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Abstract

Background: Chromatin regulatory factors are emerging as important genes in cancer development and are
regarded as interesting candidates for novel targets for cancer treatment. However, we lack a comprehensive
understanding of the role of this group of genes in different cancer types.

Results: We have analyzed 4,623 tumor samples from thirteen anatomical sites to determine which chromatin
regulatory factors are candidate drivers in these different sites. We identify 34 chromatin regulatory factors that are
likely drivers in tumors from at least one site, all with relatively low mutational frequency. We also analyze the
relative importance of mutations in this group of genes for the development of tumorigenesis in each site, and in
different tumor types from the same site.

Conclusions: We find that, although tumors from all thirteen sites show mutations in likely driver chromatin
regulatory factors, these are more prevalent in tumors arising from certain tissues. With the exception of
hematopoietic, liver and kidney tumors, as a median, the mutated factors are less than one fifth of all mutated
drivers across all sites analyzed. We also show that mutations in two of these genes, MLL and EP300, correlate with
broad expression changes across cancer cell lines, thus presenting at least one mechanism through which these
mutations could contribute to tumorigenesis in cells of the corresponding tissues.
Background
Highly conserved molecular mechanisms are responsible
for maintaining genome integrity and tightly regulated
gene expression, which is essential for cell survival.
Those include the fine regulation of chromatin structure,
mainly maintained through three distinct processes: the
post-translational modification of histone tails, the re-
placement of core histones by histone variants, and the
direct structural remodeling by ATP-dependent chroma-
tin-remodeling enzymes [1]. The proteins that control
this system, broadly referred to as chromatin regulatory
factors (CRFs), contribute to the establishment of chro-
matin structures that modulate the expression of large
gene sets, either by establishing more inaccessible re-
gions or by placing histone marks that open the chroma-
tin and allow the binding of other factors. These CRFs
help to maintain cellular identity, and mutations in them
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(commonly called epimutations) often lead to a de-
regulation of gene expression that may contribute to
tumorigenesis [2]. CRFs are broadly classified in three
main groups: histone tail modifiers (including histone
acetyltransferases, histone deacetylases (HDACs), his-
tone methyltransferases and histone demethylases, that
deposit or remove acetyl or methyl groups, respectively);
DNA methyltransferases (DNMTs) and putative deme-
thylases (that affect cytosines at CpG islands); and
ATP-dependent chromatin remodeling complexes (re-
sponsible for the repositioning of nucleosomes).
Until recently, DNMT proteins had not been found

mutated in cancer [3], but DNMT3A, and later DNMT1
and DNMT3B, were reported as altered in patients with
myelodysplastic syndromes and in acute monocytic
leukemia, where their mutation status also predicted
prognosis [4,5]. Mutations in ATP-dependent chroma-
tin-remodeling complexes are recurrent in, amongst
others, ovarian and clear cell renal cancers [2]. The
regulation of the trimethylation of histone H3 at K27
mark (H3K27me3) by the Polycomb complex, a key
component to maintain stem cell identity, is also
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frequently compromised in a variety of cancer types, in-
cluding those from breast, bladder, pancreas, prostate
and lymphomas [6]. Histone demethylases have also
been implicated in the development of a wide variety of
tumors. Moreover, recent whole exome sequencing stud-
ies in large cohorts of tumor samples have highlighted
as main findings the inactivating mutations on proteins
that regulate the epigenomic state of cells [7]. Alter-
ations in KAT6B [8], SMARCC1 [9] and NSD1 [10] have
been described in uterine, cervical and skin pre-malignant
lesions, respectively. This presents these proteins as
potential biomarkers, thus adding early cancer detection
to the possible uses of CRFs in the clinic.
This current accumulation of evidence for the role of

CRFs in cancer has attracted the attention of the scien-
tific community towards CRFs as novel targets for
cancer treatment. In 2006, the first HDAC inhibitor
(HDACi), Vorinostat, was approved by the US Food and
Drugs Administration to treat a specific type of lymph-
oma, and more than 20 molecules of this type are
currently under preclinical and clinical investigation
[11]. Some DNMT inhibitors have been recently ap-
proved by the US Food and Drugs Administration to
treat myelodysplastic syndromes, and their combination
with HDACi is a subject of intense study in clinical trials
[12]. Some studies raise hopes for the possible use of
HDACis to overcome drug resistance [13]. Interestingly,
an in-depth review by Patel et al. on 46 potentially
druggable yet chemically unexplored proteins in the
Cancer Gene Census (CGC) identified six CRFs: ATRX,
KAT6A, KDM6A, NSD3, PBRM1 and SMARCA4 [14].
Even though CRFs are emerging as important players

in cancer development [15-20], to our knowledge no
systematic analysis on the alterations of a comprehensive
catalog of CRFs in different tumors has been performed
to date. Moreover, most studies have focused their
efforts in the in-depth characterization of specific genes
that appear mutated at high frequencies, underestimat-
ing the impact of lowly recurrent drivers (those genes
whose mutation is likely to be functional, but occurs in
few samples) on tumorigenesis. For instance, a very
recent report [21] focused only on the SWI/SNF family
took into account the frequency of mutations of
their members rather than their likelihood of driving
tumorigenesis.
In this paper, we carry out a systematic exploration of

the role of CRFs in tumorigenesis in different tissues. To
that end, we first compiled and manually curated a com-
prehensive list of CRFs, for which we annotated any pre-
viously known implications in cancer. Secondly, we
analyzed 4,623 tumor samples from 13 anatomical sites
to identify which of the CRFs are driver candidates in
these different sites, employing two approaches recently
introduced by us [22,23]. Finally, we took advantage of
the profiles of genomic and transcriptomic alterations
revealed by the Cancer Cell Line Encyclopedia (CCLE)
[24] to explore the effects of mutations in two likely
driver CRFs on the expression of broad gene modules
across 905 cancer cell lines.

