for example che-
motherapeutic agents, because response is highly vari-
able and side effects are potentially lethal [1,2]. Many
studies have been conducted with this objective but only
a handful of markers can reproducibly predict chemo-
therapeutic response in the clinic [3]. It is anticipated
that the number of biomarkers discovered will rise as
high-throughput sequencing becomes cheaper and more
pervasive [3,4]; however, the effect size of these markers
is generally small, since drug response is typically a com-
plex trait, usually influenced by many genomic and en-
vironmental factors [3,4]. Thus, it has been hypothesized
that methods that consider the cumulative effect of many
markers, may predict complex phenotypes (like drug re-
sponse) more accurately. Consequently, some researchers
have recently developed sophisticated methods that in-
corporate all of the data in a genome. For example, there
has been some success in using whole-genome SNP or se-
quence data to predict complex traits [5,6].

In cancer, genomic aberrations and aneuploidy are
common, which means that it is difficult to obtain reli-
able SNP or genome sequences directly from tumors [7].
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However, the quantification of whole-genome gene ex-
pression levels from primary tumor biopsies is straight-
forward and has been successfully applied for many
years [8,9]. Unfortunately, prediction using gene expres-
sion microarray data has traditionally been fraught with
reproducibility issues [10]. One of the major concerns is
that gene expression estimates, generated on different
microarray platforms or even in different batches, are
not always consistent [11]. Several analytical approaches
have recently been suggested to address this problem
and a large-scale comparison has found that some of
these methods reliably correct for these biases [12]. Also,
multiple studies have compared the performance of vari-
ous algorithms for predicting survival phenotypes from
microarray expression data [13,14]. These have found
that ridge regression (a type of regularized linear regres-
sion that can include the expression of all genes in the
model) performed best, or was consistently amongst the
best performing methods. However, gaps remain in the
utility of these tools in predicting clinical phenotypes.
Here, we present an approach that integrates several
of these recently developed computational and statistical
tools to predict in vivo drug response, using models
trained on cell line data (see Materials and methods).
For model development, the approach was applied to re-
cently released data from the Cancer Genome Project
(CGP) [15], consisting of baseline (i.e. before drug treat-
ment) gene expression microarray data and sensitivity to
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138 drugs in a panel of almost 700 cell lines. Our results
demonstrate that by building a statistical model from
these data, it is possible to capture a significant propor-
tion of the variability in drug response in patients. The
Cancer Cell Line Encyclopedia [16] has an additional large
panel of cell lines, for which it is possible to construct
such models, although here, we focus on the CGP, because
those cell lines have been screened against more drugs.

To test our approach, we identified clinical trial data-
sets that had assessed tumor gene expression before
drug treatment (using expression microarrays) and had
subsequently measured a clear drug response phenotype.
Using these data, we can test whether our models de-
rived from cell lines capture a significant proportion of
the variability in drug response in patients. The clinical
datasets must fulfill the following criteria. Firstly, the
clinical trial data (both baseline tumor expression and
post-treatment drug response) must be publicly available
and easily accessible to allow other researchers to repro-
duce the results. Patients must have been treated with
monotherapy, rather than a combination of drugs, as
multi-drug regimes would clearly confound the results.
The data must have been published and not retracted. A
reasonable number of clinically evaluable samples (>20)
are required for statistical power. Finally, sensitivity to
the particular drug (as measured by the concentration
required for 50% of cellular growth inhibition (ICs0)),
must have been quantified in the CGP cell lines, because
we cannot create suitable models otherwise. To our
knowledge, there are four existing datasets that fulfill
these criteria [17-20] and the results of our analysis of
these data are presented below. Interestingly, the four
trials were for three different types of cancers treated
with either cytotoxic or targeted agents.

Results

Our goal was to use baseline gene expression and in vitro
drug sensitivity derived from cell lines, coupled with
in vivo baseline tumor gene expression, to predict patients’
response to drugs. An overview of our approach is shown
in Figure 1 (complete details are in Materials and
methods; see Data availability for details of how to acquire
the R code). Ridge regression models, which allow a small
contribution from every gene, have previously been shown
to be the best method for predicting survival from gene
expression microarray data [13,14]. Our analyses are con-
sistent with these previously published findings. In prelim-
inarily tests, we assessed several of the plethora of
available machine learning algorithms, including random
forests [21], PAM [22], principal component regression
[23], Lasso [24] and ElasticNet regression [25]. Among
them, ridge regression was consistently the best performer,
with the added advantage of being highly computationally
efficient, which is crucial for cross-validation analysis.
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Furthermore, principal component analysis (PCA) demon-
strates that whole-genome gene expression can capture
far more information about cancer biology, than may have
been previously appreciated. As illustrated in Figure 2 and
Additional file 1: Figures S1 and S2, whole-genome gene
expression recapitulates tissue of origin, cancer subtype
and various genomic aberrations, when the CGP cell lines
are plotted on the first two principal components of a
whole-genome gene expression matrix. This suggests that
whole-genome gene expression acts as a surrogate for un-
measured genetic and non-genetic phenotypes, providing
additional support for this approach.

