
The challenges of characterizing 
post-transcriptional gene regulation
Messenger RNAs (mRNAs) are regulated at every stage 
of their life cycle. All cellular RNA, including mRNA, is 
packaged into distinct ribonucleoprotein (RNP) com-
plexes to orchestrate RNA maturation and turnover 
processes summarized as post-transcriptional gene regu-
lation. Th e most relevant processes involving mRNAs 
include pre-mRNA splicing, 5’ and 3’ end modifi cation, 
editing, transport, translation and degradation. Among 
the challenges for decoding post-transcriptional gene 
regulation is the elucidation of the mRNP composition, 
which changes as mRNAs mature or are translated. Th is 
is a prerequisite for understanding the consequences of 
dysregulation and/or mutation of RNA-binding proteins 
(RBPs) and/or their target RNA-binding sites in disease.

Th e human genome encodes 1,500  RBPs, and 
600  microRNAs targeting mRNAs [1]. Most RBPs are 
composed of at least one, but frequently also combi na-
tions of multiple distinct RNA-binding domains (RBDs). 
At least 800  distinct RBDs are known [2]; among the 
most frequent in humans are the single-stranded-RNA-
binding RRM, KH, zf-CCCH and zf-CCHC domains, and 
the double-stranded-RNA-binding DSRM domain. 
Recent proteomic analysis consolidated the number of 
mRBPs to 700 proteins and revealed at least 20 previously 
unknown RBDs [1,3].

Following or coinciding with the determination of the 
composition of mRNPs is the identifi cation of the precise 

binding site(s) located within the mRNA targets of RBPs 
and the derivation of the underlying RNA recognition 
element(s) (RRE(s)). Th is task is non-trivial considering 
that RBDs generally recognize short and degenerate 
sequences of three to eight nucleotides, sometimes 
involving additional RNA secondary structure. In addi-
tion, in vivo binding is modulated by competition with 
other RBPs for the same or adjacent sites [1]. Since the 
implementation of high-throughput methods in RNA 
biology, various protocols for the experimental identifi ca-
tion of RBP binding sites have been developed. A recent 
study by Ray et al. [4] used a single-cycle RNA in vitro 
selection approach to characterize the binding specifi -
cities for 205 recombinant RBPs and, in doing so, has 
brought us an important step closer to solving the post-
transcriptional RBP regulatory code.

Experimental methods for determining RREs
RREs are traditionally determined by sequence com-
parison and/or conservational analysis from known RNA 
targets, and validated by biochemical interaction analysis 
(such as electrophoretic mobility shift assays, fi lter 
binding or surface plasmon resonance). For RBPs with 
unknown RNA-binding sites, in vitro evolutionary 
methods (primarily SELEX) that identify high-affi  nity 
RNA ligands within pools of randomized sequences have 
been employed with some success [5]. Th e RRE is then 
derived by comparing multiple independently sequenced 
RNA ligands. Alternatively, various crosslinking and 
immuno precipitation (CLIP) methods have been intro-
duced that rely on covalent crosslinking of an RBP to its 
RNA targets in live cells, followed by the isolation of 
crosslinked RBP-RNA segments (Figure 1) [1,6]. Coupled 
with deep sequencing of the crosslinked RNAs, CLIP 
methods allow for the comprehensive determi nation of 
in vivo RNA target sites and their underlying RRE. Until 
recently, knowledge of RREs was rather scant and 
experimental binding data from SELEX, CLIP and other 
methods were available for less than 10% of the known 
RBPs in humans [1,6,7].

To increase throughput and identify the highest-affi  nity 
RREs, Ray et al. [4,8] introduced a SELEX method termed 
RNAcompete (Figure 1). In contrast to random sequence 
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pools used in SELEX, which contain up to 1014 diff erent 
molecules of 20- to 80-nucleotide random sequence 
fl anked by constant primer binding sites, RNAcompete 

pools were designed to contain only 240,000 diff erent 
sequences of 30 to 40 nucleotides in length. Th ese RNA 
sequences were predicted to be only weakly structured, 