Results
Analysis of chromatin regulatory factor tumor somatic
mutations identifies 34 likely drivers in 13 cancer sites
To determine which CRFs may be involved in cancer
emergence and development in primary tumors from 13
anatomical sites upon mutation, we first collected and
manually curated a list of CRFs from the literature. This
catalog contained 183 proteins grouped into eleven
major functional classes, the most populated of which
were the HDACs, the histone acetyltransferases and the
histone methyltransferases. (The detailed list of CRFs in
all functional classes is presented in Additional file 1:
Table S1). Only 26 of them are included in the CGC.
However, we found that many of these CRFs (115 out of
183) have some evidence, mainly in scattered reports
from the past two years, of genomic or transcriptomic
alterations in human tumors (Table 1 and Additional
file 1: Table S2).
In IntOGen-mutations [83], during the past year, we

have collected and analyzed datasets of cancer somatic
mutations produced by several research groups across
the world. Some of them have been generated within the
framework of large international initiatives like The
Cancer Genome Atlas (TCGA) [84] and the International
Cancer Genomes Consortium [85], while others are
the fruit of independent laboratories. Taken together,
these datasets [86] contain somatic mutations detected
in 4,623 primary tumor samples obtained from 13
anatomical sites (Table 2). Each dataset has been analyzed
separately, to compensate for differences between tumor
histologies and subtypes, and between sequencing analysis
pipelines. First, we used an approach recently developed
by us, OncodriveFM [22], to detect genes that, across the
cohort of tumor samples, tend to accumulate functional
mutations. We give the name ‘FM bias’ to this significant
trend towards the accumulation of functional mutations.
The FM bias is a signal of positive selection during cancer
development and therefore FM-biased genes are likely
candidates to drivers. Second, we identified genes whose
mutations tend to significantly cluster in certain regions of
their protein sequence (CLUST bias) also via an approach
recently developed in our group, OncodriveCLUST [23].
Both FM-biased and CLUST-biased genes constitute sound
candidates to cancer drivers [87] in these 13 anatomical
sites. We have also combined the P values of FM bias and
CLUST bias of individual genes across the datasets of
tumor samples obtained from the same anatomical site. In
summary, we have obtained a measurement of FM bias



Table 1 Described oncogenic alterations in chromatin
regulatory factors that are candidate drivers in at least
one tissue

Gene Literature evidence

ARID1A Mutated in cc ovarian carcinoma and RCC (CGC), bladder
[25], HCC [26], endometrium [27], colorectal [28], gastric
adenocarcinoma [29], pancreatic cancer [30], lung
adenocarcinoma [31], Burkitt lymphoma [32] and aggressive
neuroblastoma [33].

Down-regulated in aggressive breast cancer [34],

KMT2C Mutated in medulloblastoma (CGC), HCC [26], bladder [25],
prostate cancer [35], colorectal cancer [36], gastric
adenocarcinoma [29], NSCLC [37], breast cancer [38] and
pancreatic cancer [30].

Deleted in leukemia [39].

DNMT3A Mutated in AML (CGC), ALL and lung cancer [40].

Over-expressed in ovarian aggressive tumors [41].

KDM6A Mutated in kidney, esophageal squamous cell carcinoma,
multiple myeloma (CGC), lung cancer [42], medulloblastoma
[43], ccRCC [44], bladder [25] and prostate [35].

Over-expressed in breast tumors with poor prognosis [45].

Deleted in lung cancer [46].

PBRM1 Mutated in ccRCC, breast (CGC) and pancreatic cancer [47].

NSD1 Mutated in AML (CGC) and NMSC [10].

Gained in lung adenocarcinoma of never-smokers [48].

TET2 Mutated in MDS (CGC), CMML and AML [49].

SETD2 Mutated in ccRCC (CGC).

Down-regulated in breast tumors [50].

SMARCA4 Mutated in NSCLC (CGC), lung adenocarcinoma [31],
medulloblastoma [43] and Burkitt lymphoma [32].

Over-expressed in glioma [51] and in melanoma progression [52].

Gained in lung [42].

KMT2D Mutated in medulloblastoma, bladder [25], renal cancer
(CGC), DLBCL [53].

Over-expressed in breast and colon tumors [54].

CHD4 Mutated in high MSI gastric and colorectal cancers [55].

Down-regulated in gastric and colorectal cancers [55].

NCOR1 Mutated in breast [56] and bladder cancer [25].

Down-regulated in aggressive breast tumors [57].

EP300 Mutated in colorectal, breast and pancreatic cancers,
ALL, AML, DLBCL (CGC), bladder [25], SCLC [58] and
endometrium [27].

Up-regulated in esophageal squamous cell carcinoma [59]
and advanced HCC [60].

Loss of heterozygosity in glioblastoma [61].

KDM5C Mutated in ccRCC (CGC).

ARID2 Mutated in hepatocellular carcinoma (CGC), melanoma [62],
NSCLC [63] and pancreatic cancer [30].

Deleted in NSCLC [63].

ATF7IP -

ASXL1 Mutated in MDS and CMML (CGC), myeloproliferative
neoplasm; [64], AML with myelodysplasia-related changes
[65] and castration-resistant prostate cancer [66].