Docetaxel and cisplatin treatment of breast cancer

We first applied our method to gene expression micro-
array data obtained from 24 breast cancer tumor biopsies
through a clinical trial, which measured the response of
patients to docetaxel neoadjuvant treatment [18]. Tumor
size, measured before and after four cycles of docetaxel,
was used to calculate the percentage of residual disease.
The authors designated individuals as ‘sensitive’ or ‘resist-
ant’ to docetaxel, depending on whether there was <25%
or >25% of the tumor remaining. Tumor gene expression
levels were measured from biopsies using Affymetrix
microarrays (GEO accession number [GEO:GSE6434]).
In the original study, receiver operating characteristic
(ROC) curve [28,29] analysis reported an area under the
curve (AUC) of 0.96 (from leave-one-out cross-validation
(LOOCYV)) using a 92-gene signature derived from the 24
samples. However, given that this signature was generated
on the same data on which it was evaluated, this is likely
to represent an inflated estimate of the classification
accuracy.

To compare our method to these results, we used the
CGP cell lines to build a ridge regression model, which
related whole-genome gene expression to docetaxel
sensitivity. We applied the model to the in vivo pretreat-
ment breast cancer tumor expression data. The pre-
dicted drug sensitivity value was lower in the patients
who were defined (by the trial) to be sensitive to doce-
taxel, compared to the patients defined as resistant
(Figure 3a; P =4.0 x 1072 from t-test). Of the seven indi-
viduals who were predicted to be most sensitive, six are
in the trial-defined sensitive group. ROC curve analysis
revealed an AUC of 0.81 (Figure 3b; P=5.0 x 107%). Not-
ably, training (cell lines) and test (clinical trial) data were
assessed using different microarray platforms and the
training set contained only 24 breast cancer cell lines.
Interestingly, when the models were trained on these 24
breast cancer cell lines alone, there was no difference in
predicted drug sensitivity between the trial-defined sen-
sitive/resistant groups (P =0.65 from a t-test). This sug-
gests that the non-breast cancer cell lines included in
the full training panel are informative for predicting the
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Figure 1 Data flow diagram showing our approach to predicting in vivo drug sensitivity. Data are represented by rectangles and
processes by ovals. The input data (baseline expression and drug ICsq in cell lines and in vivo tumor gene expression) are shown in a gray

box. The raw microarray data are (1) preprocessed separately using the robust multi-array average [26] method and the CDF files remapped

by BrainArray [27] are summarized, (2) then combined and homogenized using ComBat. (3) A ridge regression model is fitted for baseline gene
expression levels in the cell lines against the in vitro drug ICsq estimates and (4) this model is then applied to the baseline tumor expression
data from the clinical trial, to yield drug sensitivity estimates. Complete details are given in Materials and methods. CDF, chip definition file.
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in vivo drug response for breast cancer. For comparison,
ElasticNet and Lasso regression models were also ap-
plied to this data, but both underperformed when com-
pared to ridge regression (P=0.01 from ¢-tests for both
models; Additional file 1: Table S1; see Materials and
methods for details).

Next, we applied our method to a second breast can-
cer dataset, which assessed the response of 24 triple-
negative patients to neoadjuvant cisplatin therapy [20].
We downloaded the raw data from ArrayExpress (acces-
sion number E-GEOD-18864) and processed it as de-
scribed in Materials and methods. The authors assigned
patients to one of four drug response categories based
on RECIST [30] criteria. This time, our models did not
capture variability in clinical response (Additional file 1:

