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The strength of genetic interactions scales weakly
with mutational effects
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Abstract

Background: Genetic interactions pervade every aspect of biology, from evolutionary theory, where they
determine the accessibility of evolutionary paths, to medicine, where they can contribute to complex genetic
diseases. Until very recently, studies on epistatic interactions have been based on a handful of mutations, providing
at best anecdotal evidence about the frequency and the typical strength of genetic interactions. In this study, we
analyze a publicly available dataset that contains the growth rates of over five million double knockout mutants of
the yeast Saccharomyces cerevisiae.

Results: We discuss a geometric definition of epistasis that reveals a simple and surprisingly weak scaling law for
the characteristic strength of genetic interactions as a function of the effects of the mutations being combined.
We then utilized this scaling to quantify the roughness of naturally occurring fitness landscapes. Finally, we show
how the observed roughness differs from what is predicted by Fisher’s geometric model of epistasis, and discuss
the consequences for evolutionary dynamics.

Conclusions: Although epistatic interactions between specific genes remain largely unpredictable, the statistical
properties of an ensemble of interactions can display conspicuous regularities and be described by simple
mathematical laws. By exploiting the amount of data produced by modern high-throughput techniques, it is now
possible to thoroughly test the predictions of theoretical models of genetic interactions and to build informed
computational models of evolution on realistic fitness landscapes.
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Background
Genetic interactions [1] have shaped the evolutionary
history of life on earth. They have been found to limit
the accessibility of evolutionary paths [2], to confine
populations to suboptimal evolutionary states and, on
larger time scales, to control the rate of speciation [3].
Epistatic interactions can also be relevant to the devel-
opment of complex human diseases such as diabetes [4].
Complex traits and diseases are determined by a multi-
plicity of genomic loci [5], whose independent effects
and interactions [6] are often necessary to understand
the phenotype of interest. Despite the broad implica-
tions of epistatic interactions, a quantitative characteri-
zation of their typical strength is still lacking. In this

study, we consider growth rate in yeast as an example of
a complex trait modulated by genetic interactions.
Previous studies [7-10] on the relation between the

growth effects of a mutation and its epistatic interactions
have often been based on a handful of mutations, and
only in recent years has anecdotal evidence started being
replaced by robust statements based on large data sets.
Perhaps the most impressive of these datasets is the one
made publicly available with the publication of the article
entitled ‘The genetic landscape of a cell’ by Costanzo
et al. [11]. The genome of the budding yeast Saccharo-
myce cerevisiae includes approximately 6,000 genes,
about 1,000 of which are essential. Viable mutants can be
constructed by knocking out any of the approximately
5,000 non-essential genes, by reducing the expression of
the essential genes, or by partially compromising the
functionality of the gene products. The dataset (see Addi-
tional file 1, Figure S1) has been compiled with the
growth rates of about 5.4 million double knockout
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mutants, a sizable fraction of all possible double knock-
out mutants in yeast. Supported by the Costanzo et al.
dataset, we consider the fundamental question of
whether mutations with larger effects have stronger
genetic interactions.

Results and discussion
An unbiased definition of genetic interactions
A basic approach to study genetic interactions is to con-
sider two mutations with known effects on a quantita-
tive trait, and to measure their combined effect in the
double mutant [12]. Given [11,13] the growth rates of a
wild type S. cerevisiae strain (g00 = 1) and of two single
knockout mutants (g01 and g10), the growth rate of the
double knockout mutant (g11) is adequately predicted by
a multiplicative null model:

g11/g00 =
(
g01/g00

) (
g10/g00

)
.

Equivalently, defining ‘log growth’ as the logarithm of
the relative growth rate,

G = log2
(
g/g00

)
,

the log growth of the double knockout mutant is pre-
dicted by an additive null model (Figure 1a):

G11 = G01 + G10.

Epistatic interactions are identified as deviations from
the null model, but several non-equivalent alternatives
exist for quantifying these deviations [14]. The most
common definition of epistasis considers the difference
between the measured and the predicted growth rates
for the double knockout mutant [11]:

e =
g11
g00

− g01
g00

g10
g00

Importantly, this definition of e subtly constrains the
possible values of epistasis. In fact, when combining
very deleterious mutations, e cannot be large and nega-
tive even when the double knockout mutant is a syn-
thetic lethal mutant:

e = 0 − (
g01/g00

) (
g10/g00

) ≈ 0,

01 << g00 10 << g00.