MLL Mutated in AML, ALL (CGC), bladder [25], SCLC [58],
HCC [26] and gastric tumors [29].

Table 1 Described oncogenic alterations in chromatin
regulatory factors that are candidate drivers in at least
one tissue (Continued)

BAZ2A Over-expressed in CLL [67].

CHD3 Mutated in high MSI gastric and colorectal cancers [55].

ATRX Mutated in pediatric glioblastoma, neuroendocrine
pancreatic tumors (CGC) and high grade adult gliomas [68].

ARID1B Mutated in breast tumors [56].

MBD1 Over-expressed in pancreatic cancer [69].

BAP1 Mutated in uveal melanoma, breast, NSCLC and RCC (CGC).

Over-expressed in NSCLC with good prognosis [70].

INO80 -

CHD2 Mutated in high MSI gastric and colorectal cancers
[55] and CLL [71].

Down-regulated in relapsed colon cancer [72].

ARID4A -

DOT1L -

ASH1L Mutated in lung cancer cell lines [42].

Gained in hepatocellular carcinoma [73].

BPTF Gained in neuroblastoma and lung cancer [74].

RTF1 -

PHC3 Mutated and lost in osteosarcoma [75].

SMARCA2 Mutated in NMSC [76] and CLL [77].

Down-regulated in lung adenocarcinoma [78] and
gastric cancer [79].

Amplified in AML [80].

SETDB1 Recurrently amplified and over-expressed in melanoma [81].
This is an exhaustive compilation of alterations (a) reported in CRFs showing
FM bias and CLUST bias in at least one tissue (Figure 1). Gene names
correspond to HUGO Gene Nomenclature Committee-approved symbols. In
bold typeface, genes included in the CGC [82]. ALL, acute lymphocytic
leukemia; AML, acute myeloid leukemia; cc, clear cell; CGC, Cancer Gene
Census; CLL, chronic lymphocytic leukemia; RCC, renal cell carcinoma; CMML,
chronic myelomonocytic leukemia; CRPC, castration-resistant prostate cancer;
ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma;
HL, Hodgkin lymphoma; MCL, mantle cell lymphoma; MDS, myelodysplastic
syndrome; MSI, microsatellite instability; MPN, myeloproliferative neoplasm;
NMSC, non-melanoma skin cancer; NSCLC, non-small cell lung carcinoma; RCC,
renal cell carcinoma.
aEvidence based solely on cancer cell lines is excluded from this table. Only
evidence in human samples have been used. Effects of pharmacological
inhibition are not included. Germline polymorphisms are also excluded.
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and CLUST bias for each mutated gene at the level of one
dataset of tumor samples (or project), and also at the level
of each anatomical site (or tissue). This catalog of likely
driver genes has allowed us, for the first time, to systemat-
ically explore the involvement of epigenetic mechanisms
(via mutations in CRFs) in tumorigenesis in 4,623 tumor
samples from 13 anatomical sites.
After an exhaustive search within the list of likely

driver genes, we found that 34 CRFs from our manually
curated list are FM biased and/or CLUST biased in at
least one site (Figure 1, upper panel). Sixteen of them
appear as likely drivers in more than one project, and
only liver carcinomas appear free of likely driver CRFs -



Table 2 Description of the datasets of tumor somatic mutations collected and analyzed to detect candidate cancer
driver genes

Site Dataset name Description Authors Obtained
from

Tumor
samples

References

Bladder BLADDER UROTHELIAL
TCGA

Bladder urothelial carcinoma TCGA Synapse 98 -

Brain BRAIN GLIOBASTOMA
TCGA

Glioblastoma multiforme TCGA Synapse 290 [84]

BRAIN GLIOBASTOMA
JHU

Glioblastoma multiforme John Hopkins University ICGC DCC 88 [88]

BRAIN PEDIATRIC DKFZ Pediatric brain tumors DKFZ ICGC DCC 113 [89,90]

Breast BREAST JHU Breast cancer Johns Hopkins University ICGC DCC 42 [91]

BREAST WTSI Breast cancer Welcome Trust/ Sanger Institute ICGC DCC 100 [56]

BREAST TN UBC Triple negative breast cancer University of British Columbia PubMed 65 [92]

BREAST TCGA Breast invasive carcinoma TCGA Synapse 762 [93]

BREAST BROAD Breast cancer BROAD Institute PubMed 103 [94]

BREAST ER +WU ER + breast cancer Washington University PubMed 77 [38]

Colorectal COLORECTAL ADENO
JHU

Colorectal adenocarcinoma Johns Hopkins University ICGC DCC 36 [91]

COLORECTAL ADENO
TCGA

Colorectal adenocarcinoma TCGA Synapse 193 [28]

Head and
neck

HEAD/NECK SQUAMOUS
BROAD

Head and neck squamous cell
carcinoma

Broad Institute SM 74 [95]

HEAD/NECK SQUAMOUS
TCGA

Head and neck squamous cell
carcinoma

TCGA Synapse 301 -

Hematopo-
ietic

CLL SPAIN Chronic lymphocytic leukemia Spanish Ministry of Science ICGC DCC 109 [71,96]

CLL DFCI Chronic lymphocytic leukemia Dana Farber Cancer Institute SM 90 [97]

AML TCGA Acute myeloid leukemia TCGA Synapse 196 [98]

Kidney KIDNEY CLEAR CELL
TCGA

Kidney clear cell carcinoma TCGA Synapse 417 [99]

