
Introduction
Th e complete sequencing of the human genome marked 
an important milestone in modern biology [1,2], but it 
also produced a whole new set of challenges in eluci
dating the functions and interactions of diff erent parts of 
the genome. A natural fi rst step to tackling these for
midable tasks is to construct an annotation of the 
genome, which is to (1) identify all functional elements in 
the genome, (2) group them into element classes such as 
coding genes, noncoding genes and regulatory modules, 
and (3) characterize the classes by some concrete features 
such as sequence patterns. Over the years, many experi
mental and computational methods have been invented 
to accelerate this annotation process. Among the popular 
computational methods are those based on the concept 
of machine learning (Box 1). Originally a branch of arti
fi cial intelligence, machine learning has been fruitfully 
applied to a variety of domains. Th e basic idea of machine 
learning is to construct a mathematical model for a 
particular concept (an element class in the case of genome 
annotation) based on its features in some observed data. 
Th e model can then be applied to identify new instances 
of the concept in other data [35].

In this review, we discuss some key properties of 
machine learning that make it useful for genome anno
tation, using some classic problems for illustration. We 

also describe some examples in the latest work of the 
ENCODE Project Consortium [6] to highlight some 
recent trends. We focus on the identifi cation and 
classifi cation of genomic elements, and do not go into the 
details of machine learning approaches to functional 
annotation, such as the predictions of gene expression, 
gene functions and protein interactions. In addition, due 
to limited space, we can only include a small portion of 
the related references in the literature. Readers interested 
in the application of machine learning in some major 
classes of genomic elements are referred to the corres
ponding reviews listed in Table 1. Th is review is intended 
to serve as an introduction to machine learning and its 
use in genome annotation for a general audience, 
requiring no prior knowledge in these topics. A more 
general description of the use of machine learning in 
bioinformatics can be found in Baldi and Brunak [4]. 
More formal discussions on machine learning can be 
found in various text books [5,7,8]. An overview of 
experimental and computational genome annotation 
approaches can be found in some other reviews [9,10].

Key properties of machine learning and their 
relevance to genome annotation
From expert knowledge to data-driven patterns
One major reason for the popularity of machine learning 
methods is its ability to automatically identify patterns in 
data. Th is is particularly important when the expert 
knowledge is incomplete or inaccurate, when the amount 
of available data is too large to be handled manually, or 
when there are exceptions to the general cases. We use 
protein binding motifs as an example for this part of the 
discussion.

Many DNA binding proteins, including transcription 
factors (TFs), recognize their target DNA regions by 
some short sequence motifs [37]. Th e motifs are usually 
not exact, in that a TF can bind DNA sequences with 
some diff erences, albeit with diff erent affi  nity. When the 
number of experimentally known binding sites of each 
TF was limited, it was common for human experts to 
abstract the binding motifs by some prominent features 
common to the observed binding sites, such as the most 
conserved locations within the motifs. Th e resulting 
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Box 1: A primer on machine learning

We first consider a basic setting of machine learning for binary classification, and later describe variations of it commonly encountered in 
genome annotation. Suppose we want to identify enhancers in a genome. We divide up the genome into a list of genomic regions X = (x1, 
x2, …, xN). Each region xi has a corresponding binary label yi, where yi = 1 if xi is an enhancer, and yi = 0 if not. Each region is described by a 
set of features xi = (xi1, xi2, …, xim). For example, xi1 could be the evolutionary conservation of xi among several close species, xi2 could be the 
average ChIP-seq [27,28] signal of the active enhancer mark H3K27ac (histone 3 lysine 27 acetylation) among the bases within the region 
from a certain experiment, and so on. The goal of machine learning is to find a function f (called a model) such that f(xi) is close to yi, that is, 
to tell if a region is an enhancer from some observed features alone.

To find a suitable f, we need to (1) decide on a mathematical form of f; (2) find known positive and negative examples that can help 
estimate the parameters of f; and (3) actually estimate the parameters of f, in a way that it likely predicts the labels of regions accurately, 
even for regions for which the corresponding labels are unknown.

