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Abstract

Background: Metazoan multicellularity is rooted in mechanisms of cell adhesion, signaling, and differentiation that
first evolved in the progenitors of metazoans. To reconstruct the genome composition of metazoan ancestors, we
sequenced the genome and transcriptome of the choanoflagellate Salpingoeca rosetta, a close relative of
metazoans that forms rosette-shaped colonies of cells.

Results: A comparison of the 55 Mb S. rosetta genome with genomes from diverse opisthokonts suggests that the
origin of metazoans was preceded by a period of dynamic gene gain and loss. The S. rosetta genome encodes
homologs of cell adhesion, neuropeptide, and glycosphingolipid metabolism genes previously found only in
metazoans and expands the repertoire of genes inferred to have been present in the progenitors of metazoans
and choanoflagellates. Transcriptome analysis revealed that all four S. rosetta septins are upregulated in colonies
relative to single cells, suggesting that these conserved cytokinesis proteins may regulate incomplete cytokinesis
during colony development. Furthermore, genes shared exclusively by metazoans and choanoflagellates were
disproportionately upregulated in colonies and the single cells from which they develop.

Conclusions: The S. rosetta genome sequence refines the catalog of metazoan-specific genes while also extending
the evolutionary history of certain gene families that are central to metazoan biology. Transcriptome data suggest
that conserved cytokinesis genes, including septins, may contribute to S. rosetta colony formation and indicate that
the initiation of colony development may preferentially draw upon genes shared with metazoans, while later
stages of colony maturation are likely regulated by genes unique to S. rosetta.

Background
Metazoan multicellularity and development are rooted
in basic mechanisms of cell adhesion, signaling, and dif-
ferentiation that were present in the unicellular and
colonial progenitors of metazoans. Reconstructing the
evolution of metazoans from their single celled ances-
tors promises to illuminate one of the major transitions
in evolutionary history, while also revealing fundamental
mechanisms underlying metazoan cell biology and

multicellularity. Although the first metazoans evolved
over 600 million years ago, insights into their biology
and origin may be gained through the comparison of
metazoan genomes with those of their closest living
relatives, the choanoflagellates [1-3]. Indeed, the genome
of the first sequenced choanoflagellate, the single-celled
species Monosiga brevicollis, provided evidence that
diverse protein domains characteristic of metazoan sig-
naling and adhesion proteins (for example, tyrosine
kinase (TK), cadherin, and Hedgehog (Hh) domains)
evolved before the divergence of choanoflagellates and
metazoans [2].
The evolution of metazoans from their single-celled

ancestors is hypothesized to have involved a transition
through a colonial intermediate [4,5], the Urblastea, which
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may have been composed of choanoflagellate-like cells [5]
(Figure 1). The rosette-shaped colonies formed by the
choanoflagellate Salpingoeca rosetta evoke the hypothe-
sized Urblastea (Figure 1a, b). In addition to rosette colo-
nies, the life history of S. rosetta includes diverse cell types
and morphologies, including linear chains of cells (’chain
colonies’), slow and fast swimmer cells, and thecate cells
that attach to substrates through a secreted structure
called a theca (Figure 1c) [6]. The diversity of these forms
is comparable to the number of cell types observed in
sponges and placozoans [7]. Therefore, sequencing the S.
rosetta genome would provide an opportunity to investi-
gate how genome evolution and cell differentiation in the
ancestors of metazoans and multicellular choanoflagellates
laid the foundations for metazoan cell biology and devel-
opment. Furthermore, comparisons between the genomes
of M. brevicollis and S. rosetta offer the opportunity to
investigate the genetic bases of multicellularity in choano-
flagellates. To these ends, we have sequenced and analyzed
the S. rosetta genome and transcriptome during multiple
key phases in the S. rosetta life history.

Results and discussion
The approximately 55 Mb S. rosetta genome was
sequenced to 33× average coverage with a combination
of Sanger and 454 technology and assembled into 154
scaffolds with an N50 average length of 1.52 Mb (Table
S1 in Additional file 1). The genome assembly is largely
complete, capturing approximately 96% of transcripts
assembled de novo from RNA-seq data (Table S2 in
Additional file 1). Predicted telomeres were found at
both ends of 21 scaffolds and 24 additional scaffolds con-
tain a single telomeric end, suggesting that S. rosetta has
a minimum of 33 chromosomes (Table S3 in Additional
file 1). A starting set of ab initio gene predictions gener-
ated by the Broad Institute annotation pipeline trained
with ESTs (generated by Sanger chemistry) was refined
using 21 Gb of transcriptome sequence (generated by
Illumina chemistry) collected from diverse life history
stages (Additional file 1, Figure S1). This gene catalog
contains 11,629 genes, of which 98% are supported by
transcriptome sequence data (Table S1 in Additional file
1). Aligning the protein sequences from this gene set to
the M. brevicollis protein set revealed 4,994 orthologous
pairs, yet the two species display relatively little gene syn-
teny (Figure S14 in Additional file 1).
To reconstruct the gene contents of the progenitors of

metazoans and choanoflagellates, we compared the gen-
omes of S. rosetta and M. brevicollis [2] with the
sequenced genomes of 32 representative metazoans and
metazoan outgroups (Table S4 in Additional file 1). Evo-
lutionary relationships among genes from different gen-
omes were predicted using OrthoMCL2 [8] to identify
‘ortholog clusters’ (Additional files 2 and 4). The 11,629