Liver LIVER IARC Liver cancer IACR ICGC DCC 24 [100]

Lung LUNG ADENO WU Lung adenocarcinoma Washington University School of
Medicine

ICGC DCC 162 [101]

LUNG NON SMALL CELL
MCW

Non small cell lung cancer Medical College of Wisconsin SM 31 [37]

LUNG SQUAMOUS
TCGA

Lung squamous cell carcinoma TCGA Synapse 174 [102]

LUNG ADENO TCGA Lung adenocarcinoma TCGA Synapse 228 -

LUNG SMALL CELL
UCOLOGNE

Small cell lung cancer University Cologne SM 27 [58]

LUNG SMALL CELL JHU Small cell lung cancer Johns Hopkins University SM 42 [103]

Ovary OVARY TCGA Ovarian serous
cystadenocarcinoma

TCGA Synapse 316 [104]

Pancreas PANCREAS JHU Pancreatic cancer Johns Hopkins University ICGC DCC 114 [105]

PANCREAS OICR Pancreatic cancer Ontario Institute for Cancer
Research

ICGC DCC 33 [106]

PANCREAS QCMG Pancreatic cancer Queensland Centre for Medical
Genomics

ICGC DCC 67 [106]

Stomach GASTRIC PFIZER Gastric cancer Pfizer Worldwide Research and
Development

SM 22 [107]

Uterus UTERI TCGA Uterine corpus endometrioid
carcinoma

TCGA Synapse 230 -

The results of all the analyses may be browsed and retrieved through IntOGen-mutations. TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genomes
Consortium; DCC, ICGC Data Coordination Center; DKFZ, German Cancer Research Center; IACR, International Agency for Research on Cancer; SM, Supplementary
Material of articles.
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Likely driver chromatin regulatory factors across the datasets of somatic mutations in IntOGen-mutations. The heat-map in the
top panel identifies FM-biased and CLUST-biased CRFs across the 31 datasets from 13 sites in IntOGen-mutations, whose original projects are
detailed in the middle panel. The heat-map in the bottom panel contains the number of samples with mutations in each likely driver CRF in each
site. Cells in the heat-map are colored following mutational frequency.
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although this may be attributed to the small sample size
of the dataset. Several driver CRFs are mutated at fre-
quencies above 10% in at least one site (Figure 1, lower
panel). Functional relationships among many of them -
124 CRF genes can be mapped onto a pre-compiled
[108] functional interaction network (Figure 2) - suggest
the possibility that mutations in different genes produce
similar malignancies (see below). We can therefore make
the general observation that CRFs - 34 in the dataset
collected by us - potentially act as mutational drivers in
most of the cancer sites studied.
Driver candidates are significantly overrepresented

within our catalog of CRFs (34 driver CRFs from 183
human CRFs in our list versus 348 total drivers from
22,696 human genes; Fisher’s P value 1.26 × 10-25). In
addition, when analyzed as a group, the 183 CRFs in our
catalog appear FM biased in all sites except liver
(Figure 3A), which indicates that collectively they tend
to accumulate mutations that on average possess higher
functional impact than the background of the corre-
sponding tumors. Taken together, these two observations
Figure 2 Chromatin regulatory factors within their context of functio
mapped to the Cytoscape FI plugin network. Square nodes represent likely
nodes represent linker genes. CRFs functions are color-coded, and genes in
suggest that CRFs as a group may have an important
role in tumorigenesis in the 13 sites with data in
IntOGen.
Because CRFs usually act as multiprotein complexes,

we also determined whether the best established of these
complexes exhibit discernible signals of positive selec-
tion as a group across tumor samples. We did this in
two ways. First, we computed the FM bias of six com-
plexes described in Additional file 1: Table S1 and whose
components appear illustrated in the network of func-
tional interactions in Figure 2. We established that five
of the complexes - ISWI being the exception - significantly
accumulate highly impacting mutations in at least one
site (Figure 3A). Second, we observed that pairs of proteins
of the same complex tend to be mutated following
a pattern of mutual exclusivity within cancer sites
(Figure 3B and Additional file 1: Table S3). For example,
the exploration of the SWI/SNF complex in breast tu-
mors revealed that ARID1A tends to be mutated in sam-
ples where neither SMARCA4, ARID2 nor SMARCA2
are mutated. These two observations imply that multi-
nal interactions. Network of functional interactions among CRFs
driver CRFs, circle nodes other CRFs within the catalog, and diamond
the same complex are grouped and circled.



ARID1A
PBRM1
EP400
SMARCA4
ARID1B
ARID2
SMARCA2
SMARCC2
SMARCC1
SMARCB1
DPF2
DPF3
ACTL6A
SMARCD1
SMARCD3
ACTL6B
SMARCE1
DPF1
PHF10
SMARCD2

218 0.047
192 0.042
122 0.026
111 0.024
86 0.019
88 0.019
69 0.015
51 0.011
30 0.006
36 0.008
37 0.008
17 0.004
23 0.005
22 0.005
34 0.007
19 0.004
12 0.003
11 0.002
15 0.003
26 0.006

N Freq
SWI/SNF NuRD/Mi-2

CHD4
CHD3
GATAD2B
GATAD2A
MTA2
MTA3
MTA1
HDAC1
HDAC2
RBBP7
RBBP4
MBD2

117 0.025
67 0.014
28 0.006
23 0.005
35 0.008
23 0.005
20 0.004
30 0.006
20 0.004
24 0.005
21 0.005
4 0.001