Figure 1. Overview of in vitro and in vivo methods for RRE determination. (a) SELEX and RNAcompete start with the preparation of a diverse 
DNA sequence pool, which is in vitro transcribed into RNA. The protein of interest is incubated with the random sequence RNA pool, followed by 
RBP pulldown and recovery of the bound RNA. In SELEX, high-affi  nity ligands are enriched by several rounds of reverse transcription, (mutagenic) 
PCR and selection, before sequencing of the RNA ligands. In RNAcompete, the recovered RNA is directly quantifi ed on a microarray, rather than 
sequenced, and enrichment for each individual sequence over the initial pool is calculated. Enrichment scores, which directly correlate with 
the binding affi  nity of the RNA sequence, are used to derive the RRE, which serve as input for computational prediction of in vivo RNA targets. 
(b) CLIP-based methods use in vivo crosslinking to covalently link RBPs to their RNA targets by UV light. After cell lysis, limited RNase treatment and 
immunoprecipitation of the RBP, the crosslinked RNA segments are recovered, converted into cDNA libraries and deep sequenced. CLIP methods 
directly identify in vivo RNA targets and binding sites, and motif fi nding algorithms are used to deduce the RRE from the crosslinked RNA sequences. 
dsDNA, double-stranded DNA; HITS-CLIP, high-throughput sequencing of RNA isolated by CLIP; iCLIP, individual-nucleotide resolution CLIP; PAR-
CLIP, photoactivatable-ribonucleoside-enhanced CLIP; ssDNA, single-stranded DNA; XL-RBP, crosslinked RBP.
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with each possible 9-mer represented at least 16 times in 
the RNAcompete sequence pool. To prepare this RNA 
sequence pool, oligodeoxynucleotides printed on a 
microarray were amplified, transcribed into RNA, and 
subsequently incubated with a recombinantly expressed, 
affinity-tagged RBP of interest. The RNA pool was then 
incubated with 75-fold molar excess over protein to 
ensure efficient competition between the various sequen-
ces during binding, so that at equilibrium the proportion 
of each sequence bound to the RBP reflected its affinity. 
The incubated protein was recovered and the enrichment 
of bound RNAs over the initial pool RNA was quantified 
on microarrays. In contrast to SELEX, the bound RNA 
was directly analyzed after the first competitive binding 
reaction without further cycles of amplification and 
mutagenesis. The RRE for the protein was inferred by 
combining the calculated Z- and E-values for each 
possible 7-mer.

Evolutionary insights and global patterns in 
protein-RNA sequence recognition
In their recent study, Ray et al. [4] applied RNAcompete 
to determine RREs for a collection of 205 different RBPs 
distributed across 24  species and representing approxi-
mately 60  conserved families of RBPs. The parallel 
processing of samples using a single method facilitated 
comparison of the RREs and specificities of various RBPs. 
Most RBPs were expressed in truncated forms com-
prising all constituent RBD(s) with 30 to 50  flanking 
amino acid residues to enhance solubility. The selected 
RBPs contained at least one of nine well-characterized 
RBDs (RRM, KH, S1, YTH, Pumilio repeats (PUF), zf-
CCCH, zf-CCHC, zf-RanBP and SAM), whereby the 
majority of RBPs contained multiple RBDs. Approxi-
mately 90% of the RBPs tested recognized five to seven 
nucleotide-long sequence motifs and did not require 
structured RNA for binding, which is expected based on 
the inclusion of predominantly single-strand-specific 
RBDs in this study.

For 52  proteins, RNAcompete RREs were compared 
with RREs previously determined by CLIP or other 
methods. Of these, 35  were highly similar, 6  matched 
partially and 11 were dissimilar to RNAcompete RRE. For 
example, for PUM1/2 or ELAVL1/HuR the RREs agreed 
perfectly, while for proteins such as FMR1 only one of 
two established RREs were identified. The discrepancies 
may mirror technical differences between the methods or 
differences between in vivo and in vitro specificities of 
RBPs. Enrichment of an RRE by RNAcompete is depen-
dent on affinity, and for multi-RBD proteins affinities of 
individual RBDs for RNA can vary by orders of magni-
tude, and contributions of weaker binding RBDs, which 
can be detected in in vivo data, may be potentially 
overlooked. In addition, in vivo, the highest affinity sites 

may not always be accessible due to competition with 
other RBPs, the cell-type- and subcellular-compartment-
dependent concentration of RBP and RNA targets, 
modulation of RNA affinities by protein cofactors, and 
the secondary structure of RNA.