In order to avoid a priori constraints on the intensity
of epistasis, genetic interactions can be defined as the
ratio between the measured and predicted relative
growth rates, leading to:

E = log2
g11
g00

− log2
g01
g00

− log2
g10
g00

.

Figure 1 The log growth rates of two mutations combine additively. (a) The average effect of a double knockout (G11) as a function of the
effects of the single knockouts (G01 and G10) is G11 = G01 + G10. Experimental mean +/- standard deviation (blue line and blue shaded area) and
prediction of the additive null model (red line). (b) Given two mutations, there are four possible mutants with their corresponding log growth
rates (black dots). If three of the four log growth rates are known, the fourth one can be predicted by a linear extrapolation (red plane), and
epistasis can be defined as the linear deviation from such prediction (red arrow). The magnitude of the deviation is the same regardless of
which three of four mutants are chosen.
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As an example, E = +1 indicates a double mutant
whose growth rate is twice as large as would be
expected based upon the multiplicative null model,
whereas E = -1 indicates a double mutant whose growth
rate is half as large as predicted. This definition of epis-
tasis as fold deviation in the multiplicative model for
growth rates is equivalent to a natural definition of epis-
tasis as linear deviation in the additive model for log
growth rates (Figure 1b):

E = (G00 + G11) − (G01 + G10) = (G11 − G01 − G10).

A second bias of the common definition of epistasis is
that e depends on the choice of which genotype is
labeled as ‘wild type’ or ‘00’, a choice which is always
arbitrary, but more obviously so when studying engi-
neered organisms or populations evolving in alternating
environments [15]. By contrast,

|E| = |(G00 + G11) − (G01 + G10)|
depends only on which pair of genes is considered,

being a geometric measure for the ‘curvature’ of the fit-
ness landscape (Figure 1b).
The definition of E has found some favor in the theo-

retical literature [7,16], but it is not routinely used to
analyze experimental data apart from rare exceptions
[8,17]. Its main drawback is that synthetic lethals have a
log growth rate of -∞, and require a separate although
simpler analysis in which lethal interactions can simply
be counted. The definition of E proves instead to be
extremely valuable when quantifying the strength of
non-lethal genetic interactions.

Epistatic interactions scale weakly with mutational effects
With the appropriate definition of epistasis, a simple
relation between the growth rate effects of two muta-
tions and the expected strength of their interaction
emerges.
Let us consider two groups of mutations; in the first

group, all mutations have log growth effect G01, and in
the second group, all mutations have log growth effect
G10. We can then build all possible double mutants
obtained by combining one mutation from each group.
In the absence of epistasis, all the double mutants have
a log growth rate

G11 = G01 + G10,

and the distribution of genetic interactions is sharply
peaked at E = 0. When epistasis is present, the distribution
of genetic interactions has, in general, non-zero mean and
standard deviation. Experimentally, however, the mean of
genetic interactions is close to zero (this is why the null
model remains approximately valid) (Figure 1a; Figure 2d).
Even when the mean interaction is vanishing, the difference

between the experimental dataset and the ideal case with-
out interactions can be quantified by the finite value of the
experimental standard deviation s(G01, G10), which pro-
vides a numerical estimate for the characteristic strength of
epistatic interactions.
In order to produce reliable numerical results, thou-

sands of growth rates are necessary to characterize the
probability distribution of epistasis. We analyzed the
Costanzo et al. dataset by binning pairs of mutations
according to the log growth effects of their single
knockouts G01 and G10, using the method described
above to outline the probability distribution of epistasis.
We chose bin sizes that grow exponentially with G in
order to ensure an approximately constant number of
data points in each bin (see Materials and Methods; see
Additional file 1, Figure S2). Most bins contain from
thousands to tens of thousands of data points. For each
bin, we computed

var(E (G01,G10)),

that is, the variance of the random variable E relative
to the bin labeled by growth rates G01 and G10. In the
rest of the paper we will refer to such variance as var
(G01, G10), emphasizing that the variance in the
strength of epistatic interactions is, eventually, a func-
tion of G01 and G10 (Figure 2a). The square root of the
variance, s(G01, G10), then represents the expected
strength of epistasis as a function of the independently
varying effects of the two single knockouts. A natural
expectation for the dependence of epistasis on the
effect of the combined mutations comes from rescaling
Figure 1a; if all the log growth effects of single and
double knockouts increase by a factor of two, then the
strength of epistasis should also increase by a factor of
two. Unexpectedly, however, when combining deleter-
ious mutations, the strength of epistatic interactions
does grow with the effects of the mutations that are
combined, but the dependence is much weaker; when
the effect of both single knockouts is doubled, the
strength of epistasis increases only by a factor of √2
(Figure 2).
In more detail, we observed that if the effect of the

first knockout (G01) is held constant, the dependence of
the variance of epistasis on the effect of the second
knockout (G10) is well approximated by a Michaelis-
Menten law (Figure 2b):

var(G10) = v
|G10|

K + |G10| .