N Freq

ISWI

BPTF
BAZ1B
SMARCA1
BAZ1A
BAZ2A
RSF1
RBBP7
SMARCA5
RBBP4
CHRAC1

75 0.016
51 0.011
47 0.01
37 0.008
48 0.01
34 0.007
24 0.005
17 0.004
21 0.005
6 0.001

N Freq ASXL1
JARID2
EZH2
SUZ12
MTF2
EED
PHF19
RBBP7
PHF1
RBBP4
SIRT1
YY1

PRC2

64 0.014
56 0.012
39 0.008
31 0.007
19 0.004
17 0.004
18 0.004
24 0.005
28 0.006
21 0.005
11 0.002
12 0.003

N Freq

PRC1

BAP1
PHC3
L3MBTL1
PHC2
EZH1
CBX2
CBX4
BMI1
PHC1
CBX8
RNF2
CBX6
RING1
CBX3
AEBP2
CBX7
PCGF2
PCGF1
PCGF6

83 0.018
40 0.009
27 0.006
27 0.006
37 0.008
18 0.004
20 0.004
24 0.005
21 0.005
13 0.003
11 0.002
10 0.002
19 0.004
18 0.004
9 0.002
7 0.002
8 0.002
9 0.002
8 0.002

N Freq

A

B

84 88 252 58 191 96 246 13 277 71 25 12 145

58 40 106 38 91 17 148 6 165 35 17 8 103

25 10 54 16 43 9 21 2 70 16 1 4 49

21 18 54 12 32 4 15 1 72 19 1 3 35

18 17 43 10 38 4 47 1 67 16 0 2 29

17 16 37 14 39 19 19 2 58 13 1 2 27

1.01E-16 1.29E-05 2.15E-10 3.53E-05 3.87E-11 1.37E-14 3.06E-31 0.394 0.017 0.005 0.002 1.50E-07 1.05E-20

1.24E-12 0.017 1.44E-12 3.57E-08 2.94E-04 0.726 1.07E-34 0.281 0.002 0.001 1.07E-09 5.33E-05 1.02E-25

0.788 0.023 0.062 0.069 0.083 0.004 0.351 0.790 0.939 0.029 - 0.429 3.99E-11

0.187 1.000 0.418 1.000 1.000 0.631 0.072 - 1.000 1.000 - 0.055 0.088

0.254 0.374 1.000 0.030 1.000 0.422 0.002 - 0.323 0.251 - 0.985 0.552

0.476 1.000 0.009 0.077 0.014 1.93E-08 0.003 0.735 0.001 0.855 - 0.115 0.138

Mutation frequency

0 0.8

CRFs

SWI/SNF

NuRD/Mi-2

ISWI

PRC1

PRC2

CRFs

SWI/SNF

NuRD/Mi-2

ISWI

PRC1

PRC2

significance q value

0 0.05
Not significant

Figure 3 FM bias, mutation frequencies and mutually exclusivity of chromatin regulatory factors as part of complexes. (A) Left heat-
map shows the P value of FM bias analysis for all CRFs and for each complex. Right heat-map shows the number of samples with PAMs in the
complex and the color indicates the mutation frequency (number of samples with PAMs divided by number of samples of this cancer type
analyzed). (B) Heat-map of samples and genes of each complex, PAMs are represented as green cells in the heat-map. Tumor samples from each
site have headers of the corresponding colors. Samples and genes in the heat-map are ordered based on mutually exclusive alterations within
each site using Gitools built-in function for this purpose. Number of samples with PAMs in the gene (N) and the mutation frequency (Freq) of the
gene in whole dataset are shown at the right of each heat-map. Gene names in bold indicated that the gene is one of the 34 detected as
candidate drivers. PAM, protein-affecting mutations.
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protein complexes, rather that individual genes, are the
subjects of positive selection during tumorigenesis in the
cancer sites under study.

The implication of chromatin regulatory factors in
tumorigenesis strongly depends on the anatomical site
and the tumor type
To determine whether there are differences in the impli-
cation of CRFs in tumorigenesis across the anatomical
sites in IntOGen, we first computed the number of likely
driver genes in general, and likely driver CRFs in par-
ticular, that bear protein sequence-affecting mutations,
or PAMs (non-synonymous, stop, frameshift-causing
insertions or deletions (indels)) in each tumor sample.
From these data, the simplest way of representing the
relative importance of mutations in CRFs in tumorigen-
esis across sites consists of counting the number of sam-
ples with at least one FM-biased CRF bearing a PAM
(Figure 4A). In this metric, bladder urothelial carcinomas
and endometrial carcinomas stand out, with more than
80% and 60%, respectively, of the samples with at least
one mutated CRF. On the opposite extreme, less than 10%
of brain and hematopoietic tumor samples contain
mutated likely driver CRFs.
We then computed the fraction of CRFs with PAMs

with respect to all FM-biased genes with PAMs in each
sample (CF ratio) (Figure 4B). This measure gives an in-
dication of the relative importance of CRFs in the
tumorigenesis process in each sample. Although liver or
hematopoietic are not among the sites with the highest
proportion of tumor samples with mutated CRFs
(Figure 4A), these appear to be very important in the
development of tumors in these sites (see the corre-
sponding boxplots of Figure 4B). A closer look at the
repertoire of mutated drivers in the samples of the three
brain tumor datasets currently in IntOGen reveals that
whereas mutations in classic tumor suppressors and
oncogenes dominate the landscape of glioblastomas,



