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Abstract

PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites of microRNAs as
well as the microRNA binding to these sites. It integrates specific characteristics of the experiments into a
generative model. The model and a novel pattern discovery tool are iteratively applied to data to estimate seed
activity probabilities, cluster confidence scores and to assign the most probable microRNA. Based on differential
PAR-CLIP analysis and comparison to RIP-Chip data, we show that PARma is more accurate than existing
approaches. PARma is available from http://www.bio.ifi.lmu.de/PARma
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Background
MicroRNAs (miRNAs) are important post-transcriptional
regulators in all known multicellular organisms. These
20- to 24-nucleotide-long RNA molecules play roles
in development, tumorigenesis and viral infection [1].
Generally, they bind to 3’ UTRs of their target transcripts
inhibiting translation or inducing degradation of the tar-
get mRNA [2]. Neither the exact mode of binding nor
the mechanisms of downregulation are completely
understood and these are being heavily debated [3-7]. It
is believed that miRNAs recognize their target sites using
only a few bases at their 5’ end called the seed [8] and
that other factors, such as additional base pairing at the
3’ end [2], target site accessibility [9], target site location
and AU content around the target site, contribute to
recognition [10]. These factors, as well as the evolution-
ary conservation of target sites (for conserved miRNAs),
have been used to predict target sites of miRNAs [11,12].
However, all known prediction methods are hampered by
a huge number of false positives and false negatives [13].
Recently, several high-throughput assays have been
developed, which allow accurate identification of miRNA
targets (reviewed in Thomson et al. [14]).
Immunoprecipitation (IP) of the Argonaute (AGO)

protein, the major component of the RNA-induced

silencing complex (RISC), is used to identify the miRNA-
mediated recruitment of hundreds of different transcripts
to the RISC. Target mRNAs of miRNAs co-precipitate
with AGO and can thus be identified using either micro-
arrays (RNA binding protein immunoprecipitation fol-
lowed by chip analysis (RIP-Chip)) or next-generation
sequencing (RNA binding protein immunoprecipitation
followed by sequencing analysis (RIP-seq)) [15-20]. How-
ever, these RIP experiments only give information about
target genes or transcripts and do not give the precise
location of target sites nor the actual miRNA targeting
these sites. As a result, novel techniques including high-
throughput sequencing of RNA isolated by cross-linking
immunoprecipitation (HITS-CLIP), individual nucleotide
resolution cross-linking and immunoprecipitation
(iCLIP) and photoactivatable ribonucleoside-enhanced
cross-linking and immunoprecipitation (PAR-CLIP) have
been developed. Before the IP, RNA is cross-linked to
proteins using UV light, and the precise location of the
target site is determined by deep sequencing of cross-
linked RNA after digestion of non-cross-linked RNA
[21-23]. The actual miRNA binding at these sites still has
to be determined.
Both techniques, RIP and CLIP, need specialized bioin-

formatic analysis methods. RIP is very similar to standard
gene expression experiments and, thus, advanced analysis
methods are readily available. In addition to these standard
approaches, in a recent paper, we described additional
algorithms that need to be employed to consider and cope
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with the characteristic features of RIP data [24]. In con-
trast, CLIP data are more complex: first, short sequencing
reads must be aligned to the genome or transcriptome
and then clustered [21-23]. True target sites have to be
identified in the clusters and the specific miRNA targeting
each site has to be determined. Depending on the exact
experimental protocol, true target sites may look quite dis-
tinctive: for HITS-CLIP, narrow peaks in the read cover-
age are expected [21], while iCLIP clusters show specific
read start positions [22] and PAR-CLIP clusters are char-
acterized by T to C conversions [23]. Here, we focus on
PAR-CLIP, a technique that has been used by several
groups to identify miRNA target sites [23,25-27].
In their original PAR-Clip paper, Hafner et al. [23]

used several manually chosen parameters to define tar-
get sites (for example, at least two distinct conversion
positions per cluster and at least five sequencing reads).
They recognized that the region downstream of the
main conversion site is enriched for sequences comple-
mentary to the seeds of the top expressed miRNAs.
PARalyzer is a software package specifically designed to

define RNA binding sites from PAR-CLIP data. Reads are
first clustered and filtered using similar parameters as
those used by Hafner et al. [23]. Then, conversion and
non-conversion distributions are computed by counting
the respective events and employing kernel density estima-
tion along each cluster. All positions with a higher conver-
sion than non-conversion density are considered target
sites and surrounding sequences are submitted to a stan-
dard motif discovery tool that uses linear regression to
determine miRNA seed sites enriched among clusters with
many conversion events [28].
There are several open problems in PAR-CLIP data ana-

lysis: first, it is unclear which miRNAs should be taken as
a starting point for searching seed sites in PAR-CLIP clus-
ters. In all published studies, the top N miRNAs according
to miRNA read counts in the PAR-CLIP experiment or an
additional experiment are taken. However, read counts
provide a potentially strongly biased estimate of miRNA
expression levels [29,30]. In addition, it is unclear how
many miRNAs should be used. Finally, it may not be suffi-
cient to consider only known miRNAs: first, there are indi-
cations that there are still many unknown miRNAs [31]
and second, not only miRNAs (as defined by their matura-
tion pathway) may be associated with AGO and used for
target recognition, since there may be other pathways that
lead to the incorporation of small RNAs into RISC
[32-36].
Second, the specific information given by a PAR-CLIP

experiment is only partially exploited: in the PAR-CLIP
protocol, RNase T1 is used to digest RNA, which
cleaves specifically after guanine [37]. This information
could be used to exclude seed sites spanning read start
or end positions under the assumption that these sites

are protected from digestion by the miRNA. Also, it is
known that positions in the mRNA bound to the
miRNA cannot be efficiently cross-linked and, thus,
seed sites spanning a cross-linking site could also be
excluded [23]. Currently, there is no method available
that directly uses the information from RNase cleavage
sites or conversion sites for the discovery of motifs or
the assignment of seed sites. Third, no available scoring
system has been demonstrated to identify clusters or
assigned miRNAs reliably.
Here, we present a method to address these aspects:

PAR-CLIP miRNA assignment (PARma) seeks explana-
tions for the presence of each identified PAR-CLIP cluster.
Here, an explanation is a k-nucleotide-long sequence (a
k-mer) within a cluster that corresponds to the seed of the
miRNA binding this site. PARma explains each PAR-CLIP
cluster by a k-mer that (a) explains multiple clusters with
high probability and (b) matches a generative model for
the experimental data (that is, the data observed in the
experiment are likely to be generated by amiRNA binding
at the determined position). The determined k-mer can
identify miRNA families that are characterized by a seed
matching the k-mer. The model is able to score each
k-mer in a cluster according to the observed conversions
and RNase cleavage sites. Parameters as well as k-mer
activity probabilities are estimated in an iterative manner.
The model assigns the most probable seed to each PAR-
CLIP cluster, scores each cluster according to the confi-
dence to correspond to a true miRNA target site and also
scores the confidence of the assignment of the correct
seed.
Differential PAR-CLIP data was used to evaluate our

methods: we used pairs of PAR-CLIP datasets with miR-
NAs that are known to be present in the first dataset but
not in the second. When these pairs are analyzed, the tar-
get sites (PAR-CLIP clusters) of these miRNAs should
only be present in the first dataset. We used our own
PAR-CLIP datasets of the two B-cell lines DG75 and
BCBL1, of which only the latter is infected with Kaposi’s
sarcoma-associated herpesvirus (KSHV), a herpesvirus
encoding 25 mature miRNAs. In this data, we expect the
viral miRNAs, and hence their targets, only to be present
in the infected cell line. We also repeated our evaluations
using a published dataset of positive and negative cell lines
for the Epstein-Barr virus (EBV), which encodes 44 mature
miRNAs [25].

