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Abstract

Background: Previous studies have demonstrated that gene expression levels change with age. These changes are
hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in
abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of
39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to
understand how the genomic regulation of gene expression alters with age.

Results: Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188
genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with
age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100
postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues.
There were 12 genes that showed differential expression with age in both skin and brain tissue and three
common to adipose and brain tissues.

Conclusions: Skin showed the most age-related gene expression changes of all the tissues investigated, with
many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and
splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a
few genes sharing an age effect in expression across tissues. More research is needed to improve our
understanding of the genetic influences on aging and the relationship with age-related diseases.
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Background
Aging has been described as a progressive decline in the
ability to withstand stress, damage, and disease resulting
in degeneration [1,2]. Age is also a major risk factor in
the development of many diseases, although the relation-
ship between the aging process and the etiology of age-
related diseases is not fully understood. Previous gene
expression studies of aging have primarily concentrated
on model organisms [3] or have been confined to specific

aging-associated disorders such as progeria syndromes
[4]. A study of postmortem human brain tissue from 30
individuals aged 26 to 106 years [5] showed that approxi-
mately 4% of approximately 11,000 genes analyzed show
a significant age-related expression change (1.5-fold or
more) in individuals aged >40 years. These genes were
reported to play central roles in synaptic plasticity, vesi-
cular transport, and mitochondrial function. Another
study [6]examined gene expression changes with age in
healthy renal tissue removed at nephrectomy from 74
patients ranging in age from 27 to 92 years old; identify-
ing 985 genes differentially expressed with age. More
recently, a meta-analysis of age-related gene expression
profiles combined multiple disparate gene expression

* Correspondence: bataille@doctors.org.uk; tim.spector@kcl.ac.uk
† Contributed equally
1Department of Twin Research and Genetic Epidemiology, King’s College
London, St Thomas’ Campus, Westminster Bridge Road, London SE1 7EH, UK
Full list of author information is available at the end of the article

Glass et al. Genome Biology 2013, 14:R75
http://genomebiology.com/2013/14/7/R75

© 2013 Glass et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Paola  Di Meglio

mailto:bataille@doctors.org.uk
mailto:tim.spector@kcl.ac.uk
http://creativecommons.org/licenses/by/2.0


studies in an attempt to identify common signatures of
aging across both tissue and species [7]. However, to
date, studies published using human tissuehave all been
carried out on a limited number of samples, making
them underpowered for the detection of normal age-
related expression differences.
The aims of this study were to determine which genes

and pathways show differential expression with age in
multiple tissues and to understand how the genomic
regulation of gene expression alters with age. Age effect
on gene expression was explored by examining expres-
sion profiles in skin, adipose tissue, and lymphoblastoid
cell lines (LCLs) from 856 female twins agedfrom 39 to
85 yearsold (Figure 1) from the Multiple Tissue Human
Expression Resource (MuTHER study) [8]. Genes signif-
icantly affected by age in skin and adipose tissues were
followed upin 932 postmortembrain samples (represent-
ing from 10 brain regions) from 100 individuals; pro-
vided by the UK Brain Expression Consortium [2]. In
addition, the influence of genetic variants on gene
expression in aging individuals was explored by examin-
ing significant eQTL from the MuTHER dataset [9], for
a genotype-by-age interaction.

Results
Age-related gene expression
Expression profiles were determined from 856 individuals
aged between 39 and 85 years from skin, adipose tissue,

and LCL samples using the Illumina Human HT-12 V3
Bead chip. All the volunteers were female twins (336 MZ
and 520 DZ) recruited from the TwinsUK Adult twin
registry [10] aged 39 to 85 years old, with an average age
for the cohort of 59.3 years (Figure 1 and Additional
file 1, TableS 1). A linear mixed model identified 1,672
genes as differentially expressed with chronological
age in skin, 188 in adipose tissue, and two in LCLs
(Benjamini-Hochberg corrected P value < 0.01) (Figures 2
and 3, and Additional files 2 and 3, Tables S2 and S3). Of
those genes, 43 were found in both skin and adipose
tissue. The direction of the age effect on gene expression
was similar in each tissue for most of the genes; 48.6% of
the genes had lower levels of expression with age in skin
compared to 50.8% in adipose tissue. Six genes exhibited
age effects in opposite directions in different tissues. Two
genes, the chromosome 5 open reading frame 4 (C5orf4)
and the spondin 1 (SPON1) showed lower expression with
age in skin but higher in adipose tissue. Conversely, four
genes showed higher expression levels with age in skin but
lower in adipose tissue. Those genes were carbonic anhy-
drase XII (CA12), solute carrier family 47, member 1
(SLC47A1), Rho GTPase activating protein 33 (ARH-
GAP33 or SNX26), and B-cell CLL/lymphoma 6 (BCL6).
GO processes and gene expression enrichment for func-
tional classification were investigated using DAVID [11].
In skin the enrichment included terms related to epider-
mal development, keratinization, epithelial cell differentia-
tion, extracellular matrix organization, intermediate
filament cytoskeleton, collagen fibril organization, and
fatty acid metabolic processes(Benjamini-Hochberg cor-
rected P value < 0.05).The enrichment analysis of those
genes in skin that significantly increase expression with
age identified GO terms relating to alternative splicing and
RNA processing as well as cell and organelle structure-
related cellular components. Genes that have lower
expression with age in skin were enriched for gene ontol-
ogy terms related to metabolism, biosynthetic processes,
and mitochondrial function. In adipose tissue, enrichment
analysis only revealed one significant GO term: extracellu-
lar structure organization. Separate analysis of genes in fat
with either increased or decreased expression did not
identify any enriched term. Enrichment analysis in DAVID
of the genes in common between tissues (43 genes, Figure
1) did not identify any significant GO terms but were
enriched for genes with a tissue-specific expression in the
adrenal cortex, as defined by the Genomics Institute of the
Novartis Research Foundation [12]. The adrenal cortex
forms an active part of the hypothalamic pituitary adrenal
(HPA) axis, implicated in the aging process as being the
central method by which the body responds to stress, a
response which may transcend tissue-specific aging [13].
We also investigated whether known aging-related genes