genes of S. rosetta fall into 9,411 ortholog clusters (that
is, some ortholog clusters contain multiple S. rosetta
genes). The evolutionary history of each ortholog cluster
was inferred by mapping its distribution onto a refer-
ence phylogeny (Figure 1a), allowing us to gain insight
into the composition of ancestral genomes and patterns
of gene gain and loss in the lineages leading to metazo-
ans, choanoflagellates, and fungi (Figure 2; Additional
file 5). Gene families and protein domains of particular
interest were also curated manually (see, for example,
Figures S7 to S9, S13 and Tables S6 and S8 in Addi-
tional file 1).
The genomes of the ancestors (’Ur-’; Figure 1a) of
metazoans and opisthokonts (metazoans + choanoflagel-
lates + fungi) were each predicted to have contained
members of about 10,000 ortholog clusters. While
nearly 20% (1,843) of the ortholog clusters from the
Uropisthokont were lost along the lineage leading to the
Urmetazoan, this lineage also experienced an equivalent
amount of gene gain (Figure 2). In contrast, fungi and
choanoflagellates apparently lost representation from
33% (3,372) and 47% (4,747) of the ancestral Uropistho-
kont ortholog clusters, respectively, but experienced
only half as much gene gain. The S. rosetta genome also
reveals that M. brevicollis has lost an additional 1,343
genes. Therefore, the S. rosetta genome sequence sub-
stantially clarifies the gene content of the Urchoanimal.
Future sequencing of additional choanoflagellate gen-
omes will further refine inferences about the gene con-
tent of the Urchoanimal, presumably by reducing the
number of genes thought to be metazoan. Nonetheless,
patterns of gene gain and loss based on currently
sequenced genomes speak to the richness of the gene
complement in the Uropisthokont [3] and emphasize
the role that gene birth may have played in the evolu-
tion of biological novelties such as metazoan
multicellularity.
Therefore, we next characterized the 5,706 ortholog

clusters that appear to have evolved along the stem line-
age leading to metazoans (Additional file 3). These
metazoan-specific ortholog clusters include homologs of
genes that regulate cell adhesion, including δ-catenin
and b-laminin, as well as genes involved in the trans-
forming growth factor (TGF)-b and Wnt developmental
signaling pathways. Many of the core components of the
TGF-b and Wnt signaling pathways (for example, TGF-
b, TGF-b receptor, Smad, Wnt, Wntless, b-catenin, and
TCF) were identified in every metazoan genome
included in our analysis, underscoring their early evolu-
tion and fundamental importance to metazoan biology.
Genes shared between choanoflagellates and metazo-

ans were present in the progenitors of metazoans and
may have contributed to the genomic foundations of the
origin of metazoans. We find that the evolution of the
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Figure 1 Salpingoeca rosetta as a model for studying the ancestry of metazoan multicellularity. (a) Choanoflagellates are the closest
living relatives of Metazoa [1,3,68]. Taxonomic groupings are indicated above the phylogeny and the last common ancestors of each group are
indicated as colored circles at nodes. The topology of the reference phylogeny was based on a consensus of results from [68-70]. Branches were
collapsed at the base of Metazoa to reflect current uncertainty about the identity and branch order of the most basal metazoan phyla [69,71-73].
The black, yellow, and green colored nodes are used in both Figures 1 and 2 to represent the Urmetazoan, Urchoanimal, and Uropisthokont,
respectively. (b) The evolution of metazoans from their single-celled ancestors is hypothesized to have involved a transition through a simple
colonial form, such as Haeckel’s Blastea (left, from Figure 117 of [4]) or Nielsen’s Choanoblastea (center, from [5]), that resembles the rosette
colonies formed by S. rosetta (right). (c) S. rosetta can transition through at least five morphologically and behaviorally differentiated cell types
[6]. Solitary ‘thecate’ cells attached to a substrate (Th) can produce solitary swimming (Sw) cells or solitary fast swimming (FS) cells, either
through cell division or theca abandonment. Solitary swimming cells can divide completely to produce solitary daughter cells or remain
attached after undergoing incomplete cytokinesis to produce either chain colonies (CC), or rosette colonies (RC) in the presence of the
bacterium Algoriphagus machipongonensis (asterisk) [6,18,64]. Fil., Filasterea; Cho., Choanoflagellates.
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monophyletic ‘Choanimal’ clade (which contains choano-
flagellates and metazoans, and is not to be confused with
the paraphyletic ‘Choanozoa’ (see Endnote a)), was marked
by a disproportionate gain of genes with Gene Ontology
terms [9] for metazoan cell adhesion and cell-junction
organization (Table S5 in Additional file 1), including cad-
herins, PATJ (a component of adherens junctions) and
KANK/vab-19 (an ankyrin repeat protein required for
proper embryonic epidermal elongation and muscle
attachment to the epidermis in Caenorhabditis elegans
[10]). Ortholog clusters involved in metazoan neuropep-
tide signaling and glycosphingolipid metabolism also
increased in abundance (Table S5 in Additional file 1). In
addition, the S. rosetta genome, like that of M. brevicollis,
contains a diverse and abundant repertoire of TKs (see
Endnote b) [2,11,12] (Additional file 6). Ninety percent of
the S. rosetta cytoplasmic TKs are conserved in the M.
brevicollis genome, and S. rosetta has homologs of two
adhesion-associated cytoplasmic TKs, FAK and Fer, that
were apparently lost in M. brevicollis (Table S6 in Addi-
tional file 1). In contrast, only 21% of receptor TKs (RTKs)
from S. rosetta and M. brevicollis form orthologous pairs.
The added sequence diversity provided by the S. rosetta
genome also revealed that choanoflagellates may have
divergent homologs of metazoan Eph RTKs that were not