Results
PARma overview
We developed a complete workflow for the analysis of
PAR-CLIP data (see Figure 1). The main steps are: (a)
mapping of the sequencing reads to reference sequences,
(b) detection of read clusters corresponding to target sites,
(c) estimating a model that represents characteristic
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features of the PAR-CLIP data and miRNA (seed) activ-
ities and (d) the final assignment of miRNAs to target sites
and scoring using the derived model. Furthermore, we
developed a tailored, web-based visualization for PAR-
CLIP data, which helped us during the development of
PARma and can be used to investigate manually specific
target sites (see Figure 2).
The central idea of PARma is that miRNAs binding to

a target site will generate specific data in a PAR-CLIP
experiment (conversion positions and RNAse T1 clea-
vage sites, see Figure 2a). Thus, given experimental data
and a model representing these features, it is possible to

infer the binding site with the highest likelihood of gen-
erating these data. Additionally, given the experimental
data and the correct binding sites, it is straightforward
to infer the model parameters. Thus, we are facing a
chicken-or-egg dilemma: if we knew the binding sites
we could infer the model, and if we knew the model, we
could infer the binding sites. In PARma, this is resolved
using an iterative procedure (see Figure 3). We start by
computing statistically overrepresented k-mers in clus-
ters and take these as initial estimates for the correct
binding sites. Then, we infer model parameters and
iteratively refine all estimates until convergence. During

Figure 1 PAR-CLIP data analysis pipeline. The PARma workflow starts with the raw data from PAR-CLIP experiments (replicates or different
conditions), that is, several fastq files containing sequencing reads. First, we utilize Bowtie [46] to align these reads to multiple reference
sequences such as the human genome and transcriptome or viral genomes, which results in several sam files, one for each fastq file and
reference sequence. Second, for each read from each experiment we identify all optimal alignments in terms of mismatches, considering T to C
conversions as matches, and map transcriptomic reads that span splice junctions to the genome. Third, possible target sites of miRNAs are
identified by clustering reads from all datasets simultaneously. The clusters including additional annotations such as the number of conversions
and cleavages per position are written to separate files for each experiment. The cluster detection module implements a splitting procedure to
identify target sites with overlapping reads and is able to handle target sites that span splice junctions. Fourth, for each dataset, the core PARma
component estimates a generative model for the data and k-mer activity probabilities using kmerExplain in an iterative manner (see also
Figure 3). Fifth, the models and the activity probabilities are used to score clusters and to assign the most probable miRNA. Target sites with
various annotations such as gene ids are written to tabular files that can be further analyzed and visualized.
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Figure 2 PAR-CLIP data viewer. From top to bottom, both panels show conservation scores (branch lengths of seven-mers as described by
Friedman et al. [11] and the widely used phyloP [47] and phastCons [48] scores, all computed for the 46-way vertebrate multiple alignment obtained
from the UCSC genome browser [49]), the read coverage in each experiment and the genomic sequence of the cluster. Below the sequence, SNP
positions according to the 1000 genomes project are indicated in red (here there is only one in (a)) and the actual sequencing reads are shown as
black bars for each of the experiments. Mismatches are color-coded as in the genomic sequence above (in both clusters, there are only T to C
conversions). Different sequences that have been mapped to a cluster can be distinguished by distinct start or end positions of the corresponding
bars or distinct mismatches. The height of each bar is proportional to the corresponding read count. For clarity, if a sequence is observed more than
15 times in an experiment, the corresponding bar is not heightened further and the read count is indicated in white. Ensembl genes and transcripts
are shown below the reads (here these are present only in (a)), together with PAR-CLIP clusters in yellow and seed site assignments in blue. (a) An
experimentally validated target site of hsa-miR-l5 in the 3’ UTR of DMTF1. This illustrates the characteristic features of many valid target sites (see main
text). Interestingly, there is also a known SNP (red box) in proximity to the seed site. (b) An intergenic (that is, there are no Ensembl genes or
transcripts) cluster that does not have these characteristics. Additionally, it does not contain a miRNA seed site nor any overrepresented seven-mer
according to PARma. The validated cluster has Cscore and MAscore > 0.9, whereas for the intergenic cluster, both scores are 0.
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these iterations, seed activity probabilities are estimated,
corresponding to the likelihood-weighted number of tar-
get sites. Importantly, it is possible - but not necessary -
to specify an a priori set of allowed miRNAs. This is a
highly desirable feature since in general it is not known
which miRNAs are active in an experiment, and the
read count of the miRNAs themselves in the PAR-CLIP
experiment or an external sequencing experiment is
only a weak proxy for their activity, as shown below.
In PARma’s final output, for each cluster the most prob-

able seed is assigned, together with a cluster score (Cscore)
and a miRNA assignment score (MAscore). The Cscore
indicates how well the observed data (conversions and

RNase cleavage sites) fit the model without considering
the k-mer probability and therefore it indicates whether
an observed cluster is indeed a true miRNA target site.
The MAscore corresponds to the confidence of the assign-
ment, that is, whether there are other active k-mers in the
cluster that also match the observed data well.

Cluster detection
After read mapping (see Methods), the first main step of
PAR-CLIP data analysis is to identify clusters of reads
corresponding to target sites. We use a procedure that
is similar to one that has been used previously with a
few but important modifications. First, PARma is able to

Figure 3 How PARma works. PARma is an iterative algorithm, which repeatedly executes three steps: based on a current model of the PAR-
CLIP characteristics (left; see also Figure 6), scores are computed for each position in each cluster, which express the likelihood that the cluster is
explained by the activity of the k-mer at this position (top right; see also Figure 7). These scores are fed into kmerExplain as prior probabilities,
which then estimates k-mer activity probabilities using an EM algorithm (bottom). These k-mer activities in conjunction with data from the PAR-
CLIP experiment (T to C conversions and RNase cleavage sites) are used to estimate the parameters of the PAR-CLIP model. We start this
procedure by running kmerExplain on uniform scores and end it as soon as the model converges. EM, expectation maximization.
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search for clusters using multiple datasets simulta-
neously. This not only increases sensitivity, but also pro-
vides a straightforward way for a differential analysis of
target sites, since it is not necessary to identify corre-
sponding clusters from two or more experiments after
individual processing. During cluster identification, clus-
ters are determined for all datasets simultaneously, and
each cluster is quantified for each dataset.
Second, the original definition of PAR-CLIP clusters