from The Human Ageing Genomic Resources (HAGR)

Figure 1 Histogram showing the age distribution of the
individuals in the study.
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[7,14] were included in the genes found to be differentially
expressed in skin and adipose tissues in our dataset.
Within HAGR, GenAge is a database of 288 genes poten-
tially associated with human aging, 25 of which were
found to be differentially expressed with age in skin and
three in adipose tissue in our study (Additional file 4,
Table S4).
Many of the age-altered expression genes in skin and

adipose tissue belong to cancer-related pathways like
p53, Wnt, or Notch, or have been previously implicated
in many cancer types. In skin, some of the genes belong
to the p53 pathway like p21 (CDKN1A), tripeptidyl pep-
tidase 1 (TPP1), and the tumor protein p53 regulated
apoptosis inducing protein 1 (TP53AIP1). Also, differen-
tially expressed genes with age in skin belong to the
Wnt and the NOTCH pathways like WNT4, WNT3 or
the SMAD family member 3 (SMAD3), the jagged 2
(JAG2) or the nuclear receptor corepressor 2 (NCOR2).
In adipose tissue, other genes differentially expressed
with age were also related to p53 or cancer and include
the vascular endothelial growth factor C (VEGFC), the
ret proto-oncogene (RET), the zinc finger and BTB
domain containing 16 (ZBTB16) or notch 3 (NOTCH3).

LCLs expression showed little significant age effect
LCLs are derived from lymphoblastoid cell lines infected
and immortalized by Epstein-Barr virus (EBV). Analysis of
age influence on gene expression in 777 LCLs samples

identified only two genes differentially expressed with age
(Benjamini-Hochbergcorrected P value < 0.01), a gene
coding for aspartoacylase (ASPA) and the OUT domain
containing 7A (OTUD7A) (Additional file 5, Table S5).
Previous studies analyzing age influence in LCLs expres-
sion profiles found also very little influence of chronologi-
cal age [15]. Although, Joehanes et al. [15] attributed their
results to a small sample size, the larger sample size here
analyzed added further weight to the hypothesis that there
is a lack of detectable chronological age effect on gene
expression in transformed lymphocytes. To further investi-
gate the lack of age-related expression differences, expres-
sion profiles from 92 fresh lymphocytes obtained from a
subset of the individuals were analyzed. No gene showed a
significant age-related effect (Benjamini-Hochbergcor-
rected P value < 0.01)(Additional file 6, Table S6). How-
ever, based on the P value distribution and the effect sizes
detected in the smaller number of fresh lymphocytes com-
pared to transformed lymphocytes (LCLs), a small age
effect of fresh lymphocytes cannot be ruled out (Addi-
tional files 7, 8, 9, Figures S1-S3).

Age-affected genes in brain
To explore common expression signatures of aging in
other tissues, expression data from the Edinburgh brain
bank were interrogated [16]. The brain expression dataset
used 932brain samples obtained from 10 different brain
regions following sudden death in 100 individuals aged

Table 1 Significantly age-affected genes (in grey) from brain transcription profiles in brain regions with significant
values