originally detected in the M. brevicollis genome. Eph RTKs
are key regulators of cell migration during development,
regulating cellular organization through differential cell
repulsion and adhesion [13]. Their discovery in S. rosetta
lays the foundation for investigating core and ancestral
functions of these important receptors.
The S. rosetta genome now provides a platform for

investigating the regulation of cell differentiation in
choanoflagellates and the potential evolutionary connec-
tions between the cell biology of choanoflagellates and
metazoans. Therefore, we analyzed the transcriptional
profiles of samples enriched in each of four different S.
rosetta cell types: thecate cells, swimming cells (a mix of
slow and fast swimmers), chain colonies, and rosette
colonies (Figure 1c; Figure S1 in Additional file 1; Addi-
tional file 7). Using three independent analytical
approaches we identified 480 S. rosetta genes that were
consistently upregulated in colonies (chains and
rosettes) compared to solitary cells (swimming and the-
cate) and 1,410 genes that were consistently upregulated
in thecate cells relative to swimming solitary cells and
colonies (Figures S2, S3 and S4 in Additional file 1;
Additional files 8 to 13). For example, in colonies and
thecate cells distinct subsets of TKs, cadherins (notable
for their roles in metazoan cell signaling and adhesion)
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and Hh-domain containing proteins (see Endnote c)
were significantly upregulated (Figures S5, S6, and S12
in Additional file 1), although their functions in these
contexts are unknown.
Perhaps most illuminating was the observation that all

four members of the S. rosetta septin gene family were
significantly upregulated in colonies (Figure 3a). Septins,
conserved GTPases that regulate cytokinesis in fungi
and metazoans, were first identified in yeast through a
screen for cytokinesis defects; septin mutants frequently
failed to undergo proper cytokinesis and therefore
exhibited multicellular phenotypes [14]. Metazoan sep-
tins also stabilize intercellular bridges such as midbodies
and ring canals [15,16]. During metazoan cytokinesis
and in intercellular bridges, a set of specific septin
monomers polymerize to form cytoskeletal filaments
[17]. The four S. rosetta septins have conserved amino
acid residues on predicted interacting surfaces, suggest-
ing they may also form filaments (Figure 3b; Figures S7
and S8 in Additional file 1). Interestingly, S. rosetta
homologs of other midbody-associated proteins and sep-
tin regulators, including Aurora kinase, the scaffolding
protein Anillin, and Polo kinase, are also significantly
upregulated in colonies (Figure 3a). The coordinated upre-
gulation of septins and septin regulators is notable because
colony development in S. rosetta occurs by incomplete
cytokinesis, such that neighboring cells remain physically
linked by intercellular bridges (Figure 3c) [6,18].
The genes that regulated cell differentiation in the pro-

genitors of metazoans may have provided the founda-
tions for the spatiotemporal regulation of cell
differentiation that underpins metazoan development.
Therefore, understanding the evolutionary history of
genes differentially expressed in different S. rosetta cell
types may suggest which cell types are most conducive to
the study of metazoan origins. Of the 11,628 genes in the
S. rosetta genome, at least 57% were present in the Uro-
pisthokont, 5% arose on the Urchoanimal stem, 6% are
choanoflagellate-specific, and 31% are apparently unique
to S. rosetta (Figure 4a; Table S7 in Additional file 1).
The evolutionary histories of genes upregulated in speci-
fic cell types deviated significantly from this distribution.
For example, thecate cells disproportionately upregulated
genes that evolved within choanoflagellates, after their
divergence from the metazoan stem lineage (Figure 4b;
Table S7 in Additional file 1). Therefore, the unusual
morphology and transcriptional profile of thecate cells
suggest that important aspects of their biology may be
unique to choanoflagellates. Colony development, in con-
trast, has potential relevance for understanding the regu-
lation of early metazoan multicellularity. Colonies
develop from a subset of solitary swimming cells [6], so
the most likely regulators of colony development are the
352 genes that are specifically upregulated in both

solitary swimming cells and in colonies (Figure 4c; Table
S7 in Additional file 1). Interestingly, this set is highly
enriched in genes that are exclusively shared with
metazoans and that presumably evolved along the Urch-
oanimal stem lineage. Genes involved in the maintenance
of mature colonies, as opposed to those involved in regu-
lating early colony development, would be expected to be
specifically upregulated in colonies (Figure 4d; Table S7
in Additional file 1), but not in the single cells from
which they develop (Figure 4e; Table S7 in Additional file
1). This set was enriched in genes unique to S. rosetta.
Taken together, these data led us to hypothesize that the
initiation of S. rosetta colony development draws upon
genes shared with metazoans, while later stages of colony
maturation are regulated by genes that are unique to S.
rosetta.