(that is, target sites) by Hafner et al. [23] involved a

single linkage clustering of overlapping reads. However,
we observed several cases where such a procedure tends
to link multiple target sites into a single cluster due to
few spurious reads that connect two obviously distinct
clusters (see Figure 4a for an example). Such cases are
relatively frequent (see Figure 4b) and may be of special
interest: for instance, there are known cases where viral
miRNAs bind to sites in a neighborhood close to target
sites of human miRNAs [38]. Missing individual clusters
due to overlapping reads would be detrimental to such

Figure 4 Overlapping PAR-CLIP clusters. (a) Two target sites that would fall into the same cluster by the definition of Hafner et al. [23], only
because in the two DG75 replicates as well as in the second BCBL1 replicate a few random reads from the right target site overlap the left
target site. Our cluster definition splits all reads into two overlapping clusters (see the yellow boxes on the bottom). PARma rates both clusters
with high Cscores (>0.6 and >0.9 for the left and right clusters, respectively) and assigns the KSHV miRNA kshv-miR-Kl2-7 to the left and the
human miRNA hsa-miR-5l9 to the right cluster with MAscores >0.9 in both cases. There is additional evidence that both assignments are correct,
since the left cluster has reads only in KSHV positive cell lines (BCBL1, BC1 and BC3) whereas the right cluster contains reads in all experiments.
(b) There are hundreds of such cases in both experiments. KSHV: Kaposi’s sarcoma-associated herpesvirus.
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an analysis. Thus, we devised a cluster-splitting proce-
dure, which is able to detect such cases effectively.
And third, we align PAR-CLIP reads to the transcrip-

tome as well as the genome. Transcriptomic reads are
then mapped to genomic coordinates and may therefore
produce spliced reads. These are properly respected dur-
ing cluster detection, that is, PARma is able to detect
target sites spanning exon-exon junctions. In previous
studies using AGO-PAR-CLIP data [23,25-27], this was
not considered, and several highly interesting target sites
were probably missed. Indeed, in the datasets we ana-
lyzed, 22.4% of all clusters in the coding region of tran-
scripts span splice junctions (about 6% of all clusters).

Generative model
The novel feature in PAR-CLIP (in comparison to other
CLIP protocols) is the use of the uridine analogue 4-
thiouridine, which is not read as U but as C during
cDNA synthesis following its cross-linking to proteins
[23]. Thus, T to C mismatches of aligned sequencing
reads are characteristic of cross-linked sites and, there-
fore, for contacts of the examined protein with RNA.
Since RNase T1 is used in the PAR-CLIP protocol,
which cleaves specifically downstream of guanine, it is
important where sequencing reads start and end. In
most cases, the RNase products are shorter than the
sequencing reads (36 for Gottwein’s data [25] and 50 for
our data). Therefore, in these cases the complete RNA
fragments are known.
Visual inspection of these features for known target

sites of miRNAs using our PAR-CLIP data browser (see
Figure 2) showed several characteristics of these targets
sites that go beyond the characteristics of individual
PAR-CLIP sequencing reads (see Figure 2a): in most
cases, there is a main cross-linking site and ≥60% of all
conversions in the cluster belong to this site, a fact that
has been recognized before [23]. In addition, this main
cross-linking site tends to lie in the center of most
sequencing reads and T sites upstream tend to be cross-
linked more often than T sites downstream of the main
site. Another well-established feature is the position of
seed sites preferentially downstream of the main cross-
linking site. Finally, in addition to these main cross-link-
ing sites, there are main RNase cleavage sites with speci-
fic locations: one is approximately ten to twenty
nucleotides upstream of the seed site, the other usually
immediately downstream of the seed site. While the
upstream cleavage site often skips several G sites, the
downstream site is, in most cases, immediately after the
next G. To represent these features formally, we devel-
oped three independent probabilistic models: the conver-
sion model and the upstream and downstream cleavage
models. Given the position of a seed site and the posi-
tions of uridines or guanosines, respectively, each model

is able to predict where and how many conversions or
cleavages, respectively, would be generated by a PAR-
CLIP experiment. By comparing the predicted data to the
measured data, a likelihood for each possible seed posi-
tion within a cluster can be computed. Specifically, the
conversion model generates many conversions directly
upstream of a seed position (given there is a uridine), and
almost no conversions within the seed. Thus, such a posi-
tion would receive a high score only if this is indeed
observed in the experiment.
Model parameters (for example, how many conversions

are expected for each uridine within a cluster) are
directly learned from the data per experiment using
robust parameter estimation techniques. Doing this for
each dataset individually is important, since experimental
conditions may be slightly different between experiments,
potentially leading to slightly different data per cluster.

KmerExplain
KmerExplain optimizes a probabilistic modelunder the
assumption that each target site is targeted by a single
miRNA family, that is, each cluster must be explained by a
single k-mer (that is, miRNA seed). There are two condi-
tions for the explaining k-mer implicated by the model:
first, its position in the cluster has to match the generative
PAR-CLIP model, that is, the given data (conversions and
cleavages) are likely to be generated by a seed matching to
this position. And, second, the k-mer has to be likely to be
active, that is, there are many instances where this k-mer
explains a cluster. The model is fitted with an expectation
maximization (EM) algorithm.

Seed activities
We applied PARma to a previously published PAR-CLIP
dataset consisting of two replicates for each of the B-cell
lines BC3 and BC1, as well as to our own PAR-CLIP data
consisting of two replicates for each of the B-cell lines
DG75 and BCBL1. First, we analyzed the correlation of
miRNA expression as measured by its PAR-CLIP read
count and its activity as measured by the number of
assigned target sites.
Even if it is true that the top 100 expressed miRNAs

explain >50% of the clusters using a six-mer seed, the over-
all correlation between miRNA expression and the number
of corresponding target sites is poor (see Figure 5). This is
a general observation and does not depend on how miR-
NAs have been assigned to clusters (a variety of options
have been explored: all seed sites in the cluster, a random
seed site in the cluster, the first or a random seed down-
stream of the main cross-linking site, using the top 40, 100
or 200 miRNAs and six-mer or seven-mer seeds). The
poor correlation may be a consequence of sequencing arti-
facts, which are known to bias expression estimates of
miRNAs significantly [29,30].
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Figure 5 Correlation of miRNA expression to the number of assigned clusters. Here, miRNAs have been assigned to a cluster when they
are among the top 200 expressed miRNAs and match the first seed site downstream of the main cross-linking site. Neither the BCBL1 PAR-CLIP
data (a) nor in the BC3 PAR-CLIP data (c) show strong correlation. (b) and (d) illustrate how many seven-mer seeds match to clusters when the
top 40,100 and 200 miRNAs are considered and when seeds are searched in the whole cluster (all) and only downstream of the main cross-
linking site (xlink). Even the strictest assignment (top 40 xlink) leads to a considerable number of approximately 1,000 ambiguous clusters in both
datasets and at the same time to about 80% unassigned clusters. The fraction of unassigned clusters drops below 50% when the top 200 miRNA
seeds are searched in the whole cluster but with the cost of having thousands of ambiguous assignments.
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In addition, we and others proposed that not only
miRNAs may enter the RISC pathway, but there may be
other maturation pathways producing small RNA mole-
cules, which could act analogously to miRNAs in RISC
[31-36,39,40]. Furthermore, even if only the seven-mer
seeds of the top 40 miRNAs are used and seed sites are
only considered when downstream of the main cross-
linking site, there are hundreds of clusters where two or
more seeds match. Necessarily, this issue becomes more
severe, if more than 40 miRNAs or all seed sites within
a cluster are used (see Figures 5b and 5d).
Taken together, these facts suggest that the paradigm

of taking the top N expressed miRNAs as candidate reg-
ulators for PAR-CLIP clusters should be abandoned.
Therefore, we designed PARma to identify k-mers
among all possible 4k k-mers that can explain multiple
clusters with high probability. Furthermore, as well as
explaining multiple clusters, their positions must be in
agreement with the model derived from the data for all
clusters.