Affy transcript ID Affy Probe ID Illumina Probe Symbol CRBL HIPP PUTM TCTX WHMT Skin Adipose

t2378077 NA ILMN_1811370 HSD11B1 2.89E-08 2.80E-01 8.90E-01 2.07E-01 3.58E-01 2.33E-09 7.40E-01

t2378077 205404_at ILMN_2389501 HSD11B1 2.89E-08 2.80E-01 8.90E-01 2.07E-01 3.58E-01 3.53E-11 4.31E-01

t2378077 NA ILMN_2389506 HSD11B1 2.89E-08 2.80E-01 8.90E-01 2.07E-01 3.58E-01 2.82E-09 7.11E-01

t3219885 203997_at ILMN_1717294 PTPN3 1.52E-05 6.45E-01 8.28E-01 2.09E-01 8.81E-01 5.08E-04 1.88E-01

t3883207 203650_at ILMN_1717262 PROCR 3.85E-05 5.78E-01 9.16E-01 8.73E-01 6.27E-01 5.83E-03 2.09E-02

t3168066 205199_at ILMN_1725139 CA9 6.79E-03 8.11E-01 9.75E-01 9.70E-01 9.92E-01 9.75E-03 5.86E-01

t3349719 NA ILMN_1750496 ZBTB16 3.13E-04 3.17E-01 8.28E-01 9.38E-01 5.35E-01 1.00E+00 7.71E-03

t2753732 222738_at ILMN_2207170 WWC2 3.62E-04 9.49E-01 9.28E-01 7.53E-01 7.32E-01 1.84E-01 1.91E-03

t2316605 206080_at ILMN_2061565 PLCH2 3.05E-01 6.94E-01 8.85E-01 7.00E-03 4.43E-01 1.27E-05 8.98E-01

t3690154 218888_s_at ILMN_1760849 NETO2 7.64E-01 1.94E-01 8.72E-01 9.43E-03 5.77E-01 3.39E-04 9.21E-01

t3374934 230550_at ILMN_1721035 MS4A6A 3.05E-01 5.89E-05 1.38E-04 1.39E-01 9.35E-01 2.56E-05 9.33E-01

t3374934 219666_at ILMN_1797731 MS4A6A 3.05E-01 5.89E-05 1.38E-04 1.39E-01 9.35E-01 9.10E-04 8.87E-01

t3692999 NA ILMN_1715401 MT1G 3.49E-01 2.10E-01 1.83E-03 3.09E-01 2.16E-01 3.57E-04 8.42E-01

t3703885 201195_s_at ILMN_1720373 SLC7A5 5.80E-02 5.09E-01 8.28E-01 7.54E-01 3.50E-03 1.54E-07 8.96E-01

t2830465 219728_at ILMN_1656395 MYOT 6.65E-01 5.50E-02 8.28E-01 2.77E-01 4.04E-03 4.08E-03 9.30E-01

t2924492 219743_at ILMN_1682034 HEY2 7.26E-01 1.56E-01 7.31E-01 9.63E-02 2.31E-03 2.99E-04 5.77E-01

t2478269 NA ILMN_1678403 TMEM178 8.91E-01 6.45E-01 9.20E-01 2.20E-01 2.31E-03 9.81E-03 6.41E-05

t2478269 229302_at ILMN_2104295 TMEM178 8.91E-01 6.45E-01 9.20E-01 2.20E-01 2.31E-03 2.26E-05 7.67E-08

Benjamini-Hochberg corrected Pvalues for adipose and skin genes are also shown. Abbreviations:CRBL =Cerebellum, HIPP= Hippocampus, PUMT= Putamen,
TCTX= Temporal cortex, WHMT= Intralobular white matter.
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16 to 83 years. This dataset was examined for transcripts
that were differentially expressed with age. Of 1,860 skin
or adipose tissue transcripts with a significant age effect

described above, 14 brain genes in five of the 10 available
brain regions were found to have a significant age-altered
expression (Benjamini-Hochberg corrected P value <
0.01, Additional file 10, Table S7). Of those 14 genes
(Table 1), one was common to all the three tissues
(TMRM178);two more genes were in common between
adipose and brain only, and 12 more genes between skin
and brain. The two genes common between adipose tissue
and brain tissue (cerebellum) were a zinc finger transcrip-
tion factor coding gene (ZBTB16) and the WW and C2
domain containing two genes (WWC2). From the 12genes
common to skin and brain, four were differentially
expressed with age in cerebellum (PROCR, HSD11B1,
PTPN3,and CA9), two in temporal cortex (PLCH2 and
NETO2),one in putamen (MT1G),four in intralobular
white matter (SLC7A5, MYOT,HEY2 and TMEM178),and
one in hippocampus and putamen (MS4A6A).
Many of the age-altered expression genes in brain have

been also associated with cancer and other aging-related
diseases. ZBTB16 (PLZF) has previously been implicated
in acute myeloid leukemia development via protein
fusion with the retinoic acid receptor alpha gene product

Figure 2 Venn diagram showing the overlap between significant age-affected genes in skin and adipose tissues (Benjamini-Hochberg
corrected P value < 0.01).