When the effects of both knockouts are free to vary,
the requirement that the variance is a symmetric function
of its two variables, G01 and G10, implies that K = |G01|
and that v is proportional to G01. A one-parameter
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function which fits the seen variance over the whole
range of deleterious fitness effects (Figure 2a) is then:

var
(
G01,G10

)
= 2c

|G01G10|
|G01| + |G10|with c = 0.079.

This functional form can also be obtained from a sim-
ple model based on diffusion in fitness space (see Addi-
tional file 1, Supplementary text 1). An even simpler
phenomenological fit, although slightly less accurate, is:

var (G01,G10) = c
√
(|G01| |G10|)

(see Additional file 1, Figure S3). Importantly, these
functions capture two major features of the data; first,
epistasis vanishes when G01 or G10 = 0; second, when the
effects of the two knockouts are similar (G01 = G10 = G
along the diagonal of the surface in Figure 2a), the
variance of epistasis is approximately proportional to G
(Figure 2c):

var(G01,G10) = c |G| .
The scaling described above is seen only for deleter-

ious knockouts. When combining the beneficial

Figure 2 The strength of epistatic interactions scales with the log growth effects of the interacting knockouts. (a) Each dot represents
the variance of several thousand epistatic interactions binned according to the log growth effects of the two single knockouts, G01 and G10. The
blue surface is the phenomenological fit: var (G01,G10) = 0.079 × 2 |G01| |G10| / (|G01| + |G10|) . (b) Slices of the plot in (a) for G01

= constant. The dots are the same as in (a), and the solid lines represent the corresponding slice of the one-parameter fitting surface. (c)
Diagonal slice of the plot in (a) with finer bins (G01 = G10 within 20%, G = mean(G01, G10)). The blue shaded area is the 25 to 75% confidence
interval computed by bootstrap; the red line (var(G, G) = 0.079 G) is computed from the phenomenological model, and the dashed gray line, for
which var(G, G) is proportional to G2, represents the lower bound to the slope predicted by the Fisher’s geometric model. (c, inset) The epistatic
interactions between beneficial mutations are vanishingly small, independently of the effect of the combined mutations. (d) Probability density
functions p(E’) for the strength of genetic interactions between two deleterious knockouts with similar log growth effects. Different colors
correspond to knockouts with different effects: the growth rates effects of the single knockouts being combined are close to -38% (red), -22%
(yellow), -12% (green), -6% (blue), and -3% (purple). Each curve has been rescaled so that all distributions have a standard deviation = 1. The left
tail of the distributions displays a fat tail, describing the occurrence of strong negative genetic interactions (for comparison, the dashed-dotted
black line is a normal distribution).
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knockouts in the dataset instead, the strength of epista-
sis is close to zero (Figure 2c, inset). This might be
because the slightly beneficial knockouts are not adap-
tive mutations, but simply remove genes that are not
needed in the conditions chosen for the experiment, so
that their interactions are likely to be negligible. How-
ever, in apparent contrast to this observation, recent
studies [8,18] on adaptive mutations in Escherichia coli
suggest that genetic interactions between adaptive muta-
tions are mostly negative. In fact, during adaptation, the
prevalence of negative interactions is likely to be caused
by biased sampling, because the mutations that fix in
the population are likely to be the ones that solve envir-
onmental or biological challenges for an organism.
Diminishing returns arise because the appearance of
multiple ‘solutions’ to the same challenge is not necessa-
rily preferable over the presence of a single solution.
Rather than focusing on mutations that fix during a
bout of adaptation, the Costanzo et al. dataset includes
a large fraction of all possible pairs of genes in the yeast
genome. Because for most pairs the two genes are
involved in unrelated biological processes, interactions
are often vanishingly small. We did observe, however,
that the distribution of epistatic interactions is asym-
metric, with a heavy tail of deleterious interactions
(Figure 2d).