Inferred models
Next, we analyzed the generative model estimated by
PARma. In Figure 6, the model for replicate A of DG75
is illustrated. It indeed reflects the above mentioned
observations: the conversion model indicates the
expected ratios of conversions around the seed site for
all positions where a T is located. For instance, if there
is a T immediately upstream of the seed site and a T
immediately downstream, the expected ratio of conver-
sions is about 10:1. Furthermore, the first position in
the seed site also seems to become cross-linked with
relatively high frequency (for an example, see Figure 2a).
The models from Figure 6 are in agreement with what

is known of miRNA target recognition [2]: a canonical
miRNA binding site consists of a seed site complemen-
tary to the miRNA seed (bases two to seven or two to
eight), often base one is the opposite of an A and often
there is additional base pairing of the miRNA 3’ end
after a small loop. Thus, the seed site itself may be pro-
tected from cross-linking by the seed, bases immediately
upstream of the seed are accessible and further
upstream bases may also be protected by the miRNA 3’
end to some extent.
Furthermore, the model also agrees with structural

features of AGO [41]: miRNA bases two to six are sol-
vent exposed and there is a distinct kink separating
bases six and seven, which may be resolved by confor-
mation changes of AGO [41]. These conformation
changes may be a reason for the relatively high cross-
linking probability of the first position of the seed site.
Another explanation is that PARma may find several
instances of 7mer-m8 seed sites (pairing of bases two to
eight) as well as 7mer-A1 seed sites (pairing of bases

two to seven plus an A opposite base one). The first
base of the identified k-mer may therefore be opposite
base seven or eight of the miRNA, and, therefore, may
or may not be accessible for cross-linking.
As described above, all three submodels can be used

to compute a score for each possible seed site position
within a cluster. The conversion score (see Figure 7a for
the cluster in Figure 2a) indicates that likely positions
for a seed site are either immediately upstream or
downstream of the main cross-linking site. The down-
stream position is obvious; the upstream position, how-
ever, is also probable, since further upstream there is no
T that could get cross-linked. Figures 7b and 7c illus-
trate that the seed position is restricted to a small part
of the cluster due to the clear 5’ and 3’ RNase cleavage
sites. In addition, based on the estimate from kmerEx-
plain, the k-mer TGCTGCT (see Figure 7d) is highly
active and indeed corresponds to the 7mer-m8 seed site
of the miR-15/16 family, which is highly expressed in B-
cells. Hence, PARma is able to predict the correspond-
ing position with high confidence, and, indeed, it is an
experimentally confirmed target site of miR-15a [42].
Although the PAR-CLIP protocol is rather stringent

and thus provides reasonably pure AGO complexes,
other RNA-protein interactions of co-purified proteins
or abundant cellular proteins may be responsible for
cross-linked and protein-protected RNA fragments, giv-
ing rise to non-AGO PAR-CLIP clusters. The model we
developed is also used to compute a cluster score
(Cscore), which indicates the likelihood that a given clus-
ter actually represents a miRNA binding site, that is, how
well the observed data (conversions and RNase cleavage
sites) fit the model without considering the k-mer prob-
ability. The miRNA assignment score (MAscore) indi-
cates whether there are other overrepresented k-mers in
the cluster that also match the observed data well. The
experimentally confirmed target site in Figure 2a has
Cscore and MAscore of 0.9608 and 0.9777, respectively,
whereas the cluster in Figure 2b has a Cscore of 0, indi-
cating that there is no position where conversions and
RNase cleavage sites agree.

Evaluation using differential PAR-CLIP
We evaluated PARma against PARalyzer and the standard
approaches for assigning seeds for the top N miRNAs (for
N = 40, 100 and 200) when they occur somewhere in a
cluster (cluster) or downstream of the main cross-linking
site (xlink) and either assigning every seed (all) or a ran-
dom/the first seed (for cluster and xlink, respectively),
when there are multiple seeds present. For the evaluation,
we exploited a unique feature of the datasets we used: in
our own data, only the cell line BCBL1 and not DG75 is
infected by KSHV, which encodes 25 mature miRNAs,
some of which are highly expressed in BCBL1 [20]. Thus,
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Figure 6 PARma model for replicate A of the DG75 experiment. The conversion model in red represents the conditional propensity that a
base becomes cross-linked given there is a uridine at the corresponding position. Note that the propensity is only known up to a constant
factor and arbitrarily scaled to a mode of 1. The blue and green lines illustrate the 3’ and 5’ cleavage models, respectively. These correspond to
the conditional probabilities that the RNase Tl cleavage site is at a certain position or closer to the seed site given that there is a guanine. The
model shows that the observations made for a few visually inspected validated target sites are also true globally for many clusters.

Figure 7 Model scores for the cluster in Figure 2a. Each graph shows how well one of the submodels of PARma matches when aligned to
the seven-mer that starts at the corresponding position. For instance in (a), the maximal value belongs to the seven-mer TGCTGCT and
indicates that all observed and unobserved T to C conversions match very well, when TGCTGCT is the miRNA seed site. A miRNA targeting the
seed site CACATTG (corresponding to the secondary peak upstream of TGCTGCT) is also likely to lead to the observed conversion. The cleavage
scores in (b) and (c) indicate how likely the observed RNase Tl cleavages are, given the seed site is at the corresponding position. Both
submodels would allow seed sites to start within a small window of about 10 bases and indicate that the secondary peak from (a) is unlikely to
correspond to the true miRNA seed site. However, they agree with the primary peak of the conversion scores. Finally, the k-mer activity scores in
(d) indicate how many other PAR-CLIP clusters are likely to be explained by the corresponding k-mer and they also point to the seven-mer
TGCTGCT. This is indeed the seven-mer-m8 seed site for miR-l5a, and it has been experimentally validated that it targets this cluster [42].
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PAR-CLIP clusters that are assigned to one of the KSHV
miRNAs should not be present in DG75 and we can use
the number of KSHV-assigned PAR-CLIP clusters in
DG75 as a measure of assignment accuracy. Although
both cell lines, BC3 and BC1, in the PAR-CLIP data from
[25] are infected by KSHV, only BC1 is co-infected by
EBV, which encodes 44 mature miRNAs. Hence, PAR-
CLIP clusters that are assigned to one of the EBV miRNAs
should not be present in BC1.
With respect to exclusive sites, PARma is more accu-

rate than all other methods, including PARalyzer,

independent of the dataset used for evaluation (see Fig-
ures 8a and 8d). More than 70% of all clusters, where
PARma assigned a KSHV or EBV miRNA, only have
reads in BCBL1 or BC1, respectively. This number drops
to about 50%, when any seed match of a KSHV miRNA
in a cluster is taken as evidence for a KSHV target site
(all.cluster) or PARalyzer is used. When a seed match
immediately downstream of the main cross-linking site is
used (first.xlink), the accuracy is almost as high as for
PARma, but is heavily dependent on both dataset and
the number of miRNAs used. Additionally, PARma’s