For task 1, many families of f and their corresponding algorithms for learning the parameters have been studied. The popular ones include 
artificial neural networks [29], Bayesian networks [30], decision trees [31], k-nearest neighbors [32], random forests [33] and support vector 
machines [34]. They differ in the form and complexity of their models. Some examples are shown in Figure 1. Predictions are made based 
on the mathematical form of f and the parameters learned from the examples, such as the location of orientation of the decision surface of 
a SVM (Figure 1a).

Task 2 could be quite tricky for some element classes (see the corresponding discussions in the main text). Task 3 can be further sub-
divided into two sub-tasks, that of finding a model to fit the training examples, and of ensuring the model to be able to predict the labels 
of unseen regions correctly. The first sub-task can be achieved by finding parameter values of f that minimize a loss function, such as 
the sum of squared errors of the n examples, Σ

n

i=1
(f(xi ) – yi )

2. Since the parameter values are determined according to the observed data, 
the process is described as ‘learning’ a model from the data. The second sub-task is achievable only if one makes certain assumptions 
about the models and examples. It is usually assumed that the observed examples and unobserved instances of each type of functional 
elements share the same distribution of feature values, and that when two models can fit the observed examples equally well, the simpler 
one (for example, one with a smaller number of parameters or a smaller total magnitude of the parameter values) is likely to generalize 
better to unobserved instances. A model too specific to the observed data, usually characterized by a high complexity of the model, may 
over-fit the data; that is, may capture patterns that are only true for the observed examples. To avoid over-fitting, some machine learning 
methods control the complexity of the models by model pruning [35] or regularization [3], with the observed examples fitting less well 
to the model as a tradeoff. Some other methods produce multiple models on different subsets of data to identify reliable patterns that 
appear frequently in these models (see main text for more discussions). Procedure-wise, over-fitting is detected by building a model based 
on a subset of the examples (the training set), and evaluating its accuracy based on another subset not involved in training (the testing 
set). An over-fitted model would have good training accuracy but poor testing accuracy. The process is usually repeated with different 
portions of data treated as the training set in turn to compute the average accuracy in a cross-validation procedure.

Setting variation 1: Binary classification, multi-class classification and regression

When we have a pre-defined set of discrete values for the labels, we have a classification problem with each value corresponding to a 
class and f is called a classifier. The simplest case of which, when there are only two classes, is called a binary classification problem. A 
more complex example of classification is to distinguish enhancers (yi = 1) from promoters (yi = 2) and other regions (yi = 0). There are also 
situations in which the labels can take on continuous values. The corresponding machine learning problem is called a regression problem 
and f is called an estimator or a regressor. In this review we focus on classification problems as the goal of genome annotation is to identify 
DNA sequences belonging to each element class. However, it should be noted that, in practice, many classifiers output a continuous value 
fj(xi) that indicates how much a region xi appears to belong to the class j. For instance, probabilistic methods formally define fj(xi) as the data 
likelihood Pr(xi|yi = j) or posterior probability Pr(yi = j|xi). Classification can be performed by assigning each region xi to the class j with the 
largest value of fj(xi) among all classes.

Setting variation 2: Supervised, unsupervised and semi-supervised learning

In the basic setting, the model is constructed from observed examples with known labels, which is called the supervised learning setting 
(Figure 2a). Sometimes we do not predefine a set of classes, but want to identify natural clusters of genomic regions according to their 
distribution of feature values alone. This is called the unsupervised learning problem (Figure 2b). For example, in addition to enhancers 
and promoters, there are also other types of regulatory elements such as silencers and insulators. One may not want to predefine the 
set of regulatory element classes but rather to discover them from the observed data, assuming that the instances of each class share 
similar feature values. There are also situations in which we want to determine the model from both data with and without labels. This 
semi-supervised learning setting [36] could be very useful when training examples are limited or are available only for some classes. For 
example, if there are few experimentally validated enhancers and high-confidence negative examples, one may want to first use the 
available examples to roughly define the area in the feature space that belongs to each class, and then use the distribution of feature 
values of unlabeled genomic regions to estimate the boundaries of the areas (Figure 2c).

Continued overleaf
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expert knowledge was summarized by simple represen ta
tions such as consensus sequences.