Of importance was the validation of the intuitive 
notion that RBPs with high sequence identity bind to 
similar RREs. It was found that RBPs with 70% sequence 
identity have close to identical RREs, and RBPs with 50% 
identity share related binding specificities. Based on this 
notion, the authors predicted RREs for a total of 8,056 
RBPs in humans and other metazoans, as well as in plants 
and protists. Specifically, this number amounted to 159 
RBPs in human belonging to 62 protein families, of which 
approximately 90% were putative or experimentally 
validated mRNA-binding proteins (mRBPs). Estimating 
that 700 of the 1,500 RBPs are mRNA-binding, this study 
elucidated RRE motifs for 20% of all human mRBPs, and 
53% of proteins containing canonical single-strand RBDs 
(Figure 2). The results are available as a public database 
and represent a valuable resource for researchers 
interested in prediction of RBP binding sites.

Conservation of motifs and functional implications
RNAcompete-derived RREs demonstrated predictive 
power for anticipating regulatory functions of RBPs [4]. 
Evolutionary conservation analysis showed that sequence 
elements containing these RREs were frequently under 
positive selection pressure in 5’ UTRs, coding regions, 3’ 
UTRs and intronic regions flanking alternative exons. 
The location of conserved RREs correlated well with 
previously elucidated RBP binding patterns, with a few 
surprising twists; for example, conserved RREs for 
several splicing factors were unexpectedly frequent in the 
3’ UTR of mRNAs. RNA sequencing experiments from 
diverse cell lines and tissues with different RBP expres-
sion levels allowed correlation of RBP levels with 
predicted target RNA levels or splicing patterns. This 
analysis confirmed known RBP functions in some cases 
(ELAVL1/HuR, RBM4), but also hinted at unanticipated 
roles for others (PUM1/2, RBFOX1). A study of RNA 
knockdown data confirmed that RBFOX1, a splicing 
regulator, also had a positive effect on RNA stability of 
putative targets with predicted RBFOX1 sites in the 3’ 
UTR, confirming previous reports that some RBPs may 
have multiple functions in post-transcriptional gene 
regulation.

Some of the regulatory effects predicted by the evolu-
tionary conservation analysis of RNAcompete RREs, 
however, are difficult to reconcile with other available 
data, such as the implied negative effect of the FMR1 
protein on target mRNA levels. An effect of FMR1 on 
RNA abundance was explicitly ruled out in two recent 
studies, although FMR1 was shown at the same time to 
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negatively regulate protein abundance of targeted 
mRNAs [9,10]. As discussed above, these discrepancies 
may reflect differences between in vivo and in vitro 
preferences of multi-RBD proteins, including FMR1. 
Analysis of CLIP-derived motifs showed that the FMR1 
RG-rich region bound WGGA with higher affinity than 
its KH domains bound ACUK [9]. The RNAcompete 
motifs GACAAG and ANGGAC more likely reflected 
contributions of the RG-rich region to binding. The 
implicit assumption that the highest-affinity RRE also 
reflects the optimal in vivo RRE may prove inaccurate in 
some cases, because of varying accessibility of a motif.

From RRE identification to elucidation of post-
transcriptional gene regulatory network
The systematic analysis and identification of RREs, 
together with in vivo RNA targets of regulatory proteins, 
will remain one of the main focuses in post-trans-
criptional gene regulation research. Ray et al. have 
compiled the largest catalog of experimentally derived 
RREs at present and this resource may be used to 
understand evolutionary relationships between RBPs. It 
also allows researchers to find putative binding sites for 
RBPs of interest and gives computational biologists the 
opportunity to integrate RREs as predictors into statis-
tical learning methods to model, in concert with 
microRNA binding sites, transcription factor recognition 
elements and epigenetic marks, the transcriptional and 
post-transcriptional control of gene expression.

To capture the physiological role of RBPs, we still need 
to dissect the target gene network for each RBP 

individually in various cellular contexts, and then 
integrate the knowledge into computational approaches 
that are able to recapitulate quantitatively the regulatory 
effects of RBPs. This includes understanding protein and 
target RNA levels in different cell types and tissues, 
insights into RRE occupancy, competition among RBPs 
and accounting for redundancies in protein families or 
regulatory pathways. Efforts such as SELEX- or CLIP-
based methods increase the growing compendium of 
RREs and contribute to this goal to characterize post-
transcriptional regulation in a comprehensive manner.
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