Figure 8 Evaluation using differential PAR-CLIP. KSHV miRNA target sites should only have reads in KSHV-infected cell lines (a-c), and EBV
miRNA target sites should be exclusive to EBV infected cell lines (d-f). PARma-assigned KSHV miRNA target sites have a higher fraction of
exclusive sites than any other method (a, d) (see main text for a description of the other methods) and when PARma was run without being
constrained to known miRNA seeds, it yielded a higher fraction of exclusive sites than PARma using seeds as priors. (b) and (e) show the log
fold changes (control/infected) of PAR-CLIP read counts for clusters assigned to KSHV and EBV miRNAs, respectively. The log fold change of
exclusive clusters (that is, clusters that have no reads in one of the experiments) has been set to -10 or 10. PARma not only has the largest
fraction of exclusive clusters in both datasets (compare the left ends of (b) and (e) to (a) and (d), respectively) but it also has the smallest
fraction of KSHV or EBV clusters that have more reads in the KSHV or EBV negative cell line. The dependency of scores on the accuracy is shown
in (c) and (f). In both datasets and for both scores, accuracy increases as low scoring clusters are removed. As a reference, the accuracies of the
other assignment methods are indicated with the same colors as in (b) and (e). EBV: Epstein-Barr virus; KSHV: Kaposi’s sarcoma-associated
herpesvirus.
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accuracy is significantly higher when it is run starting
with all 16,384 seven-mers (PARma) instead of miRNA
seven-mer seeds only (PARma_miR). This suggests that
in several cases there are seeds of KSHV/EBV miRNAs in
a non-exclusive cluster but there are also other overre-
presented seven-mers that explain the conversions and
RNase cleavage sites better.
We noticed that often random reads are scattered

across expressed transcripts in all experiments. Thus, a
true KSHV miRNA target site may have random reads
in the KSHV negative cell line (DG75) and, therefore,
may not be exclusively present in BCBL1. Therefore, we
considered the number of PAR-CLIP reads in each
KSHV or EBV miRNA assigned cluster and plotted their
log fold change of DG75/BCBL1 or BC3/BC1, respec-
tively (see Figures 8b and 8e). Independent of the fold
change cutoff, PARma consistently identifies more KSHV
or EBV miRNA clusters that have less reads in DG75
than in BCBL1 or in BC3 than in BC1, respectively. Spe-
cifically, less than 5% of KSHV clusters have more reads
in DG75 than in BCBL1 for PARma assignments, which
drops to below 90% for the other assignments.
In order to evaluate the computed Cscores and

MAscores (see Methods section), we sorted clusters
according to Cscore or MAscore and computed the
fraction of BCBL1 and BC1 exclusive sites for KSHV
and EBV miRNA assigned clusters, respectively. For
both datasets the accuracy increases as the low scoring
clusters or clusters with multiple possible miRNAs are
removed, and accuracies of 80% or more were achieved
(see Figures 8c and 8f).

Validation against RIP-Chip data
To further validate target sites and target site assign-
ments that are only found by PARma, and to invalidate
target sites that were not detected by PARma but by
other methods, we considered RIP-Chip data that we
measured for the cell lines DG75 and BCBL1 [20]. In
the RIP-Chip experiments, the amount of an RNA co-
immunoprecipitated using an anti-AGO2 antibody was
compared to RNA from a control IP using microarrays.
Thus, this quantitatively measures the recruitment of an
mRNA to Ago2-complexes and is an alternative techni-
que to PAR-CLIP to determine miRNA targets. Using
the right data analysis methods [24], the differential
enrichment of mRNAs with RISC can be computed
between BCBL1 and DG75, which indicates whether an
mRNA is more strongly associated with RISC in BCBL1
than in DG75. On average, this must be the case for tar-
gets of KSHV miRNAs.
Thus, we determined all genes that contain a KSHV

miRNA target site according to PARma and PARalyzer
(both), that contain a KSHV miRNA target site according
to PARma and no KSHV miRNA target site according

to PARalyzer (PARma only) and that contain a KSHV
miRNA target site according to PARalyzer only (PARaly-
zer only) and compared it to genes without KSHV miRNA
target sites (none); see Figure 9a. The both and PARma
only genes showed significantly elevated differential RIP-
Chip enrichment values (P < 2 × 10−4 and P < 2 × 10−7,
respectively, one-sided Kolmogorov-Smirnov test),
whereas PARalyzer only and none genes were indistin-
guishable from the background. Thus, based on the RIP-
Chip data, PARma effectively gets rid of false positive
target sites detected by PARalyzer, and, in addition, picks
up false negatives not detected by PARalyzer. We also
repeated the same analysis for other methods replacing
the PARalyzer results with similar results (see Figure 9b).

Discussion
PAR-CLIP clusters
In this paper, we present an in-depth investigation of seed
sites in PAR-CLIP clusters. The standard approach to
assign miRNAs in all PAR-CLIP studies published so far
[23,25-27] is to select the top N expressed miRNAs and
identify seed sites in the respective PAR-CLIP clusters.
However, it is not clear, how N should be chosen: for
small N, only a small fraction of clusters can be assigned
and for larger N, cluster assignments are more and more
ambiguous. Furthermore, independent of the choice of N
or the exact way of searching for seeds, miRNA expression
correlates only poorly with the number of clusters. Also,
multiple studies report small RNAs other than miRNAs
associated with the RISC. Thus, it seems advantageous not
to restrict the search to a predefined set of miRNA seeds.
PARma can be used for both searching for a predefined
set of seeds and for an unconstrained search for all possi-
ble k-mers. In both cases, the assigned seeds fulfill two
conditions in each cluster: first, the observed T to C con-
versions and RNase cleavage sites relative to the seed posi-
tion match a model derived from all clusters and second,
the seed site sequence is overrepresented. As illustrated in
Figure 8, the unrestricted search is even more accurate in
terms of assigning KSHV or EBV miRNAs to clusters that
are exclusively present in KSHV or EBV infected cells,
respectively.
We propose that the general approach of PARma can

also be applied to other kinds of CLIP data. For instance,
for iCLIP data [22], reads in valid target sites should start
immediately after cross-linking sites. These specific start
positions could be incorporated into an iCLIP model
instead of the PAR-CLIP model of conversions and RNase
T1 cleavage sites. However, how effective it is to exploit
these characteristics of iCLIP data remains to be seen as
more and more iCLIP data becomes available.
Clusters from a CLIP experiment are not necessarily

true binding sites of the protein of interest: neither the
immunoprecipitation (IP) step nor the gel separation are
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100% specific and thus, there may be artifacts of other
RNA binding proteins (RBPs). If 40 distinct miRNA
seeds are considered and matched to such clusters,
more than 20% of the unspecific clusters are expected
to contain at least one seed match by chance (assuming
an average cluster length of 30 bp and a seed length of
six). This increases to almost 70%, when 200 miRNA
seeds are considered. Thus, we expect that there are a
considerable number of false positive miRNA target
sites in current PAR-CLIP datasets. Finding a reliable
way of scoring clusters in order to filter out such false
positives is therefore of great importance.
To our knowledge, PARma is the first method to pro-

vide a scoring system that has been proven to improve
accuracy upon filtering. The rationale for that is that
there is no reason why unspecific clusters should match
our PAR-CLIP model. Indeed, Cscores of intronic clus-
ters, which likely are the result of unspecific IPs of other
RBPs, are significantly lower than Cscores of 3’ UTR
clusters (data not shown) in both AGO-PAR-CLIP data-
sets, which is in agreement with known mechanisms of
miRNAs. Furthermore, even if unspecific clusters match
the PAR-CLIP model by chance and contain active
k-mers by chance, it is unlikely that these k-mers occur
at a position that matches the model. Thus, both Cscore

and MAscore are expected to improve accuracy (see
also Figure 8c and 8f).