Figure 3 Pvalues distribution of age-affected genes in adipose,
skin, and LCL tissues.
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and interaction with p53 [17]. The protein C receptor
(PROCR) belongs to the blood coagulation pathway and
has been linked both to aging-associated diseases (like
cardiovascular diseases) and cancer [18]. The carbonic
anhydrase IX (CA9) is a transmembrane enzyme impli-
cated in development that has also been associated with
cancer in multiple organs including the brain [19]. Addi-
tionally, CA9 mediated changes in SIRT1, a sirtuin
involved in cellular differentiation and stress response
whose activity reduces p53 mediated apoptosis and
FOXO-induced apoptosis [20-22]. SLC7A5is an amino
acid transporter light chain, also known as LAT1, that
has been established as a biomarker for the development
of cancer [23].Another age-related disease gene in brain
wasMS4A6, a membrane-spanning four-domains gene
which has been associated with Alzheimer’s disease [24],
a known aging-related disease. Finally TMEM178, the
only gene found to be affected by age in skin, adipose tis-
sue, and brain (intralobular white matter) is a transmem-
brane protein whose function is unknown but has been
previously linked to age-related changes in gene expres-
sion of murine lung tissue [25].

Genotype-by-age interactions (eQTL analysis)
A common approach to identify factors controlling differ-
ential gene expression is to incorporate genomic data to
derive a set of expression QTL (eQTL) [26]. Specific gene
allele differences may cause variation in gene expression
with age and may be detectable by eQTL analysis. Since
eQTL identify SNPs that influence the expression of a
gene, GxA interactions identify a difference in the SNPs
influence on gene expression due to an interaction with
age. It suggests that the effect of the SNP on gene expres-
sion is not constant throughout the life span of the indivi-
dual and that age plays a relevant role in the effect that the
genetic variant has on gene expression.Therefore, we
included an age term in an eQTL analysis to investigate
possible genotype-by-age (GxA) interactions that explain
differences in gene expression with age among individuals.
By determining which eQTL show an age interaction, we
have the potential to explain some of the genetic control
in age-related gene expression changes and hence differ-
ences in aging rates between individuals. We limited our
analysis to 3,529 SNPs in adipose tissue and 2,796 SNPs in
skin that had been identified as significant eQTL by the
MuTHER study [27]. A full linear mixed model with a
GxA interaction term was compared with a model without
an interaction term and evaluated using the Akaike Infor-
mation Criterion (AIC). Interaction effects were identified
with a better model fit for 610 eQTL in adipose tissue and
for 488 eQTL in skin. Of these, 70 eQTL were common to
both tissues (Figure 4). These were explored by the UK
Brain Expression Consortium dataset but no significant
interactions (P value < 1e-5) were identified.

Genes with an GxA interaction in both skin and adi-
pose tissue included a member of the B-cell lymphoma
family (BCL7C)as well as the BRCA1 associated RING
domain 1 gene (BARD1) and the YEATS domain con-
taining 4 (YEATS4, also known as GAS41), both of
which are p53 related genes previously associated with
cancer. Among the genes in skin with a significant GxA
interaction we found 31 genes associated with cancer,
including the Telomerase reverse transcriptase (TERT),
which is also involved in aging via its effect on telomere
length [28]. Others include the fibroblast growth factor
receptor 4 (FGFR4), the interferon gamma receptor 2
(IFNFR2), and the heat shock 70kDa protein 1A
(HSPA1A) (Additional files 11 and 12, Tables S8 and
S9). In adipose tissue, we found not only a number of
known cancer-related genes, like SOD2 or AMACR, but
also diabetes- and obesity-related genes, like MTHFR or
ADIPOR2.
Genetic markers of diseases identified by GWAS have

been often associated with gene expression changes via
eQTL studies. Integration of cis-eQTL data from the
MuTHER study and published disease loci has previously
identified eQTL associated with diseases [27]. In skin, three
SNPs with a GxA interaction were associated with smoking
behavior, electrocardiographic traits, and tooth develop-
ment. Twenty-five SNPs with a GxA interaction identified
in adipose tissue (Table 2) were associated with age-related
traits and diseases like Parkinson’s (rs10516849, rs708726)
or cancer (rs402710, rs6715570, rs12912744). Interestingly,
one of the disease-associated variants (rs402710) underly-
ing a GxA cis-eQTL in the cleft lip and palate associated
transmembrane protein 1 gene (CLPTM1L) has been pre-
viously associated to lung cancer susceptibility and is
located in a LD region that includes TERT [29].

Discussion
Aging studies from model organisms such as yeast, worms,
and flies have repeatedly shown that changes in the