As highthroughput methods for probing TF binding 
sites, such as protein binding microarrays [38] and 
chromatin immunoprecipitation followed by microarrays 
(ChIPchip) [39,40] or highthroughput sequencing 
(ChIPseq) [27,28] have become popular, it has become 
easier to collect a large number of sequences that contain 
binding sites of a TF. Machine learning methods can 
auto matically identify patterns common in these sequen
ces but rare in the genomic background [22]. Due to the 
large amount of examples available, the resulting models 
can have richer probabilistic representations with more 
parameters than what a human expert can easily handle, 
such as position weight matrices [41] and profile hidden 
Markov models [42].

In many cases, the exact binding locations of the TF in 
the input sequences are unknown. One needs to try 
different combinations of binding locations on these se
quen ces and compare the resulting models. This compu
tationally expensive task can be handled by standard 
methods such as Gibbs sampling [43] and expectation 
maximization [44]. There could also be errors in the 
input data such as false positives, in the form of 
sequences that do not really contain a binding site of the 
TF. A human expert could be misled by the false positives 
and try to form overfitted models (Box 1) that fit these 
error cases. A machine learning method with wellcon
trolled complexity, on the other hand, may prefer a model 

that does not classify the error cases as positives. More 
generally, each input sequence may contain zero, one, or 
more occurrences of a motif [45], the input sequences 
may contain multiple motifs (for example, due to indirect 
binding [46]), and motif finding can be confounded by 
repeat sequences. All these complications are more easily 
handled by automatic methods.

From single data type to integration of heterogeneous data
Machine learning methods are also good at integrating 
multiple, heterogeneous features. This property allows 
the methods to detect subtle interactions and redun
dancies among features, as well as to average out random 
noise and errors in individual features. We use the 
identification of cisregulatory modules (CRMs) as an 
example to illustrate this property.

A CRM is a DNA regulatory region, usually containing 
the binding sites of multiple TFs, that regulate a common 
gene nearby [47], such as cisacting promoters, enhan
cers, silencers and insulators. Many types of features have 
been individually used by previous methods to identify 
CRMs, including the density and statistical overrepre
sen tation of TF binding motifs, evolutionary conser
vation, direct binding signals from ChIPseq or ChIP
chip data, and biochemical marks such as histone modifi
cations [26]. In general, information related to binding 
patterns is useful for distinguishing between CRMs and 
genomic regions with fewer binding sites such as exons; 
information related to evolutionary constraints is more 
useful in distinguishing between CRMs and other less 
conserved regions, such as introns and some intergenic 
regions; information about histone modifications is use
ful in distinguishing between different types of regulatory 
regions and between the active and inactive ones. It was 
found that no single type of features could perfectly 
separate CRMs from negative examples [26]. As a result, 
some recent approaches have started to integrate differ
ent types of features by using a machine learning 
framework [48]. Depending on the mathematical form of 
the model (Box 1), the different features can be integrated 
in ways from linear combinations to highly nonlinear 
ones.

Box 1: Continued

Setting variation 3: Instances with independent versus dependent labels

We have been implicitly assuming that the label of each genomic region can be determined by its own set of features alone. In genome 
annotation, this is often unrealistic for two reasons. First, it is usually hard to define the exact span of a region. Biologically it could be 
fuzzy to define exactly where a functional element starts and ends (as in the case of an enhancer), and even if the span could be formally 
defined (as in the case of an RNA transcript), it is usually not known prior to machine learning. One may therefore consider each base 
separately and predict whether it overlaps a functional element or not. Second, the class labels for neighboring genomic regions/bases are 
not independent. For example, if a base is within an intron, the next base should be either within an intron or a splice site. In this situation, 
the label of a base should be predicted according its own features as well as other bases. There are standard methods for this kind of 
learning tasks, such as hidden Markov models.

Table 1. Reviews on machine learning methods for 
identifying some major classes of genomic elements

Genome functional element classes Reviews

Protein-coding genes [11-13]

Non-coding RNAs (ncRNAs) [14-16]

 MicroRNAs (miRNAs) [17,18]

Transcript splicing isoforms [19,20]

Regulatory elements

 Protein-binding sites/motifs [21-24]