Figure S3; P=026 from a linear regression model).
LOOCYV (see Materials and methods) indicated that, for
the cell line panel, our models captured approximately
the same proportion of variability in cellular response to
cisplatin as they had for docetaxel (r=0.35, P=2.6 x 10"
for docetaxel and r=0.32, P=1.4x 10™*3 for cisplatin
from Pearson’s correlation test between LOOCV esti-
mated log IC5q and measured log ICsq values). Thus, it is
surprising that we could not also predict the in vivo re-
sponse to cisplatin. Notably, the authors of the original
trial could not generate a gene signature from their data,
or show that any signature in the literature captured cis-
platin response in vivo. Furthermore, they found that no
genes were significantly correlated with response, fol-
lowing correction for multiple testing [20]. Therefore, it
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Figure 2 Whole-genome gene expression data capture molecular phenotypes in cancer cell lines. (a) Clustering of cancer types on
principal component (PC) 1 and PC2 of a gene expression matrix from the CGP cell lines. There is clear clustering of blood, central nervous
system and lung cancers. For clarity, only these three cancer types are shown here. Additional file 1: Figure ST shows all cancer types. (b)
Clustering of subtypes of hematological cancers on PC1 and PC2 of a gene expression matrix of CGP hematological cancer cell lines. For clarity
only acute myeloid leukemia, acute lymphoblastic leukemia and B-cell lymphoma are shown here. All data is shown in Additional file 1: Figure S2.
(c) Clustering of ERBB2 amplified breast cancers on PC1 and PC2 of a gene expression matrix of CGP breast cancer cell lines. (d) Clustering of
BRAF mutated cancers on PC1 and PC2 of a gene expression matrix from all CGP cell lines. ALL, acute lymphoblastic leukemia; AML, acute
myeloid leukemia; CGP, Cancer Genome Project; CNS, central nervous system; CNV, copy number variation; MT, mutated; PC, principal component;
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Figure 3 Prediction of docetaxel sensitivity in breast cancer patients. (a) Strip chart showing the difference in predicted drug sensitivity for
individuals sensitive or resistant to docetaxel treatment in vivo. (b) ROC curve showing the proportion of true positives against the proportion of
false positives as the classification threshold is varied. ROC, receiver operating characteristic.
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is possible that we (and the original authors) could not
achieve statistical significance, because of the lack of
variability in drug response among a small group of pa-
tients, as cisplatin is not routinely used to treat breast
cancer [20]. Encouragingly, patients showing a ‘complete
response’ or ‘progressive disease’ had the lowest and high-
est median predicted drug sensitivity values, respectively
(Additional file 1: Figure S3); but given that there were
only three individuals in each of these groups, it is not sur-
prising that we did not establish significance. Consequently,
a larger clinical cohort may be required to assess rigorously
whether our models capture variability in cisplatin response
for triple-negative breast cancer.

Bortezomib in myeloma

Next, we applied our approach to a larger publicly avail-
able clinical phase II/III trial dataset, which assessed re-
sponse to bortezomib in relapsed multiple myeloma
patients [19]. In the original study, a pretreatment bone
marrow aspirate was collected and enriched for tumor
cells, which underwent microarray expression profiling.
It was found that 168 patients had a clinically evaluable
bortezomib response, which was classified as complete
response (CR), partial response (PR), minimal response
(MR), no change (NC) or progressive disease (PD) [19]
using European Group for Bone Marrow Transplantation
criteria [31]. CR, PR and MR patients were defined as
responders and NC and PD patients as non-responders.
Expression in tumor cells was measured using either Affy-
metrix Human Genome U133A or U133B arrays in tripli-
cate. The same samples were interrogated using both A
and B arrays. Data were processed using the Affymetrix
MAS5.0 algorithm and the median expression value of the
replicates that passed quality control was reported.

This clinical dataset presents some obstacles. Firstly,
only the preprocessed data is publicly available (GEO ac-
cession number [GEO:GSE9782]). The fact that the raw
microarray data are not available is problematic because
the lack of standardized raw data processing likely
lowers the performance of our model. Also, clinical sam-
ples were collected as part of three different clinical tri-
als from various sites, and they were also hybridized in
different batches, reflecting the types of issues that may
be encountered were one to apply such a method in the
clinic. Furthermore, there is only a single myeloma cell
line in the training panel.

LOOCYV in the cell line training set revealed similar
correlations to other drugs (r=0.45; P=2.6x 1071%).
Despite the suboptimal clinical data, our method cap-
tured substantial variability in bortezomib response.
There was a statistically significant difference between
the predicted drug sensitivity in patients between the
trial-defined responder and non-responder groups
(Figure 4a; P=89x10™* for samples quantified using
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U133A and Additional file 1: Figure S4; P=15x10"°
for samples quantified using U133B from t-tests). In the
U133A dataset, the nine patients who were predicted to
be most sensitive were all drug responders (Figure 4a).
The AUCs from ROC curve analysis are 0.63 and 0.71
for U133A and Ul33B measurements, respectively
(Figure 4b; P=1.3x10"® and Additional file 1: Figure
S5; P=1.0x107°). Strikingly, when the response was
further subdivided (as CR, PR, MR, NC and PD), the
median predicted drug sensitivity in each of these five
groups was in exactly the correct order (Figure 4c and
Additional file 1: Figure S6) in the U133B samples.