Figure 4 Relative importance of chromatin regulatory factors in tumorigenesis across sites. (A) Histograms of the fraction of samples with
0 (green) or at least one (red) likely driver CRF with PAMs in each site. (B) Boxplots representing the distribution of fraction of CRFs with PAMs
with respect to all FM-biased genes with PAMs in each sample (CF ratios) of samples from each site with at least one mutation in a CRF (red
fraction in panel A). (C) Boxplots representing the distribution of CF ratios of samples from each of the three projects focused on brain tumors.
CRF, chromatin regulatory factors; DKFZ, German Cancer Research Center; JHU, Johns Hopkins University; TCGA, The Cancer Genome Atlas.
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mutations in CRFs are more predominant in pediatric
medulloblastomas. The median of the ratio of mutations
in CRFs to mutations in all drivers across medulloblas-
toma samples is 0.4, compared to 0.21 and 0.1 in glio-
blastoma JHU (Johns Hopkins University; see Table 2)
and glioblastoma TCGA (The Cancer Genome Atlas; see
Table 2), respectively (Figure 4C). The samples of these
two glioblastoma datasets exhibit a repertoire of mutated
‘classical’ tumor suppressors and oncogenes, such as
TP53, PTEN and EGFR (Figure 5). As observed in the
previous section, mutations in CRFs are likely drivers in
tumors from most cancer types. Nevertheless, the latter
result suggests that these mutations are circumscribed
to a relatively small number of tumor samples, although
future reviews of the catalogs of CRFs may increase the
proportions calculated here.

Mutations in chromatin regulatory factors correlate with
transcriptomic alterations of gene modules in cancer cell
lines
To further understand the possible implication of CRFs in
tumorigenesis, we explored the effects of CRF mutations
on changes in the transcriptional levels of broad gene sets
in cancer cell lines. To this end, we employed the data
produced by The Cancer Cell Line Encyclopedia project,
which has sequenced 1,651 protein-coding genes, of which
43 are CRFs according to our curated list (see Additional
file 1: Table S1 for a detailed classification). First, to check
whether cancer cell lines behave comparably to primary
tumors in the patterns of altered gene modules, we carried
out a sample level enrichment analysis (SLEA) [110] over
cancer cell lines using Gene Ontology Biological Process
terms that are altered in specific cancer tissues. We found
that cancer cell lines repeated the transcriptional profiles
typical of their corresponding primary tumors (Additional
file 2: Figure S1).
We then assessed the transcriptional impact of PAMs

on EP300 and MLL3 (the only CRFs sustaining PAMs in
sufficient cell lines: 115 and 191, respectively) to deter-
mine whether the impact of these PAMs on epigenetic
regulation could translate into changes of the transcrip-
tional levels of broad gene sets. The underlying hypoth-
esis was that genes whose transcription was modulated
by specific histone marks that became affected by PAMs
on these two genes would present expression changes
detectable when analyzed as a group. We collected regula-
tory modules of histone modifications in three cell types
(Additional file 1: Table S4) and performed SLEA separ-
ately on cell lines originated from blood and solid tissues
(Figure 6). As a result of the SLEA, we obtained a value of
significance of the over-expression or under-expression
(as a z-score) of each module in each cell line. We then
compared the z-scores of cell lines that bear mutations in
the gene in question (EP300 or MLL3) to those cell lines
where it does not, using the Wilcoxon-Mann–Whitney
test. The P-values of the right-tail and left-tail comparisons
were then adjusted using the Benjamini-Hochberg ap-
proach. Figure 6 presents the modules that rendered either
significant right-tail or left-tail P values for any of the two
genes. It shows that, in general, cell lines from solid tissues
with mutations in either EP300 or MLL3 exhibited lower
expression of repressed chromatin gene modules (H3K27
me3 and late replicating genes), and higher expression of
gene modules with activating histone marks (marked by



TP53
PTEN
EGFR
NF1
IDH1
RB1
PIK3R1
ATRX
KMT2C
CTNNB1
DDX3X
STAG2
MYH8
SMARCA4
PRDM9
LZTR1
KDM6A
RPL5
WDR90
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SETD2
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ATF7IP
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-2 0 4.5

Paediatric
medulloblastoma Glioblastoma JHU Glioblastoma TCGA

Figure 5 Mutational status of tumor samples from the three brain datasets included in IntOGen. The genes represented in the heat-map
comprise all FM-biased CRFs that bear one mutation in at least one brain tumor sample (in bold typeface) plus the top 15 FM-biased genes in
brain obtained from IntOGen. Mutations are represented by their MutationAssesor [109] functional impact scores (FIS). Samples and genes in the
heat-map are ordered based on mutually exclusive alterations within dataset. FIS, functional impact score; MA, MutationAssessor score. JHU, Johns
Hopkins University; TCGA, The Cancer Genome Atlas.
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H3K4me3 and H3K9ac; Table 1). The under-expression of
the H3K27me3 module, regulated by Polycomb, has been
associated to a stem cell-like signature and more aggressive
tumors [86]. Moreover, cell lines with mutations in MLL3
showed higher expression of cell cycle-related modules.
Taken together, these results suggest that mutations in
CRFs may affect the transcriptional levels of gene sets bear-
ing histone marks related to these CRFs.