 Cis-regulatory binding modules [25,26]
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Th ree aspects of data integration by machine learning 
deserve more discussions. First, the input features could 
contain redundant information. For example, ChIPseq 
signals from TF binding and histone modifi cation experi
ments can be highly correlated with open chromatin 
signals [49]. Diff erent machine learning methods handle 
redundant features in drastically diff erent ways. At one 
extreme, methods such as the Naïve Bayes classifi er [50] 
assume input features to be independent of each other 
for each class. If the features are in fact not conditionally 
independent, the redundant features could be unfavor
ably granted stronger infl uence on the predictions than 
the nonredundant ones, which aff ect the accuracy of the 
resulting models for some problems. On the other hand, 
methods such as decision trees and logistic regression 
could have one feature masking out the eff ects of all other 
similar features. In general it is good to carefully select a 
set of nonredundant input features based on biological 
knowledge, perform dimension reduction to remove 
dependency between features (by methods such as 
principal components analysis [51]) before the learning 
process, or test the stability of predictions using diff erent 
subsets of input features.

Second, if a large number of features are integrated but 
the amount of training examples is limited (a pheno
menon quite common in genome annotation), multiple 
issues could come up. Th e training examples may not be 
suffi  cient to capture the combination of feature values 
characteristic of the classes to be modeled. If some 
features irrelevant to the target concepts are included, 

they could mislead the modeling process, especially in 
unsupervised settings. Th ere is also a high risk of over
fi tting. Feature selection, dimension reduction, regulari
zation and semisupervised learning (Box  1) are all 
practical ways to alleviate the problem.

Th ird, it could be diffi  cult to combine features of 
diff erent data types. For example, conservation of a 
potential CRM region is represented by a numeric score 
(such as PhastCons [52] and phyloP [53]), the raw 
sequence of it is represented by a text string, while peaks 
of binding signals of a particular TF could be represented 
by a binary variable. One systematic approach to hand
ling mixed data types is to turn each type of data into a 
numerical similarity matrix between the input regions 
before integrating them. Kernel methods [54] are one 
particular branch of machine learning methods that work 
on similarity (kernel) matrices with some simple mathe
matical requirements. Th ey have been widely used in 
integrating diff erent types of data for genome annotation. 
For example, the kernel between two sequences can be 
defi ned by their alignment, BLAST scores or kmer 
composition [54,55].

From simple rules to complex functions
Another strength of machine learning is its ability to 
construct highly complex models needed by some 
genomic element classes. We use gene fi nding as an 
example here.

Eukaryotic genes have a complex structure with exons, 
introns and splice sites at the transcriptional level, and 

Figure 1. Some commonly used machine learning methods. For illustration, each genomic region is represented by a circle and described by 
two features. (a) A support vector machine (SVM) forms an affi  ne decision surface (a straight line in the case of two dimensions) in the original 
feature space or a vector space defi ned by the similarity matrix (the kernel), to separate the positive and negative examples and maximize the 
distance of it from the closest training examples (the support vectors, those with a perpendicular line from the decision surface drawn). It predicts 
the label of a genomic region based on its direction from the decision surface. In the case a kernel is used, the decision surface in the original 
feature space could be highly non-linear. (b) A basic decision tree uses feature-parallel decision surfaces to repeatedly partition the feature space, 
and predicts the label of a genomic region based on the partition it falls within. (c) The one-nearest neighbor (1-NN) method predicts the label of a 
genomic region based on the label of its closest labeled example. In all three cases, the areas predicted to be positive and negative are indicated by 
the red and green background colors, respectively.
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coding sequences and untranslated regions at the trans
lational level. An early approach to computational gene 
finding involves homology search using tools such as 
BLASTX [56] to look for regions of a genome with 
similar sequences in a database of annotated genes or 
expressed sequence tags. This approach is similar to the 
standard machine learning method of predicting the label 
of an object as the one of its nearest neighbor among the 
labeled examples, but with a maximum dissimilarity 
cutoff between them. It suffers from not being able to 
identify genes with no annotated homologs, and not 
reporting the detailed subelements (exons, introns, and 
so on) of the genes.

Both issues suggest the need for ab initio methods for 
finding genes directly from sequences. Some of these 
methods derived sequencebased features of known 
genes called content statistics (such as codon usage), and 
defined rules for classifying genes based on these features 
[11]. It was found that when the features were combined 
using nonlinear artificial neural network classifiers, the 
prediction performance was much better than some 
simple combinations of the features [57], which high
lights the need for complex models.