Conclusions
Although the progenitors of metazoans expired over 600
million years ago [19,20], genome comparisons between
metazoans and their closest relatives, the choanoflagel-
lates, can offer detailed insights into the evolutionary
foundations of metazoan genomes and gene families [20].
The S. rosetta genome refines the catalog of metazoan-
specific genes and highlights the potential relevance of
key gene families to the evolution of defining features of
metazoan biology. Genes with a variety of evolutionary
histories - including highly conserved genes with func-
tions that are integral to eukaryotic cell biology, genes
that evolved before the choanimals and that were subse-
quently co-opted to new metazoan-specific functions,
and new genes whose evolution may have served as key
innovations - shaped the evolution of metazoans from
their protistan ancestors [21,22]. With this more com-
plete gene catalog, it is now possible to reconstruct the
ancestry of metazoan gene families in unprecedented
detail (for example, Figures S6 and S9 in Additional file
1, and [23,24]). The M. brevicollis genome sequence pre-
viously revealed that diverse protein domains in
metazoan signaling and adhesion genes, including cad-
herin, Hh, and TK, evolved before the origin of metazoan
multicellularity [2]. The S. rosetta genome now reveals
that the Urchoanimal genome contained representatives
of at least eight metazoan TK gene families (Table S6 in
Additional file 1), including the developmentally impor-
tant Eph RTKs, and raises questions about their ancestral
functions in the Urchoanimal [25,26].
In addition to expanding gene family representation,

the S. rosetta genome also sheds light on the pathways in
which these genes are traditionally thought to operate.
For example, while some components of the TK and Hh
developmental signaling pathways are conserved in choa-
noflagellates (for example, Src, Eph RTK, and Patched),
others are not. Therefore, the evolution of these pathways
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along the metazoan stem lineage likely involved an as-yet
undefined combination of protein domain shuffling, gene
cooption, and evolution of new protein-protein interac-
tions [2,27] that promises to be further elucidated by the
continued study of diverse early-branching metazoans,
choanoflagellates and other metazoan outgroups [24,28].
In contrast, components of the Wnt pathway have not
been identified in any sequenced non-metazoan genome,
including those of S. rosetta and M. brevicollis, suggesting
that the pathway did not evolve until after the divergence
of metazoans and choanoflagellates [29-31]. A sponge
classical cadherin has proven capable of binding in vitro
[23] to its cognate b-catenin, a Wnt pathway effector,
suggesting that at least a portion of the critical interac-
tions in the Wnt pathway evolved before the Cambrian
radiation. Given the ubiquity of Wnt pathway compo-
nents in metazoans and their essential roles in regulating
embryonic patterning in diverse animals, it is therefore
possible that the evolution of the Wnt pathway was criti-
cal to the early evolution of metazoans.
Finally, the S. rosetta genome offers the opportunity to

investigate whether choanoflagellate colony formation
and metazoan development are regulated by conserved
mechanisms. The upregulation of conserved genes and
gene families in colonies, such as septins, cadherins, and
Hh-related proteins, is intriguing and warrants further
investigation to fully understand their current and
ancestral functions. Taken together, the S. rosetta gen-
ome and transcriptome suggest that the genome of the
last common ancestor of choanoflagellates and metazo-
ans contained genes and domains that orchestrate devel-
opment in modern animals but underwent important
changes in gene content and regulation en route to the
evolution of the first metazoan. Further refinement of
ancestral genomes through comparative genomics with
additional choanoflagellate genomes and functional
efforts in choanoflagellates and sponges promises to
reveal the minimal set of genes required for metazoan
development and multicellularity.

Materials and methods
Salpingoeca rosetta culture conditions
S. rosetta, a colonial choanoflagellate originally isolated
from Hog Island, Virginia, was cultured with co-isolated
bacteria at 25°C in natural seawater infused with cereal
grass media [32]. The strain sequenced in this study is
deposited at the ATCC under strain number ATCC
PRA-366.

Isolation of S. rosetta genomic DNA
Genomic DNA was harvested from a monoxenic culture
of S. rosetta in which the sole source of bacteria was
Algoriphagus machipongonensis [6]. S. rosetta DNA was
separated from the A. machipongonensis DNA on a

CsCl gradient as described for the genome sequencing
of M. brevicollis [2].

Genome sequencing
Purified S. rosetta genomic DNA was sequenced with
454 and Sanger Whole Genome Shotgun methodology
as described below.
454 sequencing
454 fragment and approximately 3 kb jumping libraries
were generated as previously described [33]. In short, S.
rosetta genomic DNA was sheared into small fragments,
approximately 600 bp for fragment and approximately 3
kb for jumping libraries. For fragment library construc-
tion DNA was ligated on both ends with 454 sequencing
adapters. For 3 kb jumping library construction, DNA
was ligated with biotinylated adapters on both ends to
facilitate circularization. Adapted DNA was circularized,
sheared and resulting fragments were ligated on both
ends with 454 sequencing adapters. Library fragments
containing biotin were retrieved using streptavidin
beads. Both library types were subjected to emulsion
PCR and sequenced with approximately 400 base tita-
nium chemistry reads using a 454 GS FLX instrument
following the manufacturer’s recommendations (454 Life
Sciences/Roche, Branford, Connecticut, USA).
Sanger sequencing
Genomic DNA was sheared and cloned into plasmid
(4 kb and 10 kb insert) and Fosmid (40 kb) vectors
using standard methods. Resulting whole genome shot-
gun libraries were paired-end Sanger sequenced using
standard methods.