Figure 4 Venn diagrams showing the overlap in skin and
adipose tissue for GxA interacting genes.
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expression of certain genes have an effect upon longevity.
Although similar aging processes are likely to operate
across multiple species [30], it has been much more diffi-
cult to identify longevity candidate genes in human studies
[30]. A key question in human aging is to what extent a
signature of aging may be detectable across tissues. Until
now there has been a lack of large transcriptional profiles
from the same human individuals in multiple tissues. The
MuTHER study provides insight into the human aging
process by interrogating the largest multiple human tissue
gene expression resource to identify genes in which
expression was affected by chronological age. The analysis
of the skin and adipose tissues samples identified several
hundred genes responsive to changes in chronological age.
However, the 43 shared genes in skin and adipose tissue
showed a single common identifiable pathway related to
the stress response. From over 1,800 transcripts that have
altered expression with age in skin and adipose tissues, 14

also had age-related differential expression in brain. The
limited overlap in these two experiments may partly reflect
the smaller sample size of the brain expression dataset, the
differences in age range between the studies (16 to 83
years for brain samples; 39 to 85 years for MUTHER sam-
ples), or the inclusion of males in the brain samples. But it
may also imply, as other studies have suggested, that the
effects of age on gene transcription are tissue specific
[6,31,32]. This hypothesis was supported by the compari-
son with known related aging genes from the GenAge
database, which identified an overlap for a small number
of aging-related genes with our data. The GenAge data-
base was the result of a meta-analysis using age-related
expression profiles from human brain, kidney, and skeletal
muscle, and several expression profiles from mouse and
rat; no adipose tissue or skin samples were included
(Additional file, Table 1 in [7]). The limited overlap
between these datasets supports the idea that molecular

Table 2 List of SNPs with an age-by-genotype interaction effect associated to GWAS hits

eQTL Gene Trait

Adipose

rs10516849 MMRN1 Parkinson’s disease

rs10870077 <NA> Ulcerative colitis

rs12006032 PRKACG Chronic kidney disease

rs12523750 MRS2 Radiation response

rs12912744 SERF2 Lung cancer

rs17253722 SHRM Serum magnesium levels

rs17253722 SHRM Chronic kidney disease;renal function and chronic kidney disease

rs17253722 SHRM Eosinophilic esophagitis (pediatric)

rs17671591 C5orf37 LDL cholesterol

rs17671591 C5orf37 Quantitative traits

rs402710 CLPTM1L Lung cancer

rs402710 CLPTM1L Bladder cancer;pancreatic cancer

rs531676 CRTAC1 Metabolic syndrome

rs592229 AGPAT1 Menopause (age at onset)

rs592229 AGPAT1 Height

rs6143035 CABLES2 Colorectal cancer

rs6715570 BARD1 Neuroblastoma (high-risk)

rs708726 RAB7L1 Parkinson’s disease

rs8049897 DBNDD1 Blond vs. brown hair color;freckles;redvs. non-red hair color;skin sensitivity to sun

rs8049897 DBNDD1 Black vs. red hair color;melanoma

rs9263871 HCG27 Protein quantitative trait loci

rs9263871 HCG27 Vitiligo

rs9263871 HCG27 CD4:CD8 lymphocyte ratio

rs9926577 CNOT1 QT interval

Skin

rs2305797 RAB4B Smoking behavior

rs1049337 CAV1 Electrocardiographic traits;PR interval

rs1042815 HOXB2 Primary tooth development (number of teeth)
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signatures of aging reflect predominantly a tissue-specific
transcriptional response.
The lack of age-related genes in transformed LCLs,

suggest that the transformation to immortalize a cell
line may mask or even remove the age-related signa-
tures in gene expression. The transformation of primary
B lymphocytes into LCLs requires infection by the
Epstein-Barr virus which has the effect of disrupting the
p53 signaling pathway in order to induce growth and
survival [33]. Joehanes et al. [15] identified only five
genes with age-associated expression in LCLs, including
p53 itself (TP53). Although the authors attribute the
lack of age-affected genes to their small sample size
(n=50) and narrow age range, our analysis with a much
larger sample size found even fewer age-related changes,
suggesting a lack of detectable aging signature in LCLs.
The analysis in the subset of fresh lymphocytes sug-
gested an age influence in fresh lymphocytes may poten-
tially be detectable with a larger sample size.
Similarly to age-affected genes, genes with a significant

GxA interaction are likely to be relevant for the general
aging process. More than 300 GxA interactions have pre-
viously been identified in the model organism C. elegans
[34,35] and more than 600 have been documented in
human blood and kidney [36,37]. By focusing on SNPs
with a statistically significant effect on expression (eQTL)
from the MuTHER study, we were able to identify more
than 1,000 genes for which a GxA interaction better
explained the SNP effect in expression in skin and adi-
pose tissue. Fewer than 10% of GxA interactions were
observed in both tissues, suggesting that these changes
were also tissue-specific. Model organism studies have
observed that gene expression can influence the aging
rate of an individual but also the aging rate of different
tissues [38]. A feedback process may be involved here,
where the consequences of the aging process may affect
the expression of multiple genes like the expression and
regulation of gene expression may affect the aging pro-
cess. However, it is impossible to determine whether the
gene expression changes observed were result or causa-
tive of the aging process. The GxA interactions identified
the interface between tissue-specific gene expression
regulation and tissue-specific aging. But resolving the
potential feedback mechanism would require deeper
knowledge of the regulatory process of gene expression
and its relationship with the aging process. Our results,
however, provide a starting point for future work in this
direction.
Among the 70 genes associated with GxA common to

both tissues, we identified cancer-related genes, such as
BARD1 and BCL7C.The BARD1/BRCA1 interaction is
disrupted by tumorigenic amino acid substitutions in
BRCA1, implying that the formation of a stable complex
between these proteins may be an essential aspect of