PARma
For the conversion model used in PARma, we assume
that cross-linking events are independent of each other.
This means that given a uridine at a certain position
relative to the seed site, the probability that a cross-link-
ing event takes place and is sequenced at this position is
not dependent on the location of other uridines. This
assumption may be wrong if one of the other uridines is
already cross-linked. However, the probability that two
cross-links occur in close vicinity to each other is very
low, since the incorporation rate of 4-thiouridine (4sU)
is only about 1/40 and only 4sU is cross-linked with
high frequency at the wavelength used in PAR-CLIP
[23]. In addition, the reverse transcriptase (RT) is
known to be rather inefficient in reading through the
peptide chain still cross-linked to the 4sU-residue
(which is responsible for the U to C transition). There-
fore, it becomes rather unlikely that the RT reads
through two cross-links in a single RNA fragment.
Note also, that the model for conversions is not sim-

ply built by summing all cross-linking events for each
position globally over all clusters. Such a procedure

Figure 9 Validation against RIP-Chip. (a) The distribution of differential RIP-Chip enrichments (PC2 scores) of BCBLl and DG75 for different sets
of PAR-CLIP targets. Higher values indicate a stronger enrichment of a gene with RISC in BCBLl than in DG75, and, therefore, a set of KSHV
miRNA targets should have a right-shifted distribution of PC2 scores. Genes that have been identified by PARma as well as PARalyzer to be KSHV
miRNA targets indeed show such a shift, as well as genes that have only been found by PARma and not by PARalyzer (PARma only). In contrast,
genes that are not targets of KSHV miRNAs according to both PARma and PARalyzer do not show a shift. Interestingly, genes found exclusively
by PARalyzer and not by PARma are not shifted as well. (b) The P values for the comparisons of PARma to all other methods indicate that
PARma not only outperforms PARalyzer but all other methods as well.
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would be heavily influenced by a few clusters that have
thousands of reads in comparison to the many clusters
having only a few dozen reads. In contrast, our para-
meter estimation for the conversion model does not
only exploit all clusters, but is also robust against outlier
clusters by using robust regression and quadratic pro-
gramming. Robustness in the parameter estimation is an
important issue, especially in the initial iterations. This
is because seeds are not yet assigned with high confi-
dence leading to many outliers.
PARma does not necessarily assign seed sites directly

downstream of cross-linking sites. When the next uri-
dine upstream of a true seed site is several nucleotides
away, it may still become cross-linked. In this case,
PARma may still find another k-mer closer to the cross-
linking site, dependent on the sequences, on other
cross-linking events in the same cluster and on the
RNase cleavage sites. However, PARma will report a low
MAscore, since the other position will score similarly
well.
PARma can be run for different values of k. The smal-

lest reliable seed used in the literature is miRNA bases
two to seven [2,9-12]. However, we noticed that PARma
with k = 6 resulted in slightly worse accuracies for both
our data sets in comparison to k = 7 (data not shown).
This may be a consequence of the fact that random six-
mers are expected to occur every 4,096 bases, and thus,
approximately every 100 clusters (the median length of
clusters is 47). When at least 100 miRNAs with different
six-mer seeds are considered, every single cluster would
on average have a seed match by chance. Thus, kmerEx-
plain may have difficulty in reliably extracting the signal
of overrepresented six-mers.
Because of the requirement that only a single k-mer can

explain a cluster, kmerExplain is able to avoid overrepre-
sented partial k-mers: consider the 7mer-A1 seed site
UCGUCGA that explains hundreds of clusters. Obviously,
the sequence CGUCGAG is expected to be present in 1/4
of these clusters and is thus highly overrepresented in the
collection of all clusters. This overrepresented partial k-
mer may also occur in additional clusters, that is, without
the leading U. Even if it is not overrepresented by itself
but only due to an overlapping k-mer that is truly overre-
presented, all additional occurrences may be mistaken for
the seed site of a targeting miRNA not because the
miRNA is active but only because of the overlap to an
active miRNA seed. Obviously, kmerExplain avoids such
overrepresented partial k-mers because of the requirement
that only a single k-mer can explain a cluster.

Comparison with PARalyzer
PARalyzer is a software package specifically designed to
analyze PAR-CLIP data [28]. It utilizes kernel density
estimationg to compute probabilities of interactions

along each cluster based on the normalized numbers of
conversions and non-conversions at each position.
There are two main differences to the basic approach
used by Hafner et al. [23]: first, an interaction site is
identified when the estimated density of conversions is
greater than the estimated density of non-conversions
instead of using the main cross-linking site for all clus-
ters, which are filtered by specific criteria. Second, due
to the kernel, the neighborhood of uridine sites is incor-
porated using an arbitrarily chosen bandwidth para-
meter. It is unclear whether this approach is able to
filter out unspecific clusters effectively. In addition, the
pattern discovery module does not incorporate informa-
tion about cross-linking or RNase cleavage positions and
is, thus, unable to resolve and score ambiguous seed
matches. Furthermore, the PARalyzer pipeline does not
include a method to handle spliced reads and, therefore,
all studies that have used PARalyzer [25,27,28] may
have missed all target sites that span exon-exon junc-
tions. In the datasets we analyzed, 22.4% of all clusters
in the coding region of transcripts span splice junctions
(about 6% of all clusters).