Discussion
In this study, we found that several CRFs are likely in-
volved in tumorigenesis in cancers from 13 anatomical
sites. We uncovered these genes as putative causes of
the studied malignancies through the use of the FM bias
and CLUST bias analyses, rather than the mere recur-
rence of mutations in genes across tumor samples.
Moreover, by focusing on multiprotein complexes
formed by several CRFs, we found evidence that suggest
that these, rather than individual genes, are the subjects
of positive selection during tumorigenesis. These two ap-
proaches constitute novelties with respect to the most
recent and comprehensive analysis [21], which found re-
current mutations in SWI/SNF proteins across more
than 650 tumor samples of 10 anatomical sites. Another
important methodological novelty of our work consists
in the use of CF ratios to assess the relevance of



Figure 6 Effect of PAMs in EP300 and MLL3 on the transcription of broad gene modules across cancer cell lines. Cancer cell lines
originated from solid tissues (Additional file 2: Figure S1) are enriched (SLEA) for regulatory modules (Additional file 1: Table S4) and selected
pathways from Kyoto Encyclopedia of Genes and Genomes. The first two panels in both A and B correspond to mean enrichment z-scores in
wild type and mutant cell lines. The difference between the two enrichment groups, assessed through a Wilcoxon-Mann–Whitney group
comparison test, is indicated at the right. (A) EP300 mutation status. (B) MLL3 mutation status.
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mutations in CRFs in tumorigenesis in cancers from dif-
ferent sites. The employment of this ratio normalizes the
number of CRFs with PAMs in the samples of a site by
its intrinsic burden of mutations in driver genes. It is
thus possible to observe that PAMs in CRFs, although
highly prevalent in carcinomas of the uterus, probably
play a relatively small role in their tumorigenesis because
these tumors bear mutations in many other driver genes.
However, mutations in CRFs appear to play a bigger role
in tumorigenesis in hematopoietic malignancies than
they do in tumors from other sites, although only few
hematopoietic tumors bear PAMs in CRFs (Figure 4).
A group of pediatric medulloblastomas also possess

abnormally high CF ratios, which implies that a high
proportion of their mutated drivers are actually CRFs. It
has been suggested that both pediatric and hemato-
poietic malignancies have very low mutational rates and
therefore fewer drivers take part in their emergence than
in solid adult tumors [111]. One could hypothesize from
our results that alteration of either the transcriptional
control or the chromatin maintenance of broad gene
modules - as we observed in cell lines - via mutations in
CRFs may be the crucial step of tumorigenesis in at least
some of these tumors. This hypothesis, which could be
experimentally tested, is another important contribution
of the present work.
A third important contribution is the list of putative
driver CRFs, which is available at IntOGen [112]. In par-
ticular, two of them were uncovered as putative drivers
in more than one site (CHD4 and ATF7IP) and are not
annotated in the CGC [82]. They therefore constitute
interesting candidates for novel epigenetic drivers
(Figure 1). These additions to the list of driver CRFs
might contribute to the research for anticancer drugs
that takes CRFs as suitable targets.

Conclusions
We present the first systematic approach to characterize
the repertoire of CRFs that could constitute mutational
cancer drivers in tumors from 13 anatomical sites. We
found that likely driver CRFs appear across tumor sam-
ples from most of these 13 sites, although the number of
affected samples is in general low, except in the case of
tumors from several sites, such as bladder, kidney and
uterus. Mutations in CRFs appear to be in general only
one of several contributing mechanisms towards tumori-
genesis in most cancer samples. Finally, we have proved
that mutations in two CRFs correlate with broad expres-
sion changes across cancer cell lines, thus presenting at
least one mechanism through which these mutations
could contribute to tumorigenesis in cells of the corre-
sponding tissues. Our results expand the current knowledge
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on the involvement of CRFs in tumorigenesis in several
malignancies. Furthermore, they can contribute to for-
mulate hypotheses on the mechanistic basis for this
association. All the results presented here are available
for browsing through the IntOGen-mutations platform
[83,112] and using Gitools interactive heat-maps [113].

Materials and methods
Chromatin regulatory factors
We manually compiled a list of 183 genes coding for
CRF proteins from the literature, based on protein func-
tion and known essential association to complexes
important for the regulation of chromatin structure. A
detailed classification of these CRFs is presented in
Additional file 1: Table S1; the information was obtained
from the Uniprot database [114] and the manuscripts
referenced within the additional file. The relevant pro-
teins for the purpose of this analysis are described in
Table 1 and Additional file 1: Table S2.

FM-biased genes in primary tumors
FM-biased genes exhibit a bias towards the accumula-
tion of functional mutations across a cohort of tumor
samples and are therefore candidate cancer drivers. We
have compiled 31 datasets of tumors from 13 anatomical
sites and detected the FM-biased genes in each of them
with the approach described in [22]. Genes that were
not expressed across the major (TCGA) datasets in-
cluded in IntOGen (obtained from syn1734155) were
eliminated from the OncodriveFM analysis at this point.
The overlap of drivers obtained from different datasets of
mutations detected in tumors from the same anatomical
site is shown in Additional file 2: Figure S2. Finally, we
combined the gene-wise P values obtained for datasets of
the same anatomical site to obtain a single P value that
measures the bias of the gene towards the accumulation
of functional mutations in different tumors from the same
site. The corrected genes FM bias P values in these 13 tis-
sues are stored in the IntOGen knowledgebase [87]. The
collection of the datasets of tumor somatic mutations,
their processing and browsing through IntOGen are thor-
oughly described in [83]. Details of the 31 tumor somatic
mutations datasets are presented in Table 2.