Experimental uncertainty generates spurious epistatic
interactions
When inferring genetic interactions from experimental
data, it is important to take into account that each mea-
sured growth rate is affected by some uncertainty, and
that measurement errors in the growth rates could erro-
neously be interpreted as genetic interactions. Impor-
tantly, for each single and double mutant, the Costanzo
et al. dataset provides the mean growth rate together
with its estimated experimental uncertainty (the growth
rate of each mutant being measured at least four times).
In order to quantify the effect of the experimental

uncertainty on the inferred epistatic interactions, we
constructed a number of mock datasets, assuming that
the null model without epistatic interactions described
biology exactly. In these datasets, each single knockout
had the same growth rate as in the original dataset, and
each double knockout had a growth rate equal to the
product of the relative growth rates of the correspond-
ing single knockouts. We then randomized the mock
datasets by shifting each growth rate by a random
amount sampled from a Student’s t-distribution, with
width depending on the corresponding experimental
uncertainty reported in the original dataset (see Addi-
tional file 1, Supplementary text 3). As expected, analy-
sis of these ‘noisy’ datasets revealed some epistasis,
clearly caused by our addition of experimental noise

rather than by any biological mechanism. We found that
for pairs involving beneficial or neutral mutations, the
variance computed in the mock datasets was compar-
able to or even greater than the variance observed in
the original dataset (Figure 3a, black curves; Figure 3b,
blue regions). This fact provides an important internal
control, suggesting that the experimental noise has not
been underestimated. In spite of this, for pairs of knock-
outs with substantially deleterious effects, experimental
noise accounted for less than half of the total observed
variance, with the rest representing genuine biological
interactions (Figure 3a, red curves; Figure 3b, red
regions).
We then decomposed the variance observed in the origi-

nal dataset into a contribution produced by experimental
uncertainty and a contribution of biological origin; the
strength of epistatic interactions was finally computed as
the square root of the biological part of the variance. For
deleterious knockouts, the relative difference between
epistasis computed from the raw data and from the data
after subtracting the experimental noise was less than
30%, emphasizing the significant but not overwhelming
contribution of experimental noise to the observed varia-
bility. Figure 2(a-c) represents the ‘biological’ part of the
observed epistasis; before subtracting the contribution of
the experimental uncertainty, the plots are qualitatively
similar, but quantitatively slightly different (see Additional
file 1, Figure S4). Importantly, because variances are addi-
tive, the estimated contribution of the experimental uncer-
tainty to epistasis is largely independent of the choice of
the statistical distribution used to model experimental
uncertainty. In two instances, however, the unknown
details of the full distribution of experimental noise are
important; when outlining the distribution of epistatic
interactions (Figure 2d) and when describing the probabil-
ity to observe sign epistasis (Figure 4b). In those two fig-
ures, we plotted the raw data, and did not attempt to
deconvolve the contribution of experimental uncertainty.

Comparison between theory and experiment
The scaling of epistasis observed in the Costanzo et al.
dataset (Figure 2) is in sharp contrast to the predictions
of Fisher’s geometric model [19], a popular model of
epistasis in which genetic interactions emerge from geo-
metry. As we saw, when the effects of the two knock-
outs are similar (G01 = G10 = G), the variance of
epistasis is approximately proportional to G. By contrast,
in the Fisher’s model, the variance var(G, G) would
grow faster than G2 (Figure 2c; see Additional file 1,
Supplementary text 2), a much stronger dependence
than the linear dependence observed experimentally.
A concrete numerical example can highlight the

importance of the weaker-than-expected scaling of epis-
tasis described in this study. Let us consider two gene
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knockouts, each of which reduces the relative growth
rate by 5%, from 1.0 to 0.95. According to the multipli-
cative null model, the growth rate of the double knock-
out will be approximately 0.952, or approximately 0.90.
The questions now are: What kind of deviations could
be expected around 0.90? Would a growth rate of 0.85
be surprising? What about a growth rate of 0.50?. Let us
use the analytic fit discussed in the previous section

g01 = g10 = 0.95,

Then

G01 = G10 = log2 (0.95) = −0.074,

G11 = G01 + G10 = −0.148,

and

σ (G01,G10) = 0.076.