In order to model the detailed structures of eukaryotic 
genes instead of simply predicting if a region contains a 
gene or not, machine learning methods based on hidden 
Markov models [5860] and generalized hidden Markov 
models [6163] have become some of the most popular 
choices for computational gene finding. These methods 
consider the observed genomic sequence as the output of 
some hidden states (the subelement types or their sub
classes). A complete model is composed of the set of 
states, and the probabilities of starting a sequence at each 

state, transition between states and outputting a base/
sequence at each state as model parameters. Standard 
algorithms exist for learning the parameter values of such 
complex models.

With the advent of RNAseq [64,65] and other high
throughput experimental methods for identifying RNA 
transcripts, ab initio gene finding has become less 
popular. In the current posttranscriptomic era, machine 
learning has taken on some new roles in gene finding. 
First, specialized methods that take into account a large 
number of features and their complex interactions have 
been designed to model some biological mechanisms not 
yet fully understood, such as recognizing transcription 
start sites and determining the splicing events [6668]. A 
related problem is to predict complete isoforms and their 
relative abundance of a gene in a certain sample, using 
singleend or pairedend short sequencing reads [69]. 
Second, methods developed for identifying proteincoding 
genes are now adopted to identifying long noncoding 
RNAs (lncRNAs) [67], which share some common features 
with proteincoding genes (such as the presence of introns) 
but the annotations of which are much less complete and 
thus there are limited training examples available.

Case study: multi-class whole-genome annotation
An ultimate goal of genome annotation is to identify all 
types of functional elements and all their occurrences in 
a genome. How far are we from this goal? Currently there 
are still likely undiscovered genomic element classes 
given the rapid discovery of new classes (such as many 
noncoding RNAs (ncRNAs)) in recent years. Some 
element classes also have so far very few discovered 
instances. In terms of machine learning, these two facts 

Figure 2. Supervised, unsupervised and semi-supervised learning. (a) In supervised learning, the model (blue line) is learned based on the 
positive and negative training examples, and the genomic region without a known class label (purple circle) is classified as positive according to 
the model. (b) In unsupervised learning, all examples are unlabeled, and they are grouped according to the data distribution. (c) In semi-supervised 
learning, information of both labeled and unlabeled examples is used to learn the parameters of the model. In this illustration, a purely supervised 
model (dashed blue line) classifies the purple object as negative, while a semi-supervised model that avoids cutting at regions with a high density 
of genomic regions (solid blue line) classifies it as positive.
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imply that currently it is impossible to perform purely 
supervised learning for all element classes. As a result, in 
a recent work by the Encyclopedia of DNA Elements 
(ENCODE) Project Consortium, which aims at de
lineating all functional elements encoded in the human 
genome [70], several different approaches have been 
adopted to confront this grand challenge.

ENCODE has recently produced about 1,600 sets of 
wholegenome experimental data that cover many types 
of molecular states and activities, including transcription, 
longrange DNA interactions, and chromatin features 
such as histone modifications, proteinDNA binding and 
open chromatin signals [6]. In one approach to whole
genome annotation, the experimental data were used to 
perform unsupervised segmentation of the human 
genome [6,71,72], so that each genomic location was 
assigned to a segment. The segments were then grouped 
into clusters in an unsupervised manner. Each resulting 
cluster was described by the characteristic features of its 
members. Surprisingly, although the clusters were dis
covered by an unsupervised procedure, many of them have 
simple interpretations corresponding to known genomic 
element classes such as promoters, transcribed regions 
and enhancers. The segmentation was also able to provide 
subclasses of particular element classes, such as enhancers 
with strong and weak activities in particular cell types, 
respectively. In general, this method can reveal groups of 
sequence elements according to the observed data alone 
without defining the target element classes a priori.

One difficulty in performing this unsupervised cluster
ing was to determine the number of clusters to produce. 
Having too few clusters would merge elements from 
different genomic element classes together, while having 
too many clusters would make the results difficult to 
interpret. In order to avoid manually defining the number 
of clusters, in another approach the segments were put 
onto a twodimensional toroidal map, where similar 
segments were put close to each other using the unsuper
vised SelfOrganizing Map method [73]. The resulting 
map provides a way to study the relationships between 
different segments and the meanings of each local region 
on the map without defining the number of clusters and 
the cluster boundaries [6]. It also provides information 
about the similarity between different clusters identified 
by the segmentation method.