The authors of the original clinical study reported that
a 100-gene signature model [32], built on two arms of
the trial (025 and 040), could predict bortezomib re-
sponse in the third (039) arm of the trial with 63% ac-
curacy. To compare our predictions with those originally
reported, we assessed the performance of our model on
only this third arm of the trial. Our models generate a
continuous variable and to compare the results previ-
ously reported directly, we must dichotomize this vari-
able (i.e. split the data into ‘sensitive’ and ‘resistant’ at an
arbitrary cut-point). At the optimal cut-point (-5.29), 51
of 71 patients were correctly classified, meaning that our
method achieved a classification accuracy of 72%. For a
large range (-5.57 to —4.53) of possible cut-points, our
accuracy was greater than the 63% achieved by the trial-
derived gene signature (Figure 4d). While dichotomizing
clinical response data is not ideal [33], the original clin-
ical data is again not available, thus this is the only
means of directly comparing the predictions. Neverthe-
less, the results indicate that our models offer a substan-
tial performance improvement.

This study also contained a group of 70 patients who
were treated with dexamethasone (and had a clinically
evaluable drug response). It was not possible to con-
struct a dexamethasone specific model as this drug was
not screened against the CGP cell lines. This group is
still suitable as a negative control and thus we applied
the bortezomib model in this cohort. Encouragingly,
there was no difference in predicted bortezomib sensitiv-
ity between responders and non-responders to dexa-
methasone (P=0.81 from a t-test), suggesting that the
models applied to bortezomib-treated patients are drug
specific.

Erlotinib in non-small cell lung cancer

Finally, we applied our approach to a dataset from the
Biomarker-Integrated Approaches of Targeted Therapy for
Lung Cancer Elimination (BATTLE) study (trial registra-
tion ID: NCTO00409968) [17,34]. A subset of patients
with recurrent or metastatic non-small cell lung cancer
(NSCLC) were treated with either erlotinib (# =25), an
EGEFR inhibitor, or sorafenib (7 =37), a VEGFR inhibitor,
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Figure 4 Prediction of bortezomib sensitivity in multiple myeloma patients. (a) Strip chart and boxplot of predicted drug sensitivity for

in vivo responders and non-responders to bortezomib. (b) ROC curve illustrating estimated prediction accuracy. (c) Strip chart and boxplot with
responders and non-responders further broken down as showing CR, PR, MR, NC or PD. (d) Strip chart and boxplot illustrating our predictions
for the (039) arm of the bortezomib trial. The horizontal black line indicates the optimal cut-point, where classification accuracy is 72%. The
horizontal dashed black lines indicate the range of cut-points for which classification accuracy is >63%, which was the accuracy reported for the
trial-derived 100-gene signature on this dataset. The horizontal dashed red line is the mean ICso value in the cell line training set, which could be
used as an unbiased cut-point. CR, complete response; MR, minimal response; NC, no change; PD, progressive disease; PR, partial response.
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in a second-line setting. Raw microarray and drug sensitiv-
ity data were downloaded from GEO ([GEO:GSE33072]).
Inspection of the training data revealed that only a
very small proportion of the cell lines assessed for sensi-
tivity to these drugs were within the drug screening con-
centration used by the CGP. This is the case for many
targeted agents. In contrast, most cell lines treated with
cytotoxic agents, for example docetaxel, have more ac-
curately quantified ICs, values, because a much larger
proportion of cell lines tended to respond within the
sensitivity screening window. The drastically different re-
sponse of cell lines to cytotoxic or targeted agents is
illustrated in Additional file 1: Figure S7. This can be
rigorously demonstrated by segmenting all drugs into
two groups (cytotoxic or targeted) and comparing the
median size of the confidence intervals associated with
the ICso values of each drug. Unsurprisingly, the confi-
dence intervals are larger for targeted agents (average of
1.9 for cytotoxic compared to 4.5 for targeted agents;
P=14x10"° from a Wilcoxon rank sum test). Consist-
ent with this, the signal-to-noise ratio is also significantly

different for cytotoxic and targeted drugs (P=7.1x107’
from a Wilcoxon rank sum test). In light of this, it is not
reasonable to fit a linear ridge regression for most tar-
geted agents, because ICsq values for most cell lines were
derived using extrapolated data, and thus have very large
associated confidence intervals. An approach that re-
duces the level of noise fitted in the model will be more
suited for targeted agent sensitivity prediction. Conse-
quently, we fitted logistic ridge regression models for
the 15 most sensitive (which had reliably measured
ICs, values) versus the 55 most resistant CGP cell lines
(see Materials and methods). In LOOCYV, this method
provided 89% classification accuracy on the training
set and separated sensitive and resistant groups with
P=9.3x107° providing additional support for applying
this approach to clinical samples.