Genome assembly
454 data were first assembled using 454’s Newbler
assembler [34]. 454 assembly was then combined with
Sanger data using the HybridAssemble [35] module of
the ARACHNE assembler [36]. The assembly was then
manually modified to close additional gaps and break
misassembled joins using ARACHNE tools.

Telomere identification
Six supercontigs containing telomeric ends (Table S3 in
Additional file 1, fourth column) were identified by
searching the genome assembly for TTAGGG repeats.
Examination of the subtelomeric regions of these six
supercontigs did not reveal genes that are shared at the
other telomeres below, so they appear to be aberrant or
newly formed telomeres without the subtelomeric
repeated regions of most telomeres.
Additional telomeric supercontigs were identified by

searching the raw reads from the approximately 40 kb
insert fosmids with 1,000 bases of TTAGGG repeats.
The mate pairs of the first 250 such hits, all of which
were in plus/minus arrangement, indicating that they
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were from telomeres, were then searched against the
supercontigs to identify telomeric supercontigs. This
search revealed 41 such supercontigs (fifth column of
Table S3 in Additional file 1), including four of the six
with assembled TTAGGG repeats. Clearly this is an
underestimate of the number of telomeres, both because
only four of the six assembled ones were identified, and
because this search yields a Poisson distribution of such
hits (fifth column of Table S3 in Additional file 1), ten
of which were only hit once. From the average positions
of the mate-pair hits within each supercontig it was pos-
sible to estimate the length of DNA missing between the
assembly and the TTAGGG repeats of the telomere, and
this is shown in the sixth column of Table S3 in Addi-
tional file 1.
Examination of these 37 telomeric supercontigs with-

out assembled TTAGGG repeats revealed that all but a
few of them have regions repeated on most of the others
(seventh column in Table S3 in Additional file 1). The
few exceptions are instances where the gap between the
end of the supercontig and the TTAGGG repeats is
near the 40 kb insert size of the fosmids, so presumably
the shared subtelomeric regions are within this missing
part. This approach allowed us to discover 22 additional
telomeric supercontigs.

Genome annotation
Protein-coding genes were initially annotated using a
combination of ab initio predictions (GeneMark.hmm-
ES, AUGUSTUS, GlimmerHMM), protein sequence
homology-based evidence (blast, GeneWise), and tran-
script structures built from ESTs using the PASA pack-
age [37]. The package EVM (EVidenceModeler) [38]
was used to build gene models from all available input
evidence. The obtained gene models were further
improved by incorporating RNAseq data from eight dif-
ferent conditions using PASA and inchworm pipelines
to get a final gene set [39,40]. Gene models were also
annotated with gene ontology terms using Blast2Go
(Additional file 14) and interPro2GO (Additional file
15), and gene ontology enrichment was measured with
Ontologizer 2.0 using default settings correcting for
multiple testing.

Synteny analysis
Protein sequences from S. rosetta and M. brevicollis
were aligned using BLAST [41].
Best reciprocal BLAST pairs with a score cutoff of 75

were considered orthologs.
Predicted protein orthologs were mapped back to their

genomic loci using BLAT [42] and plotted against the
scaffolds with R to investigate synteny between the S.
rosetta and M. brevicollis genomes.

Tyrosine kinase annotation
Manual annotations for the S. rosetta kinases were made
through BLAST [41], multiple sequence alignments, hid-
den Markov models, presence or absence of accessory
domains and phylogenetic trees. S. rosetta kinases were
compared to nine previously annotated kinomes: Homo
sapiens [43], Mus musculus [44], Strongylocentrotus pur-
puratus [45], Drosophila melanogaster [46], C. elegans
[47], Amphimedon queenslandica [30], Monosiga brevi-
collis [48], Saccharomyces cerevisiae [49], and Selaginella
moellendorffii [50].

Septin characterization
The final gene predictions for the S. rosetta genome
included five septin domain encoding genes
(PTSG_04106, PTSG_06009, PTSG_07215, PTSG_04363
and PTSG_04364) as predicted by Pfam [51]. A gap in the
assembly suggested that PTSG_04363 and PTSG_04364
might be one gene. PCR amplification from a S. rosetta
cDNA library using specifically designed primers
(5’TCAACGAAACGATTTCAAGC and 5’GTGGTCCG
AGTTGTCGACTT) confirmed this and the two gene
models were merged into a new gene model (PTSG_
04364*) (Figure S7 in Additional file 1). Conserved septin-
specific residues, including the amino-terminal polybasic
region, were identified manually while coiled-coil domains
were predicted using the COILS program using the default
settings [52]. Sequences with average probabilities below
0.8 were not considered to have coiled-coil domains
(Figure S8 in Additional file 1).

Septin structure prediction
The structure of each S. rosetta septin was predicted
using LOOPP (version 4.0) available through the Uni-
versity of Texas [53,54]. Individual S. rosetta septin
structures were loaded into MacPymol [55] and similar
residues determined using NCBI BLAST [41] alignment
and colored red. Each structure was then aligned to the
crystal structure of the human septin filament (accession
2QAG in the Protein Data Bank).