A +/- one standard deviation interval for the growth
rate of the double knockout is then

Figure 3 Experimental noise does not account for all of the observed variance of epistasis. (a) Comparison of experimentally measured
variance (solid lines; shaded areas: 25 to 75% confidence intervals) and variance caused by experimental noise (dashed lines). If one of the two
mutations is neutral, noise accounts for all of the observed variance (black). When deleterious mutations are combined, noise accounts for less
than half of the observed variance (red, G01 ≈ -0.7). (b) Ratio between total observed variance and noise-generated variance as a function of the
log growth of the knockouts being combined. For deleterious knockouts, the ratio can be significantly greater than 1.

Figure 4 Sign epistasis is less likely to occur between mutations with large effects. (a) Examples of a smooth landscape with paths of
monotonically increasing fitness (left) and a rugged landscape characterized by reciprocal sign epistasis (right). (b) Experimentally measured
probability of observing sign epistasis as a function of the log growth of two single knockouts with similar effects (G01 = G10 within 20%, G =
mean(G01, G10)). The blue shaded area is the standard error of the mean computed by bootstrap.
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[
2− 0.148 − 0.076, 2− 0.148 + 0.076] = [0.86, 0.95] .

Notice that it is not unlikely that epistasis will cancel
the effect of the second mutation, so that the growth
rate of the double knockout mutant is greater than 0.95,
that is, greater than the growth rate of either of the sin-
gle knockout mutants.
Let us now consider two gene knockouts with stron-

ger effects, each of which reduces the growth rate from
1.0 to 0.60. Then

G01 = G10 = log2 (0.60) = −0.737,

about 10 times as large as the log growth of the single
mutants in the previous example. The Fisher’s model
would predict a s(G, G) at least 10 times larger than in
the previous example (s(G, G)≥0.76), and an interval of
likely growth rates for the double knockout mutants at
least as large as

[
2− 1.47−0.76, 2−1.47+0.76] = [0.213, 0.610] .

Notice how, once again, it is not unlikely that owing
to genetic interactions, the growth rate of the double
knockout mutant is greater than 0.60, the growth rate of
either of the two single knockout mutants. The analytic
model derived from the experimental data leads to a
strikingly different conclusion:

σ (G01,G10) = 0.241,

and the +/- one standard deviation interval for the
growth rate of the double knockout becomes

[
2−1.47−0.241, 2−1.47+0.241] = [0.305, 0.425] .

In this case, a deviation from the null model that is
greater than three standard deviations would be needed
for the double knockout mutant to have a growth rate
greater than that of the single knockout (0.60), making
the event extremely unlikely.

Epistasis constrains the evolutionary dynamics
The previous section provided two examples of recipro-
cal sign epistasis, realized when two deleterious muta-
tions produce a double mutant that is fitter than either
of the two single mutants (Figure 4a). In those cases, a
fitness valley limits the evolutionary accessibility of the
fitter double mutant, and only on longer time scales
may the simultaneous appearance of two mutations
[20,21] drive a population to the new local fitness maxi-
mum. In this context, the scaling behavior of epistasis is
of great importance, because it determines the number
and the topology of the evolutionarily accessible paths
[2,22,23], ultimately affecting the possible outcomes of
the evolutionary process.

In order to describe how epistasis shapes the naturally
occurring fitness landscapes, let us consider S(G, G), the
probability to observe sign epistasis when combining
two mutations with similar growth rate effects, G. Here,
S(G, G) depends on the typical interaction strength,

σ (G,G) =
√
var (G,G) .

In particular, if s(G, G) is proportional to G, then the
probability of observing sign epistasis is independent of
G. The Fisher’s model implies a super-linear dependence
of s(G, G) on G, thus predicting a greater probability of
observing sign epistasis among mutations with strong
effects. Instead, if the scaling of s(G, G) is proportional
to √G (Figure 2), then sign epistasis is more likely to
occur among mutations with small effects (Figure 3b).
When the relative growth rate effects of the single
knockouts are small (<2 to 3%), experimental uncer-
tainty prevents us from pinpointing which pairs of genes
are epistatic. This does not mean, however, that muta-
tions with small effects do not interact. Assuming that
the scaling of epistasis we measured directly for muta-
tions with intermediate and large effects extends to
mutations with small effects, a consequence of the
observed scaling of epistasis is the roughening of the
local fitness landscape in the proximity of an evolution-
ary optimum; when the fitness effects of available muta-
tions become small [24], epistatic interactions become
increasingly relevant [25,26], reducing the accessibility
of evolutionary paths and further slowing down the rate
of adaptation [27,28]. The evolutionary dynamics on
correlated fitness landscapes [10,29] with the realistic
correlations described here certainly deserves further
experimental and theoretical investigation.