When applied to the clinical trial data, this modified
approach captured a large proportion of variability in
the in vivo erlotinib response (Figure 5a; rho = 0.64 and
P=53x10""* from a Spearman’s correlation test). All
patients were EGFR wild-type. Since KRAS mutation is a
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known biomarker of resistance to EGFR inhibitors
[35-37], we evaluated performance in the subset of 20
individuals who were both EGFR and KRAS wild-type.
The results remained highly significant (rho =0.59 and
P=64x10"° from a Spearman’s correlation test). This
means that we enriched for drug responders, even in the
absence of any known biomarker. A further interesting
observation is that one patient, who was among the
most sensitive to erlotinib, had a KRAS mutation, nor-
mally a biomarker of EGER inhibitor resistance. Our ap-
proach predicted this would be the fifth most sensitive
individual in the cohort, and they were in fact, the fifth
most sensitive individual.

The authors of the original study developed a 76-gene
epithelial-mesenchymal transition (EMT) gene expres-
sion signature using both NSCLC cell lines and patient
data. They reasoned, as EMT had been previously shown
to be associated with EGFR inhibitor resistance, that this
signature may capture variability in erlotinib response
in vivo. The gene signature was applied to the 20 EGFR
and KRAS wild-type NSCLC patients treated with erloti-
nib. They found that individuals with disease control at
eight weeks showed a more epithelial-like signature and
the result was of borderline significance (P =0.052 from
a t-test). For comparison with our approach, we assessed
the difference in predicted probability of erlotinib sensi-
tivity (from the logistic ridge regression model) between
individuals with disease progression and those without
disease progression at two months. In our case, the dif-
ference was highly statistically significant (P=4.9 x 10™*
from a t-test). This suggests that whole-genome gene ex-
pression models, derived from a large panel of cell lines,
have superior power to predict erlotinib sensitivity, com-
pared to the 76-gene EMT signature.

Since the drug sensitivity phenotype evaluated in this
trial is ‘months-to-progression; it is possible that our
models are capturing a prognostic phenotype, rather

than drug sensitivity. To test this, we applied our cell-
line-derived erlotinib sensitivity prediction model to pre-
dict months-to-progression for an independent arm of
the same trial in which NSCLC patients were treated
with sorafenib. The erlotinib-specific model was not pre-
dictive of months-to-progression after sorafenib treat-
ment (Figure 5b; P=0.83 from a t-test), suggesting that
the model is drug specific, rather than a general pre-
dictor of disease progression or prognosis.

Discussion

We have shown that models constructed using baseline
gene expression and drug ICs, values, from a large panel
of cell lines, can predict the chemotherapeutic response
in patients. Our method uses whole-genome ridge re-
gression, and the expression of every gene contributes a
small amount to the prediction. The ridge regression
penalty parameter is automatically selected, meaning
that no user input is required to tune the algorithm. Our
approach captures a statistically significant proportion of
variability in drug response in three of four clinical trials,
regardless of the drugs’ mechanism of action or the pa-
tients’ cancer type and in all cases, performance was
comparable to that of the gene signatures derived dir-
ectly from clinical data. To our knowledge, this is the
first time that a method capable of this has been
described.

It may seem surprising that whole-genome gene ex-
pression alone has such remarkable power in enriching
for drug responders, as the approach ignores what are
thought to be important factors in drug sensitivity, such
as cancer type, genomic aberrations or any other specific
markers. We showed that the impressive performance
may (at least in part) stem from the fact that whole-
genome gene expression may act as a surrogate for
unmeasured phenotypes that are directly relevant to
chemotherapeutic sensitivity (Figure 2), and capture
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aspects of both germ line and tumor-specific genome
variation. This observation is further supported by mul-
tiple studies that have shown that gene expression can
be used to characterize novel cancer subtypes and has
been shown to have predictive and prognostic value
[38-43].