Phylogenetic analyses
The four S. rosetta septin sequences were added to a sep-
tin alignment from Momany et al. [56] in order to estab-
lish putative gene homology assignments (Figure S8 in
Additional file 1). The sequences were aligned using the
Clustal Omega multiple sequence alignment program
[57] and variable sequence regions were systematically
removed using Gblocks [58] with the most lenient para-
meters: Minimum Number Of Sequences For A Con-
served Position, 81 (b1 = 81); Minimum Number Of
Sequences For A Flanking Position, 81 (b2 = 81); Maxi-
mum Number Of Contiguous Nonconserved Positions,
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8 (b3 = 8); Minimum Length Of A Block, 5 (b4 = 5);
Allowed Gap Positions, With Half (b5 = h); Use Similar-
ity Matrices, Yes (b6 = y); New number of positions, 210
(15% of the original 1,360 positions). A maximum likeli-
hood analysis was performed on the resulting alignment
of 183 amino acid characters using PHYML v.3.0 [59].
The WAG substitution model [60] was implemented
with a mixed model of rate heterogeneity and four rate
categories where the fraction of invariable sites and the
gamma distribution parameter alpha were estimated
from the data set. Bootstrap support (100 replicates) was
estimated for the single resulting tree topology (Figure S9
in Additional file 1).

Reconstructing gene gain and loss in opisthokonts
To characterize how gene content changed during the
evolution of the opisthokonts, ortholog clusters were
mapped to a reference phylogeny [61,62] using a Dollo
parsimony model of evolution [63] and the minimal
gene content at each node and the change along the
subsequently diverging lineages was estimated.

Cell type enrichment
Solitary swimming (Sw) cells were isolated from the
supernatant fraction of cultures grown in the presence
of mixed bacteria, but not A. machipongonensis [18].
Thecate (Th) cells were collected from cultures by

removing the supernatant, washing three times with 10
ml of culture media and removing the attached cells
from the plate surface with a plastic cell lifter.
Cultures consisting primarily of chain colonies (CC)

were generated by diluting 2 ml of cells from the super-
natant of solitary swimming (Sw) cells into 15 ml fresh
medium every day for 1 to 2 weeks.
Cultures consisting primarily of rosette colonies (RC)

were produced using two different strategies. In the first
approach, a culture of solitary swimming (Sw) cells was
inoculated with live A. machipongonensis bacteria [18],
which induces the development of rosette colonies (RC)
that became the dominant form in the culture within 2
days [6,18,64]. Rosette colonies (RC) were also isolated
from cultures grown exclusively with live A. machipon-
gonensis [6].

RNAseq
Total RNA was isolated from S. rosetta cultures using
the RNAeasy (Qiagen, Venlo, The Netherlands) kit and
four consecutive rounds of oligo-dT hybridization,
washing, and elution with Oligotex kit (Qiagen) were
used to purify mRNA. Purified mRNA was treated with
Ambion Turbo DNA-free (Life Technologies, Carlsbad,
California, USA) per the manufacturer’s recommenda-
tion. The integrity of the mRNA was assessed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, California, USA) and quantified using RNA
Quant-it assay for the Invitrogen Qubit Fluorometer
(Life Technologies, Carlsbad, California, USA).
Strand specific dUTP Illumina RNA-seq libraries were

generated from 200 ng mRNA as previously described
[65] with the following modifications. mRNA was frag-
mented in 1× fragmentation buffer (Affymetrix, Santa
Clara, California, USA) at 80°C for 4 minutes, purified
and concentrated to 6 μl following ethanol precipitation.
Illumina sequencing adapters containing 8-base bar-
codes were ligated to each sample, enabling pooling of
libraries. Adaptor ligation was done with 1.2 μl of bar-
coded Illumina adaptor mix and 4,000 cohesive end
units of T4 DNA Ligase (New England Biolabs, Ipswich,
Massachusetts, USA) overnight at 16°C in a final volume
of 20 μl. Final library insert size ranged from 225 to 425
bp. Libraries were sequenced with 68 base paired-end
reads on an Illumina GAII instrument (Illumina, San
Diego, California, USA) following the manufacturer’s
recommendations.

Identification of differentially expressed genes
Pairwise comparison
To identify genes differentially expressed in a particular
cell type and control for environmental variation, we
compared gene expression in different fractions of the
same culture. All genes identified by this method have a
statistically significant difference in at least 30% of the
comparisons, with the remaining comparisons showing
the same trend.
Colonial versus thecate Read count was compared
between samples (RCA1 versus ThA2, RCA2 versus
ThA2, RCAM versus ThAM, RCAM versus ThM, CCM
versus ThA2, CCM versus ThAM, CCM versus ThM)
using edgeR installed under Bioconductor v2.8 and a
gene was considered differentially expressed between
colonial cells and attached cells if it was significantly dif-
ferentially expressed (P-value < 0.05) in at least three
comparisons and had a fold change greater than 1.5 in
the remaining comparisons.
Colonial versus swimming Read count was compared
between samples (RCA1 versus SwM, RCA2 versus
SwM, RCAM versus SwM, CCM versus SwM) using
edgeR installed under R Bioconductor v2.8 [66] and a
gene was considered differentially expressed between
colonial cells and swimming cells if it was significantly
differentially expressed (P-value < 0.05) in at least two
comparisons and had a fold change greater than 1.5 in
the remaining comparisons.
Attached versus swimming Read count was compared
between samples (ThA2 versus SwM, ThAM versus
SwM, ThM versus SwM) using edgeR installed under R
Bioconductor v2.8 [66] and a gene was considered differ-
entially expressed between attached cells and swimming
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cells if it was significantly differentially expressed (P-value
< 0.05) in at least one comparison and had a fold change
greater than 1.5 in the remaining comparisons.
Group comparison
RNAseq read count was compared between groups of
samples using edgeR installed under R Bioconductor V2.8
[66] and genes are considered differentially expressed with
P-value < 0.05. The comparisons include: Colony versus
thecate (RCA1, RCA2, RCAM, CCM versus ThA2,
ThAM, ThM); Colony VS Swim (RCA1, RCA2, RCAM,
CCM versus SwM); Thecate versus Swim (ThA2, ThM,
ThAM versus SwM).
Hierarchical clustering
FPKM values (fragments per kilobase per million reads)
for each gene were log2 transformed, quantile normalized,
and filtered requiring Max(log2(FPKM)) - Min(log2
(FPKM)) > 2. The filtered gene set was clustered hierarchi-
cally using the gplots package installed under R Biocon-
ductor V2.8 [66], and 22 initial clusters were manually
identified. Genes from these clusters were scored as col-
ony, swimming, thecate, colony and swimming, thecate
and swimming, and colony and thecate based on their
expression patterns (Figure S2 in Additional file 1).