CLUST-biased genes in primary tumors
PAMs in CLUST-biased genes tend to be grouped in re-
gions of the proteins in a higher degree than synonym-
ous mutations across the same dataset. This grouping
constitutes another signal of positive selection that
points to likely cancer drivers. The method to compute
the CLUST bias in genes across datasets of tumor
somatic mutations (OncodriveCLUST) is described in
Tamborero et al., [23]. We computed the CLUST bias of
all genes with PAMs across the 31 datasets compiled
and stored in IntOGen-mutations [83]. Genes that were
not expressed across the major (TCGA) datasets in-
cluded in IntOGen (obtained from syn1734155) were
eliminated from the OncodriveCLUST analysis at this
point. As with the FM bias, we combined the gene-wise
P values obtained for datasets of tumor samples from
the same anatomical site. The corrected genes’ CLUST
bias P values in these 13 tissues are stored in the
IntOGen knowledgebase [87]. The collection of the
datasets of tumor somatic mutations, their processing
and browsing through IntOGen are thoroughly de-
scribed in [83]. Details of the 31 tumor somatic muta-
tions datasets are presented in Table 2.

Analysis of mutational frequencies of tumor samples
We defined a group of broad consequence types as cor-
responding to PAMs for all analyses of the mutational
frequencies of tumor samples. All non-synonymous, stop
and frameshift indels were included in this group. We
recorded two numbers in the 4,623 tumor samples in-
cluded in the study: the number of PAMs in any of the
34 likely driver CRFs detected across the 13 sites; and
the number of PAMs in any of the 382 likely driver
genes detected across the 13 sites. We then computed
the ratio (CRFs-to-drivers ratio, or CF ratio) between
these two numbers to assess the relevance of mutations
in CRFs in tumorigenesis in every tumor sample. Note
that because the 34 likely driver CRFs were included
within the catalog of 382 likely drivers, the CF ratio
takes values between 0 (no mutations in CRFs) and 1
(all mutated drivers in the sample are CRFs). Finally, we
computed the number of tumor samples from each site
with at least one PAM in a CRF and the distribution of
their CF ratios.

Functional network analysis
We mapped the 183 CRFs in our catalog to the functional
interactions network within the Cytoscape FI plugin
[108,115], allowing the presence of linker genes to maximize
the number of connected CRFs. Using Cytoscape, we then
grouped genes in the same multiprotein complex (from
the ones shown in Additional file 1: Table S2). We also
mapped the biological functions of CRFs in the network
using nodes colors, and whether they appeared as likely
drivers through nodes shapes.

Cancer cell lines data processing
Expression arrays from the CCLE were downloaded
from the Gene Expression Omnibus [GEO:GSE36133] as
raw CEL files, and pre-processed as previously described
[110]. The input data for enrichment analysis was
obtained by median centering the expression value of
each gene across cancer cell lines and dividing this value
by the standard deviation. The obtained value is the
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measure of expression level for the gene in a sample as
compared to its expression level in all other samples in
the dataset. We built separate expression matrices for
cancer cell lines obtained from hematological system or
solid primary cells, since the expression profiles of these
two groups were shown to clearly differ in the original
publication [24].
SLEA was performed using Gitools version 1.6.0 [116].

We used the z-score method as described previously
[117]. This method compares the mean (or median) ex-
pression value of genes in each module to a distribution
of mean (or median) of 10,000 random modules of the
same size. Such enrichment analysis is run for each
sample and the result is a z-score, which is a measure of
the difference between the observed and expected mean
(or median) expression values for genes in a module. We
applied the mean z-score enrichment values, which are
the arithmetic means of z-scores for individual samples,
separately in cell lines obtained from hematological
system or in those obtained from solid primary cells.
To test for significant differences between the z-score
means between groups of cell lines we used the
Mann–Whitney test [118] implemented in Gitools. All
heat-maps were generated with Gitools [119].
To detect potential PAMs in genes within the list of

CRFs (Additional file 1: Table S1), we downloaded
processed mutations data (single nucleotide variants and
small indels) for 1,651 protein-coding genes (7 May 2012
version, excluding common polymorphisms and single
nucleotide variants with an allelic fraction >10%) from
the CCLE website [120]. We computed the consequence
types of these variants using the Ensembl (v69) Variant
Effect Predictor wrapped within the IntOGen-mutations
pipeline [83].

Public gene regulation datasets
We collected lists of genes occupied by a specific histone
mark or bound by a regulatory factor, and computation-
ally predicted chromatin states, from available sources
(Additional file 1: Table S4). These included human
genome-wide occupancy datasets from ChIP-seq experi-
ments in several cell types [121-125] that we processed
using Bowtie [126] (version 0.12.5, hg19 genome assem-
bly, unique alignments, allowing two mismatches) for
short read aligning. For peak detection of transcription
factors we used MACS [127] (version 1.4.1, settings: --
nomodel and --bw parameter set to twice the shift size
whenever a control immunoprecipitation was not avail-
able). For broad histone modifications (that is, H3K27
me3), we used SICER [128] (version 1.1, setting gap size
to 600). Regions were assigned to protein-coding genes
(Ensembl v69) if they overlapped either to the gene body
or up to 5 kb upstream from the transcription start site,
using BedTools [129]. Overall peak calling performance
was evaluated with CEAS [130]. Other gene sets were
obtained from KEGG [131] and Gene Ontology [132].
The list and mappings (in Ensembl v67 IDs) of KEGG
and Gene Ontology Biological Process terms were
downloaded through the Gitools importer [116].

Additional files
Additional file 1: Supplementary Tables S1, S2, S3 and S4 with
titles and descriptions, and supplementary references.

Additional file 2: Supplementary Figure S1 and S2.

Additional file 3: Supplementary Table S5.
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