BRCA1 tumor suppression. BARD1 may also be the tar-
get of oncogenic mutations in breast or ovarian cancer
and is also important for DNA repair. CLPTM1L gene,
which has been implicated in susceptibility to lung
cancer, had a GxA effect in both skin and fat. A recent
study has shown that the TERT-CLPTM1L locus is also
associated with melanoma risk [39]. This suggests that
the associations of genetic variants to certain diseases,
in particular the onset of cancer, are modified by chron-
ological age-related effects. Other studies have found
associations between genes expression changes with age
and the development of cancer [40,41] and while age
remains the strongest risk factor for developing the vast
majority of cancers, the actual relationship between the
aging process and the development of cancer is complex
and far from fully understood [42,43]. We provide a
description of genes affected by age in multiple tissues.
Using the limited knowledge on gene functionality avail-
able on the databases, many of those genes have been
associated to cancer, in some way. However, we do not
talk in terms of enrichment for ‘cancer genes’ as we are
not able to define them accurately enough to generate a
set of genes to test in a statistical analysis. Are oncogenes
considered the only cancer genes? What about metastasis
and tumour suppressor genes? What about other genes?
After all, genes involved in authophagy, cell migration, and
metabolism in general are also involved in cancer, with
immune-system-related genes also being relevant for this
process. The distinction is still unclear making the defini-
tion of a list of ‘cancer’ genes difficult. Since epidemiologi-
cal studies identify age as a strong and consistent risk
factor for cancer, it is well accepted that both processes
are related, but the actual mechanism behind is still
unknown. Our study supports the idea that gene expres-
sion changes with age might be linked to the association
between aging-related diseases and senescence or lack of
it, as both processes share many genes. Recently this rela-
tionship has been exploited when using pro-senescence
therapies for cancer treatment [44]. Although secondary
effects of these therapies are still under investigation, the
positive results obtained in animal models suggest that
genes which expression changes with age may be relevant
to understand the link between cancer and aging.
Regarding cancer and aging, Serrano and Blasco (2007)

suggested that an equilibrium between mechanisms
diminishing cellular damage and mechanisms preventing
excessive cellular proliferation is required between both
processes [43]. The authors argue that the p53 pathway
may be seen as an anti-aging mechanism as it is a key
defense mechanism against cellular damage protecting
from both aging and cancer. One effect of aging at
the cellular level is reduced telomerase activity and
progressive shorter telomeres in somatic cells [45].
Shortened telomeres are highly recombinogenic, leading
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to a genome-susceptible cancer development [46,47].
Genomic instability driven by dysfunctional telomeres is
also associated with the transition from benign to malig-
nant tumors [48]. Conversely, telomere dysfunction also
acts to induce the p53 gene to suppress tumor develop-
ment by initiating cell-cycle arrest, cellular senescence or,
apoptosis. Our analysis has identified several genes
involved in the regulation and activity of the p53 pathway
as being affected by age. In skin, the telomerase reverse
transcriptase (TERT) showed an age-related expression
in association with a genetic variant (rs10866530). In
addition p21, a gene directly regulated by p53 and also
involved in telomere-driven aging, was shown to be dif-
ferentially expressed with age [49]. In brain, theZBTB16,
CA9,and HEY2, genes associated to the p53 pathway
directly or via SIRT1, all showed age-related expression.
The activity of p53 has been shown to enhance the tran-
scription of inhibitors of the insulin receptor pathway,
preventing cell growth and division after stress signaling
[50,51] and many genes from the insulin signaling path-
way have been extensively associated with longevity in
multiple studies and organisms. Our results suggest that
the link between aging and cancer is evident in multiple
tissues through differential expression of genes with age.

Conclusion
This study examines for the first time changes in gene
expression with chronological age in multiple normal
human tissues from the same individuals. While a signifi-
cant proportion of age-related changes in gene expression
appear to be tissue-specific, a few common genes were
affected by age in a diverse range of tissues. Many of these
genes are important in cell division regulation, senescence
and apoptosis, processes prone to dysregulation, and
potential oncogenesis with advancing age. Tissues com-
parison suggested that a significant proportion of age-
related changes in gene expression are tissue-specific. This
raises the question of to what extent age-related changes
in gene expression are due to tissue aging rate differences
or to tissue-specific gene expression regulation. Further
interrogation of this aging-related expression and eQTL
resource has the potential to unravel the complex interac-
tions betwe enaging and gene expression regulation, as
well as the link with age-related diseases. However, this
may reveal that the two processes are so inextricably
linked that it is difficult to consider them independently.