Our method attained classification accuracy approaching,
or even surpassing that of the gene signatures derived dir-
ectly from clinical trials. In these trials, gene signatures
were derived using in vivo samples. In the case of docetaxel,
the signature was generated on the same set of samples on
which it was tested, which inevitably inflates their estimate
of prediction accuracy. It would only be possible to com-
pare performance fairly using an independent dataset.
Nevertheless, our method significantly enriched for doce-
taxel responders in the trial dataset. Our approach pre-
dicted in vivo drug sensitivity more accurately than a
100-gene signature derived from the bortezomib clinical
trial. We also outperformed the 76-gene EMT signature
(generated using both cell lines and patients) in predicting
sensitivity to erlotinib. There was no evidence that KRAS
mutation, previously identified as a biomarker of EGFR
inhibitor resistance, had predictive power in this data,
although the number of samples was small and this result
does not discount KRAS mutation as a biomarker for this
drug. The fact remains that our method also outperformed
this (already established) biomarker in this dataset. We
modified the original algorithm (to use logistic instead of
linear ridge regression) in the analysis of erlotinib data.
This is justifiable given the severe noise associated with
the ICsq values for these types of targeted agents in the
CGP cell lines. Overall, the results suggest that models
created on very large panels of cell lines, can rival, or even
surpass the performance of similar in vivo approaches.

In all studies discussed here, the data are suboptimal,
because all of the clinical trials used a different micro-
array platform than was used on the cell line panel train-
ing set. Also, the cell line panel often only contained a
very small number of samples from the actual cancer
type that the clinical trial evaluated. For example, only
one myeloma cell line was treated with bortezomib in
our panel of training cell lines. We anticipate that if
training and test microarray platforms were the same
and if the cell line panel contained more relevant cancer
types, accuracy would be further improved. These results
are congruent with the emerging view that -omics
characterization of tumors may rival traditional tissue-
of-origin and pathological descriptors for a variety of
clinically important classifications. This was supported
by our finding that, unlike the full cell line panel, the 24
available breast cancer cell lines could not predict doce-
taxel response for breast cancer patients (although it
would be difficult to achieve accurate prediction using
such a small training set).
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Performance would also likely be enhanced by a more
detailed assessment of the transcriptome, for example, by
quantifying transcript expression levels with RNA sequen-
cing (RNA-seq), which has been shown to provide better
estimates of expression than microarrays [44]. A recent
study has also found that results of transcriptome sequen-
cing using RNA-seq were highly reproducible between dif-
ferent laboratories, if procedures are standardized (which
is not generally the case for expression microarrays) [45].
This provides further evidence that incorporating RNA-
seq would increase power and the widespread utility of
these types of expression-based prediction assays. How-
ever, a different machine learning algorithm may be better
suited to the distribution of RNA-seq data.

We have recently completed a separate study that
provides additional support for emphasizing transcripto-
mics in pharmacogenomic prediction. In that analysis,
we used whole-genome models, similar to the ridge
regression models used here, to compare the relative
contribution of whole-genome SNPs, gene expression or
microRNA (miRNA) expression, to inter-individual vari-
ability in cellular growth rate [46]. We found that, in
lymphoblastoid cell lines, far more of the variability in
growth rate (between cell lines isolated from different
individuals) can be explained by the transcriptome than
by genome-wide SNPs. Using gene and miRNA expres-
sion data, we constructed statistical models that ex-
plained 48% of variability in growth rate, compared to
just 2% when using models based on only whole-
genome SNP data. Given that a substantial proportion
of chemotherapeutic agents target fast-growing cells
(for example, docetaxel), these results provide a strong
rationale for prioritizing the transcriptome when pre-
dicting clinical response to this class of drugs. The result
also showed that combining miRNA and gene expres-
sion data significantly improved prediction (from 38%
to 48% of variability explained) over mRNA expression
alone, suggesting that including miRNA and other non-
coding RNAs may improve the prediction of clinical
drug sensitivity, although no data is currently available
that would allow us to test this hypothesis.

Here, we have demonstrated that models derived from
a very large panel of cell lines achieve equal or better
performance for clinical drug sensitivity prediction than
those derived directly from patients and these findings
can have a profound impact on patient care. For ex-
ample, screening for drug sensitivity in vitro is far less
costly and time-consuming than conducting large clin-
ical trials. A much larger number of samples can be
screened against any given drug using cell lines than
would be feasible (either practically or ethically) in a clin-
ical setting. Furthermore, in vitro drug sensitivity screen-
ing is usually conducted under controlled experimental
conditions to achieve a greater degree of accuracy. The