The scaling of genetic interactions may be generic
To date, our analysis has been limited to interactions
between entire gene knockouts. Although mutations
with extreme effects on gene regulation and horizontal
gene transfer are biologically relevant mechanisms for
the removal or acquisition of whole genes at once,
organisms explore possible genetic variants largely
through the accumulation of single point mutations.
The Costanzo et al. data et contains thousands of dou-
ble mutants for which the first mutation is a gene
knockout and the second mutation consists of one or
more point mutations in a different gene, causing the
gene product to misfold in a temperature-sensitive way.
Although the distribution of growth rate effects for
point mutations is different than for single gene knock-
outs (see Additional file 1, Figure S2), the statistics of
genetic interactions are remarkably similar when com-
bining two single knockouts and when combining a sin-
gle knockout with a point mutation (Figure 5). A similar
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scaling is also seen for the epistatic interactions between
single gene knockouts and decreased abundance by
mRNA perturbation [30] (DamP) perturbations of a sec-
ond gene (see Additional file 1 Figure S5). The analysis
of these hybrid double mutants suggests that the statis-
tics of the interactions between any two genetic pertur-
bations are determined only by their growth rate effects
[31], and not by their biological origin in terms of point
mutations or gene knockouts.

A comparison between different definitions of epistasis
Importantly, any quantitative result on epistasis is a con-
sequence of how epistasis is defined. Of particular inter-
est is how strong an epistatic interaction is deemed to
be, based upon its ranking when compared with that of
other pairs of mutations. Although the ‘traditional’ defi-
nition

e = g11/g00 − (
g01/g00

) (
g10/g00

)

and the ‘geometric’ definition

E = G11 − (G01 + G10)

agree about the sets of positive and negative interac-
tions, they assign different strengths and, more impor-
tantly, different rankings to the same pair of interacting
mutations. As an example, if the Costanzo et al. dataset
is analyzed using the ‘traditional’ definition of genetic
interactions, then the linear dependence of var(G, G) on
G in Figure 2c is replaced by an oddly non-monotonic
dependence, displaying weaker interactions for pairs of
genes with either very small or very large fitness effects
(Figure 6a). As mentioned previously, this decrease in
the inferred strength of epistatic interactions for very

deleterious mutations is a mathematical consequence of
the traditional definition of epistasis, rather than a prop-
erty of genetic interactions. The same bias would lead
us to conclude that genes with strong effects on growth
are almost non-interacting (Figure 6b, red line). How-
ever, because previous studies have determined that
essential genes partake in more interactions than do
non-essential genes [32], it is also reasonable to expect
that non-lethal genes with large growth effects are
involved in more interactions than genes with small
growth effects. Indeed, according to the ‘geometric’ defi-
nition of epistasis, the fraction of genes with which a
gene interacts steadily increases with the growth rate
effect of the gene (Figure 6b, blue line). By contrast, the
traditional definition of epistasis, consistently assigns
low rankings to interactions between genes with large
growth rate defects, as confirmed by a further analysis
comparing the two definitions of epistasis against inter-
actions inferred from the Gene Ontology (GO) database
[33] (see Additional file 1, Figure S6). According to the
geometric definition of epistasis, genetic networks [34]
are denser than expected not only among essential gene
[32], but also among genes with large growth effects.
Finally, it is important to emphasize that the tradi-

tional definition of epistasis remains slightly more suc-
cessful at discovering the functional relations between
genes, as cataloged in the GO database (see Additional
file 1, Figure S6). Part of the reason for this could be
that some of those functional characterizations were
suggested by the traditional definition of epistasis in
the first place. It is certainly true, however, that many of
the top-ranking interactions according to the geometric
definition of epistasis involve single and double mutants
with small growth rates; for those mutants, experimental

Figure 5 Point mutations have similar epistatic interactions to those of entire gene knockouts. (a) Comparison between the variance
observed in double gene knockout mutants (rainbow dots, same as in Figure 2a) and the variance observed in mixed double mutants
generated by combining a gene knockout with point mutations in a different gene (black dots). (b) The red curve is the diagonal slice of the
plot in (a) (G01 = G10 within 20%, G = mean(G01, G10)), and the red shaded area is the 25 to 75% confidence interval for the mixed double
mutant variance. For comparison, the blue curves describe the variance for double gene knockouts as in Figure 2c. As in Figure 2c, the red line
has equation var(G, G) = 0.079 G.
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noise is relatively large, and this may cause a few weakly
interacting pairs to be incorrectly ranked as strongly
interacting. It is likely that the experimental protocols
could be easily adjusted to reduce the relative uncer-
tainty on the growth rate of especially slow-growing
mutants to avoid this issue (for example, by allowing for
a much longer time for growth or by measuring the
growth rates of additional replicates).