OrthoMCL
Predicted protein sets for 34 genomes (Table S4 in Addi-
tional file 1) were generated from the longest protein
greater than 30 amino acids for each gene. Then all-vs-all
blastp [41] (E-value < 1E-5) was run on the filtered pro-
teins and the OrthoMCL2 [61] pipeline was used to build
ortholog clusters with default parameters.

Reconstructing gene gain and loss in opisthokonts
To characterize how gene content changed during the
evolution of the opisthokonts, ortholog clusters from
OrthoMCL2, including single gene clusters, were mapped
to a reference phylogeny [61,62] using a Dollo parsimony
model [63]. The minimal gene content at each node and
the change along the subsequently diverging lineages
were then catalogued. The presence or absence of gene
families and protein domains mentioned in the text were
manually verified using homologs from NCBI homolo-
gene and BLASTP and tBLASTn (cutoff e10-3) [41].

Ortholog cluster origin enrichment analysis
Ortholog clusters were annotated as ancient, choanimal,
choanoflagellate or S. rosetta-unique based on the cluster
member most distantly related to S. rosetta. The relative
frequencies of phylogenic annotations were calculated for
the entire S. rosetta genome (Figure 4a). Expression clus-
ters were tested for phylogenic enrichment by comparing
their annotation counts to frequencies for the entire gen-
ome. Annotation counts were assumed to follow a

multinomial distribution, which was validated through a
Monte Carlo simulation (data not shown).
A jackknifing analysis was run to test the sensitivity of

phylogenic enrichment to the species included (Figure S10
in Additional file 1); 10,000 trials were run, each with a
random set of species. S. rosetta and M. brevicollis were
included in all trials. Each of the 32 remaining species had
an 80% probability of being included in any given trial.
The OrthoMCL2 algorithm was rerun for each species set
to generate new clusters. Annotation frequencies were re-
calculated for the entire genome and the expression clus-
ters were tested for phylogenic enrichment.
The MCL algorithm was run an additional 19 times to

test the sensitivity of the results to the inflation para-
meter of the MCL algorithm (Figure S11 in Additional
file 1). Values for inflation ranged from 1.1 to 3. All 34
analyzed species were included.

Data availability
Raw 454 genome sequence data have been submitted to
NCBI’s Short Read Archive and can be retrieved using
the following accession numbers: fragment reads
(SRX015529, SRX015528, SRX015527, SRX015526,
SRX015525, SRX015524, SRX015523, SRX015522,
SRX015521, SRX015515, SRX015514, SRX015512,
SRX015511, SRX015503, SRX015502, SRX015499,
SRX015498, SRX015486, SRX015485, SRX015484,
SRX015483, SRX015482, SRX015457, SRX015456); and
2 to 3 kb jumping reads (SRX015508, SRX015505,
SRX015501, SRX015464, SRX015463, SRX015458). Raw
Sanger sequence data have been submitted to NCBI’s
Trace Archive and can be retrieved using the following
search parameters: CENTER_NAME = “BI” and CEN-
TER_PROJECT = “G1237”. The genome assembly was sub-
mitted to NCBI with accession number ACSY00000000.
Genome sequence and transcriptome sequence have been
deposited in GenBank under project codes PRJNA37927
and SRP005692, respectively. A genome browser is avail-
able at the Broad Institute website [67].
Raw sequence data from Illumina sequencing of cell-