Geeleher et al. Genome Biology 2014, 15:R47
http://genomebiology.com/2014/15/3/R47

fact that many more samples can be screened, with more
accuracy, may lead to improved statistical power, com-
pared to in vivo methods, which inevitably rely on smaller
sample sizes and noisy clinical response phenotypes. This,
and the fact that recently developed statistical methods ro-
bustly correct for intrinsic differences in gene expression
between cell lines and in vivo tumors, suggest that this
type of approach is a very promising option for personaliz-
ing drug treatment. There is no limit to the number of
drugs that could be screened against a panel of cell lines.
In theory, every existing chemotherapeutic compound
could be tested, meaning that given a tumor biopsy, it
would be trivial to use this approach to estimate sensitivity
to every drug prior to any course of treatment. The falling
price of gene expression microarrays makes it feasible to
incorporate this technology into patient care. The cell line
training set could also be expanded by including data on
cellular sensitivity within different microenvironments and
cell lines under different simulated stromal conditions, as
it is known that the tumor microenvironment plays a key
role in tumor development [47].

The results also have important implications in drug
development, where our approach could be used to en-
rich for likely drug responders, prior to carrying out
clinical trials. There has been much recent interest in
developing drugs in conjunction with companion diag-
nostic tests [48]. The benefits of enriching for likely drug
responders are obvious, but it is normally difficult to de-
velop accurate biomarkers without exposing the drug to
patients. However, our approach, because of its ability to
enrich for drug responders in a clinical cohort, has enor-
mous potential as a companion diagnostic. There is also
a clear ethical benefit, in that such a diagnostic could be
developed without ever exposing potentially unrespon-
sive patients to toxic chemotherapeutic agents.

Finally, we highlight the work of Menden et al, who
recently constructed models using the CGP cell line
data, with the aim of predicting in vitro drug sensitivity
[49]. The authors achieved impressive prediction (R*=
0.72 from eightfold cross-validation) by using models
that consider the effectiveness of drugs with similar
mechanisms of action. These results are better than
those achieved using our models (based on expression
data alone), but currently cannot be extended to in vivo
data because clinical response to similar drugs is almost
never known a priori. However, the results suggest that
in future, in vivo prediction could be improved by con-
sidering multiple drugs, using either prior information
on what is known about mechanism of drug action, or
simply the empirical correlation of drug sensitivities.

Conclusions
In summary, we have shown for the first time that it is pos-
sible to enrich for drug responders in a clinical cohort
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using only baseline tumor gene expression levels, by apply-
ing models generated from a large panel of cell lines. We
have also demonstrated that this approach outperforms
several existing biomarkers in the available clinical datasets.
These findings have profound implications for personalized
medicine and drug development. Future work will focus
on improving predictions using more rigorous transcrip-
tome quantification and further testing in prospective clin-
ical trials. The R code [50] needed to reproduce all figures
and results in this paper, is provided (for academic use) on
our website in Sweave [51] format (see Data availability).

Materials and methods

Bioinformatics analysis overview

Bioinformatics analyses were performed in R. Our imple-
mentation is extremely fast (typically running in <30 s on
a standard desktop computer) and easy to use. Once
the data are correctly loaded, the user need only pro-
vide the baseline gene expression and drug sensitivity
data (i.e. IC50) from the cell line panel and baseline
gene expression data from the clinical trial. The pre-
dicted drug sensitivity is then calculated, requiring no
further user input. All R code is provided in annotated
Sweave format on our website (see Data availability),
enabling other investigators to reproduce easily all the
results and figures presented in this paper.

Obtaining gene expression and drug sensitivity data
Drug ICs, values for docetaxel, bortezomib and erlotinib
were downloaded from the CGP website ([52]; accessed
August 2013). The raw CGP gene expression microarray
data (CEL files) were downloaded from ArrayExpress
under accession number E-MTAB-783. These data were
preprocessed using the robust multi-array average algo-
rithm (implemented by the rma() function in the affy [53]
library in R). This algorithm does background correction,
quantile normalization and median-polish summarization
in one step. For summarization, we used the updated pro-
beset annotation chip definition file (CDF) provided by
BrainArray (version 17.0.0 for Affymetrix HT Human
Genome U133A arrays, probesets mapped to Entrez gene
IDs). We followed the same set of steps to preprocess the
docetaxel, cisplatin and erlotinib/sorafenib clinical trial
gene expression data (using the appropriate BrainArray
CDF file in each case). The bortezomib expression data
were obtained directly from GEO using the getGEO()
function implemented in the R library GEOquery [54]. All
in vivo drug response data were obtained from GEO or
directly from the relevant publication.