Differential PAR-CLIP
In order to evaluate PARma, we directly compared the
number of PAR-CLIP sequencing reads from multiple
experiments mapped to each individual cluster. Our eva-
luation is based on the following consideration: when a
cluster is a valid target site of a KSHV miRNA, for
instance, AGO should not be associated with it in KSHV
negative cells and, therefore, the corresponding PAR-CLIP
experiment should not yield sequencing reads mapping to
this cluster and so it is an exclusive cluster.
While this is true for approximately 80% of all clusters

assigned to a KSHV or EBV miRNA in both of the
respective datasets, when PARma is used (see Figures 8b
and 8e), there is a considerable number of clusters
where this is not true. There may be several reasons:
first, there is a considerable amount of background in
the data, that is, sequencing reads not due to specific
cross-linking to AGO. Indeed, almost all clusters have a
positive log2 fold change of PAR-CLIP reads, which may
be a consequence of background. Second, a target site
could be targeted by multiple miRNAs. This is very
probable for seed homologous viral miRNAs (for exam-
ple, kshv-miR-K12-11 has the same seed as hsa-miR-
155), but may also occur when there are strongly over-
lapping target sites. Accuracy increases when clusters
are filtered by MAscore (see Figure 8c and 8f), which
also indicates ambiguous assignments. Third, clusters
may not be valid target sites and just by chance contain
seeds of KSHV or EBV miRNAs, and, as a consequence,
accuracy also increases when clusters are filtered by
Cscore.
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It would be of great benefit to be able to convert our
scores to a false discovery rate as a statistically meaning-
ful measure. This could be done if there was a way to
determine how many of the non-exclusive clusters are
still valid KSHV or EBV target sites. However, it is diffi-
cult to estimate the background, which is dependent on
transcript expression, on other RNA binding proteins
that target these transcripts and probably on many more
factors. Additionally, the extent of overlapping or truly
ambiguous target sites is unclear. Furthermore, the pre-
sence of reads is subject to stochastic sampling effects
due to the relatively small numbers of reads. Thus, it is
currently not possible to estimate reliable false discovery
rates based on differential PAR-CLIP.

Conclusion
In this paper we presented PARma, a method to analyze
PAR-CLIP data. Clusters are defined in a similar way as
before [23,28]. The main purposes of PARma are (a) to
define reliable miRNA target sites and (b) to identify the
miRNA responsible for each identified target site.
Therefore, two scores are computed: the Cscore assesses
the likelihood that a cluster is a valid miRNA target site
and the MAscore corresponds to the confidence that
the assigned miRNA is the true regulator.
PARma utilizes features specific to PAR-CLIP data to

determine seed sites: the positions of cross-linking sites
and missing cross-links as well as cleavage sites of
RNase T1 relative to seed sites are learned and incorpo-
rated into a generative model. This model is used to
guide a novel pattern discovery tool, kmerExplain, that
estimates activity probabilities for k-mers.
Our method can be used to discover active k-mers in

an unbiased manner, that is, without assuming a set of
admissible k-mers such as the top N miRNA seeds.
Each reported active k-mer nevertheless has two proper-
ties: it explains several clusters and the positions where
it occurs match the model of PAR-CLIP data learned
from all target sites. Using differential PAR-CLIP data,
we have shown that PARma is more accurate than exist-
ing methods and that both Cscore and MAscore are
useful measures to rank clusters.

Methods
Data
The data from Gottwein et al. [25] has been down-
loaded from GEO (accession number: GSE32113). DG75
and BCBL1 PAR-CLIP experiments have been per-
formed as described [43,44]. Briefly, a total of 3 × 108

cells per replicate were grown and treated with 4-thiour-
idine (Sigma) for 14 hours (final concentration 100 μM).
Cells were pelleted and washed in cold phosphate buf-
fered saline (PBS). Aliquots of 5 × 107 cells were resus-
pended in 5 ml of cold PBS, placed in a 15 cm petri

dish and irradiated at 365 nm with 100 mJ twice on ice,
with a 30 s break in between. Cross-linked cells were
collected, pelleted and snap-frozen. PAR-CLIP was per-
formed using 11A9 anti-Ago2 monoclonal antibodies
[45]. PAR-CLIP sequencing data have been deposited at
GEO (accession number: GSE43909).

Raw data processing and cluster definition
The deep-sequencing data were processed using an in-
house pipeline consisting of adapter trimming, read
mapping against genomes and transcriptomes, integrat-
ing all mappings and cluster identification as well as
filtering.
Read mapping
The 3’ sequencing adapter sequence were trimmed from
each sequencing read using a specially tailored sequence
alignment variant that aligns a prefix of the adapter
sequence to a suffix of each sequencing read. After that,
equal sequences are collapsed and mapped to the human
genome (hg19), the KSHV genome (NC 009333.1), the
EBV genome (NC 009334.1) and the human transcriptome
(Ensembl v60) using Bowtie version 0.12.7 [46]. For each
collapsed read, all mappings for an experiment were then
collected and the best in terms of mismatches were writ-
ten to a single BED file for each experiment including
information about the read count (number of sequences
before collapsing), the mismatches of each alignment and
the number of alignments after mapping transcriptome
alignments to the genome. Here, T to C conversions were
not counted as mismatches, since they were expected due
to the experimental protocol.
Cluster identification
All BED files were then simultaneously scanned chro-
mosome by chromosome in a strand-specific manner
and overlapping reads were clustered. We used only
reads without mismatches (except for T to C conver-
sions). Clusters were then filtered according to similar
criteria as before [23,28]: read count at least five and at
least three distinct read species. Clusters were quantified
using the count of the main cross-linking site. After
clustering, normalization factors were computed such
that the median fold change to a reference experiment
(we took the one with the most reads) was one. Then,
in a second pass, all clusters were removed where all
experiments had less than ten normalized read counts.
We also implemented three additional options: first, it is

known that two target sites may overlap. Especially for viral
miRNAs, several such cases are known [38]. Thus, we split
each cluster: only reads spanning the main cross-linking
site were used and the criteria from above were checked.
Then, the main cross-linking site of the remaining reads
was determined. This was repeated as long as all criteria
were fulfilled. Second, since target sites may span splice
junctions and we mapped reads to the transcriptome, we
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can also identify spliced PAR-CLIP clusters. However,
when allowing for spliced reads, the definition of a cluster
is not straightforward: for instance, for a 3’ end of an exon,
there may be reads starting in the exon and ending in the
neighboring intron and reads that connect this exon to var-
ious other exons. We resolved such inconsistencies by first
removing all exon-intron reads and then by removing reads
to exons with fewer reads, if necessary.
Third, since target sites may be wider than the maxi-

mal sequence length, we extended all untrimmed reads
up to the next RNase T1 cleavage site (that is, after
the next G). This is important because in the following,
we specifically use these cleavage sites in our generative
model.
Visualization
In order to visualize PAR-CLIP data appropriately, we
developed a specialized web-based visualization tool (see
Figure 2). Unlike the widely used genome browsers
from UCSC or Ensembl, our viewer has specialized
visualization tools for PAR-CLIP data: we can visualize
several evolutionary conservation scores, including
k-mer branch lengths that have been used for miRNA
target prediction [11], sequence read coverage, SNPs,
the actual reads with indicated conversions, conversion
densities, transcripts and PAR-CLIP clusters. Unlike
genome browsers, our viewer is able to shrink introns in
a data-dependent way (that is, if there are no reads
mapped to an intron, it is not visualized at the same
scale as the exons but shrunk to a few pixels). This is a
major advantage over showing everything at the same
scale when visualizing transcript-related data, since
usually the long introns are often not of interest in con-
trast to the short exons.