Materials and methods
Sample collection
The study included 856 Caucasian female individuals (336
MZ and 520 DZ twins, respectively) recruited from the
TwinsUK Adult twin registry [39]. The age at inclusion
ranged from 39 to 85 years with a mean age of 59 years.
Punch biopsies (8mm) were taken from relatively photo-

protected infra-umbilical skin. Subcutaneous adipose tis-
sue was carefully dissected from the biopsy site using for-
ceps and scalpel, weighed, and immediately stored in
liquid nitrogen. Similarly, the remaining skin tissue was
weighed and stored in liquid nitrogen. Peripheral blood
samples were collected, and LCLs were generated through
EBV-mediated transformation of the B-lymphocyte com-
ponent by the European Collection of Cell Cultures
agency. The data presented here are part of the MuTHER
project (Multiple Tissue Human Expression Resource)
[52], Nica et al. [9],and Grundberg et al. [8]. The project
was approved by the local ethics committee of all institu-
tions involved. All the samples were collected after obtain-
ing written and signed informed consent, in accordance
with the Helsinki Declaration.

RNA extraction
RNA was extracted from homogenized tissue samples
(adipose and skin) and lysed cells (LCL) using TRIzol
Reagent (Invitrogen) according to protocol provided by
the manufacturer. RNA quality was assessed with the
Agilent 2100 BioAnalyzer (Agilent technologies) and the
concentrations were determined using NanoDrop ND-
1000 (NanoDrop Technologies) and samples were stored
in -80°C until ready to use. cDNA derived from the RNA
sample was hybridized with the Illumina Human Sentrix
12 chip.

Expression profiling
Expression profiling of skin, adipose tissue, LCLs, and
fresh lymphocites, each with either two or three technical
replicates, were performed using the Illumina Human
HT-12 V3 BeadChips (IlluminaInc) including 48,804
probes where 200ng of total RNA was processed accord-
ing to the protocol supplied by Illumina. All samples
were randomized prior to array hybridization and the
technical replicates were always hybridized on different
beadchips. Raw data were imported to the IlluminaBead-
studio software and probes with fewer than three beads
present were excluded. Log2-transformed expression sig-
nals were then normalized separately per tissue with
quantile normalization of the replicates of each individual
followed by quantile normalization across all individuals
as previously described [9]. Post-QC expression profiles
were subsequently obtained for 825 (adipose tissue and
LCL), 705 (skin), and 92 (fresh lympholytes) individuals,
respectively. The Illumina probe annotations were cross-
checked by mapping the probe sequence to the NCBI
Build 36 genome with MAQ. Only uniquely mapping
probes with no mismatches and either an Ensembl or
RefSeq ID were kept for analysis. Probes mapping to
genes of uncertain function (LOC symbols) and those
encompassing a common SNP (1000G release June 2010)
were further excluded leaving 23,596 probes used in the
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analysis. Microarray data can be download from the
ArrayExpress archive, accession no. E-TABM-1140.

Analysis of gene expression with age
A linear mixed model was used to examine gene expres-
sion variability by age and confounding factors including
as fixed effect batch and RNA concentration (only in
skin samples), and as random effects family relationship
and zygosity. We fitted the mixed-effects model in R
[53] with the lmer function in the lme4 package [54].
The P values to assess significance for age effect were cal-
culated from the Chi-square distribution with 1 degree of
freedom using likelihood ratio as the test statistic. We
computed Pvalues adjusted for multiple testing by control-
ling the false discovery rate (FDR) with the Benjamini-
Hochberg procedure [55]in R and using a threshold of
0.01. Enrichment analysis was carried out using the
DAVID Bioinformatics Resource server with a significant
level threshold of 0.05 in Benjamini-Hochberg corrected
P values [11].

Genotyping and imputation
Genotyping of the TwinsUK dataset (n= approximately
6,000) was done with a combination of Illumina arrays
(HumanHap300, HumanHap610Q, 1M-Duo, and
1.2MDuo 1M).Intensity data for each of the three arrays
were pooled separately (with 1M-Duo and 1.2MDuo 1M
pooled together) and genotypes called with the Illumi-
nus calling algorithm, thresholding on a maximum pos-
terior probability of 0.95. Similar exclusion criteria were
applied to each of the three datasets separately. Exclu-
sion criteria for samples were: (i) sample call rate < 98%,
(ii) heterozygosity across all SNPs ≥2 s.d. from the sam-
ple mean; (iii) evidence of non-European ancestry as
assessed by PCA comparison with HapMap3 popula-
tions; and (iv) observed pairwise IBD probabilities sug-
gestive of sample identity errors. Exclusion criteria for
SNPs were: (i) Hardy-Weinberg P value<10-6, assessed
in a set of unrelated samples; (ii) MAF<1%, assessed in
a set of unrelated samples; and (iii) SNP call rate <97%
(SNPs with MAF≥5%) or <99% (for 1% ≤MAF <5%).
Prior to merging the three datasets, we performed pair-

wise comparison among the three datasets and further
excluded SNPs and samples as follows: (i) concordance at
duplicate samples <1%; (ii) concordance at duplicate SNPs
<1%; (iii) visual inspection of QQ plots for logistic regres-
sion applied to all pairwise dataset comparisons; (iv)
Hardy-Weinberg P value <10-6, assessed in a set of unre-
lated samples; and (v) observed pairwise IBD probabilities
suggestive of sample identity errors.
Imputation was performed using the IMPUTE software

package (v2) 26 using two reference panels, P0 (HapMap2,
rel 22, combined CEU+YRI+ASN panels) and P1 (610k+,
including the combined TwinsUK HumanHap610k and

1M array).Post-imputation, SNPs were filtered at a MAF
>5% and IMPUTE info value of >0.8.