The wholegenome segmentation approach has the 
advantage of requiring no a priori definition of element 
classes, so that the discovery process is directly based on 
the observed data. On the other hand, when there is a 
specific type of genomic elements of interest, customized 
methods could potentially include more information 
specific to it. As an example, one important effort of 
ENCODE was to experimentally validate computationally 
predicted enhancers using different types of reporter 

assays [6]. A number of methods had previously been 
proposed for identifying enhancers in a genome, includ
ing both supervised [74,75] and unsupervised [76,77] 
methods. These methods were constrained by a lack of 
wholegenome experimental data, and had thus relied on 
either a relatively small set of experimental features or 
static information such as genomic sequence and evolu
tionary conservation. Correspondingly, a specialized 
pipeline was designed by ENCODE to identify enhancers 
at the genome scale, utilizing the large amount of experi
mental data produced [6,78]. Both the predictions from 
the segmentation approach and the enhancer prediction 
pipeline were found to achieve reasonable levels of 
accuracy [6].

Based on the ENCODE experience, one could imagine 
a potential hybrid approach that combines the benefits of 
both the unsupervised and supervised approaches des
cribed above. First, the segmentation approach is applied 
to systematically discover genomic element classes from 
large datasets. Specialized supervised methods can then 
be designed to provide detailed modeling of each element 
class using extra domain knowledge and auxiliary data 
available.

Current challenges and future outlooks
We conclude by discussing some current challenges in 
applying machine learning to genome annotation and the 
corresponding outstanding key research problems.

Interpretability of models
As mentioned above, very complex models have been 
proposed for some difficult genome annotation tasks. For 
example, a machine learning method involving hundreds 
of features has been reported to achieve high accuracy in 
predicting tissuespecific alternative splicing [66]. There 
are also machine learning methods that make use of the 
concept of ensemble learning, which combines the 
predictions of multiple (possibly very complex) models to 
achieve better performance. Examples include the 
classical bagging [79] and boosting [80] methods and 
Random Forests [33], which build multiple models using 
different subsets of examples or features. For instance, 
Random Forests were reported to outperform some other 
machine methods in identifying ncRNAs [81]. In fact, 
ensemble methods have become a popular choice in 
public machine learning challenges that involve big 
datasets, such as the wellknown Netflix Prize [82]. They 
outperformed methods that produced simpler models, 
which were unable to provide the required 10% accuracy 
improvement in recommending films when compared 
with the original method used by Netflix.

These complex models, achieving high prediction accu
racy notwithstanding, are in general difficult to interpret. 
Whether one should use them in genome annotation 
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depends on the exact goal of the project. If the goal is to 
produce a list of genomic elements as accurately as 
possible, it would be fine to use complex models as ‘black 
boxes’ as long as they can provide the required accuracy. 
On the other hand, if the goal is to use machine learning 
as a means to understand the underlying biological 
mechanisms, one may want to construct models that are 
more easily interpretable. For example, if one hopes to 
understand the major features that can help identify 80% 
of the elements of a certain class, a simple model may 
suffice, sacrificing the prediction accuracy of the remain
ing 20% as a tradeoff. It is rarely possible to achieve high 
accuracy and good interpretability at the same time; thus, 
it is important to define the goal clearly and select the 
machine learning method accordingly.

Context specificity and transferability of models
Largescale genomic projects, such as ENCODE [6], 
modENCODE [83,84], 1000 Genomes [85] and Roadmap 
Epigenomics [86], have produced a huge amount of 
valuable data that cover many aspects of genomes. These 
datasets offer an unprecedented opportunity to model 
genomic element classes and the effects of genetic 
mutations on them. However, a lot of these data are asso
ciated with properties specific to the corresponding 
experiments, such as cell or tissue types, experimental 
conditions, developmental stages of the animals and the 
population backgrounds of the sequenced individuals. 
Care should be taken when using these data to model the 
active genomic elements in other types of data or to 
construct general, noncontextdependent models.