type enriched transcriptomes has been submitted to
NCBI’s Short Read Archive using the following accession
numbers: RCAM, SRX042054 (NK96-sup - culture
enriched for colonial cells grown in the presence of
mixed bacterial prey and A. machipongonensis); SwM,
SRX042053 (Col-sup - solitary swimming cells grown in
the presence of mixed bacterial prey); ThA2, SRX042052
(Pxl-att - culture enriched for solitary attached cells grown
only in the presence of A. machipongonensis); ThAM,
SRX042051 (NK96-att - culture enriched for solitary
attached cells grown in the presence of mixed bacterial
prey and A. machipongonensis); ThM, SRX042050 (Col-
att - culture enriched for solitary attached cells grown in
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the presence of mixed bacterial prey); RCA1, SRX042049
(colonies - culture enriched for colonial cells grown
only in the presence of A. machipongonensis); CCM,
SRX042047 (Chains - culture enriched for chain cells
grown with mixed bacterial prey); RCA2, SRX042046
(Pxl-sup - culture enriched for colonial cells grown only in
the presence of A. machipongonensis).
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Endnotes
aThe term ‘Choanozoa,’ first coined by Shalchian-Tabrizi et al. [75], refers to
the paraphyletic group that contains Capsaspora owczarzaki and
choanoflagellates, but excludes metazoans.
bS. rosetta tyrosine kinases
The S. rosetta genome encodes 469 protein kinases. The 376 serine/
threonine kinases are generally well conserved between M. brevicollis and S.
rosetta (Table S6 in Additional file 1). In contrast, the TKs seem to be more
rapidly evolving and show divergent sequences and large numbers of gains
and losses (Table S6 in Additional file 1). Comparison of the 93 S. rosetta and
135 M. brevicollis TKs suggests a core choanoflagellate tyrosine kinome of
approximately 51 kinases, with extensive gains and some losses in the two
species. The Fer and FAK kinases appear to have been lost in M. brevicollis,
as they are found in S. rosetta, metazoans, and Capsaspora owczarzaki. Fer
and FAK both regulate cell adhesion in metazoans, suggesting that M.
brevicollis has lost some ancestral cell-adhesion functions.
The S. rosetta sequences allow an improved classification of both
choanoflagellate tyrosine kinomes, resulting in six new families of RTKs
(RTKN-T) and the creation of other families (UTKA-H) from many of the
previously unique TKs. The additional sequences also indicate orthology
between some choanoflagellate and metazoan RTKs: Eph RTKs are found in
both species, and several other RTKs are weakly Eph-like. More tentatively,
the new RTKS family may be orthologous to the insulin/IGF1R family,
although it has only partial similarity to the extracellular regions of metazoan
insulin receptors.
The cytoplasmic (non-receptor) TKs are evolutionarily stable between M.
brevicollis and S. rosetta, with 90% of kinases in common, the only
differences being one extra CTKA and FYTK in M. brevicollis, and the loss of
FAK and Fer from M. brevicollis. The large family of 15 HMTKs is completely
conserved between the two sequenced choanoflagellate species.
The receptor TKs are more evolutionarily dynamic, with eight families
specific to M. brevicollis, three families specific to S. rosetta, and only 21% of
all RTKs orthologous between the two sequenced choanoflagellates.
Another eight TK families (UTKA-H) could not be classified as cytoplasmic or
receptor, and the ‘TK-Unique’ kinases have no clear homologs between the
two species.
As with other genes, we see that S. rosetta TKs that are conserved with M.
brevicollis tend to be more highly expressed in attached cells, while those
unique to S. rosetta are more highly expressed in rosette colonies (Figure
S12 in Additional file 1).
cS. rosetta cadherin and hedgling protein diversity
The S. rosetta genome is predicted to encode 29 proteins containing
cadherin domains [23], a number that is comparable to the complement of
cadherins found in the genomes of M. brevicollis and many animals
(including 17 in D. melanogaster and 32 in C. intestinalis) [76]. While
cadherins are well known for their roles in animal cell adhesion and
intercellular signaling [77], their functions in choanoflagellates are unknown.
Two S. rosetta cadherins, PTSG_06458 and PTSG_06068, are upregulated in
colonies relative to single cells and an additional six are upregulated in
thecate cells relative to colonies (Figure S5 in Additional file 1).
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Two of the six cadherins that are upregulated in thecate cells are homologs
of Hedgling. Hedgling proteins are conserved in choanoflagellates, sponges,
and cnidaria, and proposed to represent evolutionary antecedents of the
metazoan developmental signaling protein Hh [2,27]. Unlike canonical
metazoan Hh proteins (which contain an amino-terminal Hh signal domain
and a carboxy-terminal autocatalytic HINT domain), Hedgling proteins are
large transmembrane proteins that contain an amino-terminal Hh domain,
an adjacent VWA domain, and multiple cadherin repeats; some also contain
tumor necrosis factor receptor, Furin, and epidermal growth factor domains,
although these are not universally conserved [2,78]. Prior to the sequencing
of the S. rosetta genome, the choanoflagellate Hedglings were the only
known non-metazoan Hh-domain containing proteins. With the sequencing
of the S. rosetta genome, we have discovered five additional non-Hedgling
proteins that contain Hh domains. A unifying characteristic of these proteins
and all Hedglings, including those from the sponge Amphimedon
queenslandica and the cnidarian Nematostella vectensis, is the positioning of
the Hh domain immediately adjacent to a VWA domain; this pairing may
represent an ancient cassette that was also encoded by the genes from
which metazoan Hh evolved. Four of the Hh signaling domain-containing
proteins also have a predicted transmembrane domain and these proteins
are all upregulated in thecate cells (Figure S6 in Additional file 1). The
remaining three Hh domain-containing proteins are relatively small, contain
an amino-terminal signal sequence, and lack a transmembrane domain;
these proteins are consistently upregulated in colonial cells where they may
act as secreted ligands. Like M. brevicollis, the S. rosetta genome also
encodes homologs of Patched, the Hh receptor in metazoans, allowing the
possibility that the Hh-Patched interaction preceded the origin of
metazoans.
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