Conclusions
We analyzed the growth rates of about five million dou-
ble mutants in the dataset associated with the work by
Costanzo et al. We characterized how the strength of
genetic interactions depends on the growth effects of
the mutations being combined, and found a weaker
dependence than that predicted by current theoretical
models. Although the results were obtained mainly from
entire gene knockouts, there is some evidence that the
observed scaling might extend to the interactions
between single point mutations. The scaling of epistasis
might or might not be generic [35,36]; important drivers
could be the harshness of the environment [37], details
about the evolutionary history [38-40], sexual versus
asexual reproduction [41] and, perhaps most impor-
tantly, metabolic [42-45] and genetic complexity [46,47].
In general, the experimentally observed scaling suggests
a previously unexplored class of correlated fitness land-
scapes with tunable roughness, in which epistasis
depends explicitly on the effects of the mutations being
combined.
A clear limitation of our discussion is that only pair

interactions were considered. Although high-throughput
experiments will provide data on higher-order interac-
tions, a solid understanding of pair interactions remains

necessary before addressing n-mutation interactions. A
genuine three-mutation interaction, for instance, should
be defined as the unexplained deviation from what can
be computed by combining the effects of all relevant
mutations and their pair interactions [10,48], perhaps
using linear fits within the additive null model for log
growth rates.
The results we present here were based on a geo-

metric definition of epistasis. We compared this defini-
tion with a more standard definition, highlighting the
desirable mathematical properties of the geometric defi-
nition and the simple phenomenological relations it
produces.
In conclusion, although each epistatic interaction

between specific genes depends on biological details and
remains largely unpredictable from first principles, we
have shown that the statistical properties of an ensemble
of interactions can display conspicuous regularities, and
can be described by simple mathematical laws.

Materials and methods
The Costanzo et al. dataset is publicly available [49].
The file sgadata_costanzo2009_rawdata_101120.txt.gz
was downloaded on August 17, 2010 and analyzed with
Mathematica (code available at the Gore laboratory
website [50]). We restricted our analysis to double
knockout mutants whose growth rates were positive
numerical values and for which the growth rates of both
single mutants were numerical values (see Additional
file 1, Figure S1). Some genes appear in the dataset both
as query and array genes; care was taken to avoid dou-
ble counting.
The exponentially growing intervals used for the binning

of the log growth rate effects were defined as [-2n, -2n-1]

Figure 6 Comparison between the traditional and the geometric definitions of epistasis (e and E, respectively). (a) Figure equivalent to
Figure 2c, using the traditional definition of epistasis. (b) The fraction of genes interacting with a specific gene is a function of the growth rate
effect of such gene. Only the 10,000 most interacting pairs the geometric definition (blue) and the traditional definition (red) are considered to
be interactions.
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for an appropriate range of integer n’s. Owing to the rarity
of extremely deleterious mutations, bins for positive n’s
contained only a few data points, while bins with large
negative n’s were extremely small. In the figures we
reported only bins for n = -7 to 0, containing log growth
rate effects ranging from -20 = -1 to -2-8 = -0.0039 or,
alternatively, relative growth rate effects ranging from
2-1 = 0.5 to 2-0.0039 = 0.997. Different choices for the
binning sizes and positions did not significantly alter the
results of the analysis.
In order to quantify the contribution of experimental

uncertainty to epistasis, we generated nine randomized
mock datasets. The mean level of noise-generated epis-
tasis in these nine datasets is reported in Figure 4
(dashed lines), and we provide an extensive discussion
of the choice of Student’s t-distributions to generate the
mock datasets from the original dataset (see Additional
file 1, Supplementary text 3).
The GO database go_201207-assocdb-tables.tar.gz was

downloaded from the GO site [51] on July 19, 2012.
The MySQL database was queried with Python and ana-
lyzed Mathematica (code available upon request).

Additional material

Additional file 1: Supplementary Figures and Text.
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