PARma
The result of our preprocessing, which is very similar to
previous work [23,28], is a set of clusters L. Each cluster
L ∈ L is characterized by its sequence s(L), its conver-
sion profile convL and two vectors startL and endL.
convL is a vector containing for each position within L
the number of conversions, whereas startL and endL
contain for each position the number of reads starting
and ending there, respectively. Furthermore, we define T
(L) = {i Î {1...|s(L)|} | s(L)i = T} as the set of possible
conversion sites and G(L) = {i Î {1...|s(L)|} | s(L)i = G}
as the set of possible RNase T1 cleavage sites.
Model fitting
The PARma model consists of three submodels, incor-
porating T to C conversion data, 5’ RNase cleavage data
and 3’ RNase cleavage data. The conversion model
assigns a cross-linking probability xlink(i) to each posi-
tion i relative to the seed site. Then, the cross-linking
score sxlink for a seed position j in cluster L can be com-
puted as:

sxlink
(
L, j

)
=

∑
k∈T(L)convL (k) · xlink (

j − k
)

∑
k∈T(L)convL (k) · ∑k∈T(L)xlink

(
j − k

)

This is essentially the normalized dot product of two
vectors: the first vector contains the observed conver-
sion counts for all conversion positions, the second con-
tains the cross-linking probabilities for these positions.
Thus, sxlink (L, j) = 1 if and only if the observed conver-
sions exactly meet the expected cross-links and
approaches 0 when the observed counts differ from the
expected. Note that xlink can only be known up to a
constant factor. This allows us to fit the model without
making any further assumptions: given a current esti-
mate j of the seed position for each cluster L, we first
estimate the ratio Rk,l for each pair of model positions k
and l by collecting all clusters L with j − k Î T(L) and
j − l Î T(L). Then we use robust linear regression to fit
a line through the origin given the values convL (j − l)
and convL (j − k) of all collected clusters L. The slope of
this line then is a robust estimate of Rk,l. Given the esti-
mates of Rk,l for all k < l, we obtain the final estimate of
xlink by minimizing:

∑
k,l

(
xlink (k)
xlink (l)

− Rk,l

)2

subject to xlink(j) ≥ 0 and Σj xlink(j) = 1 using quadra-
tic programming. Note that the final constraint arbitra-
rily fixes the above mentioned constant factor and is
necessary to get a unique solution.
The 3’ RNase cleavage model assigns the cumulative

probability c3(i) that the RNase cleavage site is ≤i to
each position i relative to the seed site. Given a cluster
L, let G(L) = {k1, ..., kn} with ki−1 < ki. Then, the down-
stream cleavage score sdownstream for a seed position j in
cluster L can be computed as:

sdownstream
(
L, j

)
=

∑
i∈1...n

endL (ki) · p (ki)
∑

i∈1...n
endL (ki)

p (k0) = c3
(
j − k0

)

p (ki) = c3
(
j − ki

) − c3
(
j − ki−1

)

Note that we use cumulative probabilities here: in
contrast to cross-linking positions, RNase cleavage sites
are not independent. For instance, let cluster L1 have
two consecutive G’s 5 bp downstream of the true seed
site (= SEED = NNNNNGG...) and cluster L2 only one G
6 bp downstream of its true seed site (= SEED =
NNNNNNG...). The second G in L1 is at the same posi-
tion relative to the seed site as the single G in L2. The
RNase may have enough room to cut after the first G in
L1 and thus all reads in L1 may end 5 bp downstream of
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the seed site. In cluster L2, all reads will end 6 bp down-
stream of the seed site. Thus, depending on where other
G sites are located, read end probabilities will differ.
Using cumulative probabilities in the model and com-
puting the probabilities depending on G locations from
cumulative probabilities is able to alleviate this problem.
c3 is estimated by using the current estimates j of the
seed position for each cluster L. The cumulative prob-
ability then is the number of times a position is
upstream of the main RNase cleavage site divided by the
number of clusters.
The 5’ RNase cleavage model is formulated analo-

gously to the 3’ model. The final score for a position j
in cluster Li then is calculated as the product of the
three submodel scores:

pi,j = sxlink
(
Li, j

) · sdownstream
(
Li, j

) · supstream
(
Li, j

)

KmerExplain
Given a set of sequences S = {S1, . . . , Sn} and scores pi,j
for each position j in cluster Li, k-mer Explain estimates
k-mer activity probabilities. This is done using an EM
algorithm, which iteratively applies expectation (E) and
maximization (M) steps to estimate the parameters of a
probabilistic model under some hidden variables. We
derive an EM algorithm for the following model: we
assume that each sequence is generated by only a single
k-mer. Then, the probability of generating a sequence S
by a k-mer at its jth position is:

P
(
S|j) = αSj ·

∏
c �=j

(1 − αSc)

Here, ax is the activity probability of k-mer x and Sj

denotes the jth k-mer in S. The likelihood of S then is:

P (S) =
n∏
i=1

P (Si) =
n∏
i=1

∑
j

P
(
S|j) pi,j

Thus, we have to estimate ax for all k-mers x under
hidden parameters j (the active k-mer position in Si). In
the E step we compute the values qi,j given the current
estimates of ax as:

qi,j =
pi,jP

(
Si|j

)
∑
c
pi,cP (Si|c)

The values qi,j represent current estimates of the prob-
ability P(j|Si). In the M step the estimator for ax then is
computed as:

αx =
1
n

∑
i,j

qi,j · δx=Sji (1)

where δx = y is the Kronecker delta such that δx = y =
1 if x = y. and δx = y = 0 otherwise.

Proof: The conditional expected value of the log likeli-
hood and its partial derivative with respect to ax are:

E =
∑
i,j

qi,j log P
(
Si|j

)
(2)

=
∑
i,j

qi,j log

⎛
⎝αSji

·
∏
c �=j

(
1 − αSci

)
⎞
⎠ (3)

δE

δαx
=

1
αx

Qx − 1
1 − αx

Qx̄ (4)

Qx =
∑
i,j

qi,j · δx=Sji (5)

Qx̄ =
∑
i,j

qi,j ·
(
1 − δx=Sji

)
(6)

Since Qx +Qx̄ = n, setting (4) to zero and solving for
ax yields equation (1). □
Final assignment and integration
The output of the final iteration consists of scores pi,j for
each position j in cluster Li as well as qi,j, which are esti-
mates of the probability P(j|Si). The first is a quantity indi-
cating how well the experimental data fit the model when
any k-mer at position j has generated cluster Li. The latter
incorporates the k-mer activity probability, that is, how
well the experimental data fit the model when the given
k-mer at position j has generated cluster Li. Furthermore,
for each cluster Li we get the most probable k-mer gener-
ating this cluster at position gi = argmaxj {qi,j}.
We use these quantities to compute confidence scores

for each cluster (Cscore) and each k-mer assignment
(MAscore):

Cscore (i) = pi,gi (7)

MAscore (i) =
qi,gi∑
j
qi,j (8)

We integrate multiple experiments (either replicates of
the same condition or multiple conditions) by first run-
ning PARma for each experiment individually and then
taking the generating k-mer by computing a weighted sum
over all qi,j from all experiments (weighted by the respec-
tive read count in the cluster) and taking the maximum.
The Cscore then is the weighted sum of the pi,gi values
and the MAscore the maximal MAscore of all experiments
at this position.

Software availability
PARma is published under the GNU General Public
License v3 and is available as supplementary material
(see Additional file 1) and from the project website [50].
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Additional material

Additional file 1: Zip file containing the runnable PARma pipeline
including documentation and source code.
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