The UK Brain Expression Consortium dataset
The samples from the UK Human Brain Expression
Consortium [16] used in this study were provided by
the MRC Sudden Death Brain and Tissue Bank in Edin-
burgh [56] and originated from 100 individuals (78 men
and 22 women) of European descent. For each indivi-
dual, up to 10 anatomical brain regions were sampled:
cerebellar cortex (CRBL), frontal cortex (FCTX), hippo-
campus (HIPP), medulla (more specifically the inferior
olivary nucleus, MEDU), occipital cortex (OCTX), puta-
men (PUTM), substantianigra (SNIG), temporal cortex
(TCTX), thalamus (THAL), and intralobular white mat-
ter (WHMT). A detailed description of the samples
used in the study, tissue processing, and dissection is
provided in Trabzuniet al. (2011). All samples had fully
informed consent for retrieval and were authorized for
ethically approved scientific investigation (Research
Ethics Committee number 10/H0716/3).
The tissues were profiled using the Affymetrix Human

Exon 1.0 ST array (n=932 arrays) and subsequently pre-
processed using RMA using a high confidence list of
probesets (unique hybridization, gene annotation, and at
least three valid probes after removal of probes contain-
ing SNPs). Exon-level expression data was corrected for
sex and batch effects and summarized into transcript-
level expression values using 10% trimmed mean.
Each individual was genotyped on two chips: the Illumi-

naInfinium Omni1-Quad BeadChip and the ImmunoChip,
a custom genotyping array designed for the fine-mapping
of auto-immune disorders [57,58]. Individuals suspected
of being of non-European ancestry were identified using
principal components projection and excluded from analy-
sis. After standard quality controls, both genotype datasets
were combined and imputed using MaCH [59,60]and
minimac [61]using the 1000Genomes (March 2012). We
used the resulting approximately 5.8 million SNPs with
good post-imputation quality (r2 >0.50) and minor allele
frequency of at least 5% in subsequent analyses.
The Illumina IDs were converted to Affymetrix tran-

script ID using available annotation files from the two
company websites and matched to the best sequence simi-
larity. This resulted in a match for 63.6% of the genes of
interest. For the remaining genes, we matched by gene
symbol. Overall, approximately 98% of the replication list
was matched in the UK Brain Expression Consortium.
The log-likelihood comparing a model that regressed gene
expression against age with a model with the intercept
only was calculated and tested under an F-distribution
with 1 degree of freedom and the corresponding P values
reported here and corrected with the Benjamini-Hochberg
procedure for FDR correction.
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Genotype-by-age (GxA) interaction effect on gene
expression
The genetic effect of transcripts to imputed genotypes
by genome wide cis-eQTL mapping on more than
23,500 expression traits was previously mapped in three
tissues [7]. In total, 776 adipose, 777 LCL, and 667 skin
samples had expression profiles and imputed genotypes
and were included in the analysis. Across all transcripts
significant eQTL were 3,529 in adipose, 4,625 in LCL,
and 2,796 in skin. Here we investigate the genotype-by-
age (GxA) interaction contribution to gene expression
variance observed in those genes. For that we question
each gene and the most significant SNP (pick of the
eQTL) association with a linear mixed model that
included GxA interaction as contributing factor to the
gene expression variance. The linear mixed model test
was done using the lmer() function in the lme4 package
[45] and adjusted for age, experimental batch effect, and
sample processing effect in skin (fixed effects) and for
family relationship and zygosity (random effects). The
Akaike Information Criterion (AIC) was used as a selec-
tion method to identify the best fit explaining the origin
of the variation per gene expression. Genes for which
the model with a genotype-by-age interaction factor fit
better the data were used in the functional analysis.

Accession codes
Microarray data of skin, adipose tissue, LCLs can be
download from the ArrayExpress archive, accession no.
E-TABM-1140. Details about the MuTHER Resource
can be found in the bibliography [8,52].
Microarray data of brain can be downloaded from

GEO, accession no. GSE46706. Details about the UK
Brain Expression Consortium and expression resource
can be found in the bibliography[2,62]

Ethics Statement:
This project was approved by the ethics committee at St
Thomas’ Hospital London, where all the biopsies were
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signed an approved consent form prior to the biopsy
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