It would be useful for machine learning methods to 
provide multiple levels of abstractions for the static and 
contextspecific information. For example, when direct 
binding data of a certain TF X from ChIPseq experi
ments are available for one cell type, a model can be 
constructed to describe the relationships between the 
ChIPseq signals and the actual binding sites of TF X in 
this cell type. However, if in a second cell type ChIPseq 
experiments have only been performed for some other 
TFs but not TF X, the model from the first cell type 
cannot be directly applied to predict the binding sites of 
TF X in this second cell type as the feature required by 
the model is not available. In this situation, the ChIPseq 
data for the TFs available in the second cell type could be 
used to construct a higherlevel model that describes 
some features common to the binding sites of different 
TFs, such as DNA accessibility. Combining it with non
contextspecific static information such as sequence 
motifs of TF X, it is still possible to construct an accurate 
model for predicting the binding sites of TF X without 
ChIPseq data in the second cell type [87].

A key to providing different levels of abstraction from 
the same input data is a careful selection of negative 

examples. In the above example, when constructing the 
general model for identifying binding sites of any TF, the 
negative set should contain regions not bound by any TF, 
including those with no direct ChIPseq signals and those 
likely to be depleted of TF binding, such as coding exons. 
In contrast, when constructing the model for identifying 
binding sites of a particular target TF based on ChIPseq 
data alone, the negative examples should also include 
binding sites of other TFs in addition to nonTFbinding 
regions, so that the learned model is specific to the target 
TF.

Lack of training examples and unbalanced positive and 
negative sets
For some classes of genomic elements, there are insuffi
cient known examples for supervised machine learning 
methods to capture the general patterns of the classes. 
For example, there are few validated enhancers cataloged 
in databases relative to the expected total number [88]. 
Many prediction methods have thus relied on a combi
nation of unsupervised learning and manually defined 
rules [6,7678]. In the case of ncRNAs, a large portion of 
the most functionally characterized ones are the short, 
strongly structured RNAs, which could bias models for 
identifying ncRNAs towards this subset and render them 
less able to detect ncRNAs with few known examples and 
novel ncRNA classes. Moreover, confirmed negative 
examples are seldom available, but are crucial to most 
machine learning methods. A related issue is that most 
genomic element classes occupy only a small portion of 
the genome, and therefore the ratio of positive to negative 
regions is very small. Even a highly accurate classifier 
could have a lot of false positives among its top predictions.

We propose that these issues should be tackled from 
multiple fronts. First, as explained in Box 1, the concept 
of semisupervised learning [36] is potentially capable of 
combining information about the distributions of known 
examples and unlabeled data points (Figure  1c). Its 
application to genomic annotation deserves more 
investi gations.

Second, systematic methods for selecting negative 
examples for genomic annotation should be developed, 
taking into account the accuracy of the examples and 
their influence on the models. For instance, extreme 
cases that are ‘very negative’ are likely accurate but not 
too informative. Relevant discussions for the problem of 
predicting protein physical interactions provide some 
good references on this topic [8991]. There is a relatively 
small set of verified protein physical interactions, a large 
number of putative interactions from highthroughput 
experiments such as yeasttwohybrid and coimmuno
precipitation, and no protein pairs that are confirmed to 
never interact. The way to choose negative examples 
could have profound effects on the resulting models.
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When confirmed negative examples are scarce or 
unavailable, certain features indicative of the class label 
could be intentionally left out from the model training 
process and used to evaluate the performance of the 
model learned from the other features. For example, in a 
recent study for identifying lncRNAs, information useful 
for predicting proteincoding genes, including sequence 
conservation, homology to known genes, codon usage 
and coding potential, was not used in the lncRNA 
detection pipeline [92]. An a posteriori check of the 
coding potential of the predicted lncRNAs could serve as 
an indirect evidence of the prediction accuracy.

Third, when constructing a model for a particular 
genomic element class, it is generally good to test for the 
existence of subclasses, by means of either a model that 
allows for multiple clusters per class, preclustering of 
training examples and construction of separate models 
for different clusters, or postclustering of predictions.

Finally, if experimental validations are performed to 
confirm the computational predictions, an active learning 
[93] strategy can be adopted to select predictions that 
maximize the expected information gain or similar 
measures [94]. Ideally, the computational prediction and 
experimental validation phases should be repeated for 
multiple iterations, in order to facilitate the selection of 
the most informative examples for validation.
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