Combining and homogenizing cell line and clinical trial
gene expression datasets

Training (cell lines) and test (clinical trial) datasets were
mapped to official gene symbols. Probesets that mapped
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to more than one gene symbol were summarized by
their mean expression value. In all cases, both datasets
were generated on different microarray platforms, thus
we used a subset of genes represented on both plat-
forms. This typically left approximately 10,000 gene
symbols remaining. These two datasets were then
homogenized using the ComBat() function from the sva
library in R. Finally, we filtered out genes whose expres-
sion did not vary substantially in the homogenized
dataset, because if technical variability is greater than
biological variability, these can never add predictive
value; we removed the 20% of genes with lowest variabil-
ity in expression across all samples.

Predicting in vivo drug sensitivity using linear ridge
regression for docetaxel, cisplatin and bortezomib clinical
trials

Once the data were prepared as outlined above, a linear
ridge regression model was fitted for in vitro drug sensi-
tivity dependent on the homogenized whole-genome ex-
pression levels in the CGP cell lines (for which both
drug sensitivity and expression data were available). To
do this, we used the linearRidge() function from the
ridge [55] package in R. This function implements a
method to choose the ridge regression tuning parameter
automatically. Before fitting the model, the drug sensitiv-
ity phenotype data (IC5o values) were power transformed
using the powerTransform() function in the R package
car. After the model was fitted, it was then applied to
the homogenized gene expression data from the clinical
trial, using the predictlinearRidge() function from the
ridge package in R, thus yielding a drug sensitivity esti-
mate for each patient.

Leave-one-out cross-validation

For LOOCY, all data were first preprocessed and ho-
mogenized as described above. Then, ridge regression
models were fitted (as above) on all of the available cell
line data, but with one sample omitted. Next, these
models were used to calculate a predicted I1Cs, value,
using the gene expression data of the single omitted cell
line. This process was repeated iteratively for every sam-
ple thus yielding a predicted ICs, for every cell line.
These predicted ICso values were then compared to the
measured ICs, values, using a Pearson’s correlation test,
giving an estimate of prediction accuracy.

ElasticNet and Lasso models

ElasticNet and Lasso regression models were fitted using
the glmnet package in R. The Lasso penalty parameter
was selected using the automatic cross-validation feature
(i.e. the cv.glmnet() function). ElasticNet penalty param-
eters (alpha and lambda) were selected using the caret
package in R. Optimal parameters were selected using a
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grid search on the cell line training set, which takes
approximately one day to run on a standard PC. Param-
eters were selected based on an optimal R* value or
Cohen’s kappa (in cross-validation) for linear and logistic
models, respectively.

Predicting in vivo drug sensitivity using logistic ridge
regression for an erlotinib clinical trial

The data were first prepared as described above. Next,
we divided the cell line training data into sensitive
(15 samples) or resistant (55 samples) groups and fitted
a logistic ridge regression model using the logisticRidge
() function from the R package ridge. Again, the ridge
regression tuning parameter was automatically selected.
As this implementation of logistic ridge regression is ex-
tremely computationally intensive, we implemented a
feature selection step, where only the 1,000 genes that
were most differentially expressed between the 15 sensi-
tive and 55 resistant samples were fitted in the model.
These genes were selected using t-tests, specifically
using the rowttests() function in the R library genefilter
[56]. This step enables a standard desktop computer to
fit a model in approximately ten minutes (as opposed to
days). Once the model is fitted, it is applied to the ho-
mogenized gene expression data from the clinical trial,
using the predict.logisticRidge() function, which calcu-
lates the predicted log-odds of drug sensitivity.

Statistical analysis of results

ROC curve analysis was performed using the ROCR [28]
package in R. Empirical P-values were generated using
100,000 sample label permutations and computing the
proportion of permutations for which the AUC was
more extreme than that observed in the original data.
Linear regression, f-tests and Spearman’s correlation
tests were performed using the base functions in R.
Figure 1 was generated using the Inkscape software and
the remaining figures were generated in R.

Data availability

Annotated R code (in Sweave format) to reproduce all of
the analysis in this paper is available from our website
[57]. The CGP gene expression data are available from
ArrayExpress under accession number E-MTAB-783. The
ICsp data for the drugs is available from the CGP website
[52]. The docetaxel data are available from GEO under ac-
cession numbers [GEO:GSE349] and [GEO:GSE350]. The
cisplatin data are available from ArrayExpress under ac-
cession number E-GEOD-18864. The bortezomib data are
available from GEO under accession number [GEO:
GSE9782]. The erlotinib data are available from GEO
under accession number [GEO:GSE33072]. Complete de-
tails and R code showing how to acquire and preprocess
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all of these data, as well as the associated clinical data are
available in Sweave format on our website.

Additional file

Additional file 1: PDF file containing all supplementary figures,
tables and their associated legends.
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