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Abstract

We have developed a new method, SOAPfuse, to identify fusion transcripts from paired-end RNA-Seq data.
SOAPfuse applies an improved partial exhaustion algorithm to construct a library of fusion junction sequences,
which can be used to efficiently identify fusion events, and employs a series of filters to nominate high-confidence
fusion transcripts. Compared with other released tools, SOAPfuse achieves higher detection efficiency and
consumed less computing resources. We applied SOAPfuse to RNA-Seq data from two bladder cancer cell lines,
and confirmed 15 fusion transcripts, including several novel events common to both cell lines. SOAPfuse is
available at http://soap.genomics.org.cn/soapfuse.html.

Background
Gene fusions, arising from the juxtaposition of two distinct
regions in chromosomes, play important roles in carcino-
genesis and can serve as valuable diagnostic and therapeu-
tic targets in cancer. Aberrant gene fusions have been
widely described in malignant hematological disorders and
sarcomas [1-3], with the recurrent BCR-ABL fusion gene
in chronic myeloid leukemia as the classic example [4]. In
contrast, the biological and clinical impact of gene fusions
in more common solid tumor types has been less appre-
ciated [2]. However, recent discoveries of recurrent gene
fusions, such as TMPRSS2-ERG in a majority of prostate
cancers [5,6], EML4-ALK in non-small-cell lung cancer [7]
and VTI1A-TCF7L2 in colorectal cancer [8], point to their
functionally important role in solid tumors. These fusion
events were not detected until recently due to technical
and analytic problems encountered in the identification of
balanced chromosomal aberrations in complex karyotypic
profiles of solid tumors.
Massively parallel RNA sequencing (RNA-Seq) using a

next-generation sequencing (NGS) platform provides a
revolutionary, new tool for precise measurement of levels
of transcript abundance and structure in a large variety

of species [9-16]. In addition, RNA-Seq has been proven
to be a sensitive and efficient approach to gene fusion
discovery in many types of cancers [17-20]. Compared
with whole genome sequencing, which is also able to
detect gene-fusion-creating rearrangements, RNA-Seq
identifies fusion events that generate aberrant transcripts
that are more likely to be functional or causal in biologi-
cal or disease settings.
Recently, several computational methods, including

FusionSeq [21], deFuse [22], TopHat-Fusion [23], Fusion-
Hunter [24], SnowShoes-FTD [25], chimerascan [26] and
FusionMap [27], have been developed to identify fusion
transcript candidates by analyzing RNA-Seq data.
Although these methods were capable of detecting genu-
ine fusion transcripts, many challenges and limitations
remain. For example, to determine the junction sites in a
given fusion transcript, FusionSeq selected all exons that
were potentially involved in the junction from both of the
gene pairs, and then covered the exons with a set of ‘tiles’
that were spaced one nucleotide apart [21]. A fusion junc-
tion library was constructed by creating all pairwise junc-
tions between these tiles, and the junctions were identified
by mapping the RNA-Seq reads to the junction library.
This module makes FusionSeq time consuming, especially
for genes with more and larger exons. In addition, Fusion-
Hunter identified only fusion transcripts with junction
sites at the exon edge (splicing junction), but could not
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detect a fusion transcript with junction sites in the middle
of an exon [24]. Many homologous genes and repetitive
sequences often masquerade as fusion events due to
ambiguous alignments of short NGS sequencing reads.
The lack of effective filtering mechanisms promoted fre-
quent detection of spurious fusion transcripts. Further-
more, several software consumed large amounts of
computational resources (CPU time and memory usage),
which was a serious problem when analyzing hundreds of
samples in parallel.
To address the limitations above, we present a new

algorithm, SOAPfuse, which detects fusion transcripts in
cancer from paired-end RNA-Seq data. SOAPfuse com-
bines alignment of RNA-Seq paired-end reads against
the human genome reference sequence and annotated
genes, with detection of candidate fusion events. It seeks
two types of reads supporting a fusion event (Figure 1a):
discordant mapping paired-end reads (span-read) that
connect the candidate fusion gene pairs; and junction
reads (junc-read) that confirm the exact junction sites.
SOAPfuse applies an improved partial exhaustion algo-
rithm to efficiently construct a putative junction library
and also adopts a series of filters and quality control
measures to discriminate likely genuine fusions from
sequencing and alignment artifacts (Figure 1b; see Materi-
als and methods). The program reports a high-confidence
list of fusion transcripts with the precise locations of junc-
tion sites at single nucleotide resolution. Furthermore,
SOAPfuse supplies the predicted junction sequences of
fusion transcripts, which are helpful for the design of
bilateral primers in preparation for RT-PCR validation.
Moreover, SOAPfuse creates schematic diagrams that can
display the alignment of supporting reads (span-reads and
junc-reads) on junction sequences and expression levels of
exons from each gene pair. Figures are created in lossless
image format (SVG, scalable vector graphics) and, with
detailed information on fusion events, will facilitate com-
prehensive characterization of fusion transcripts at single
base resolution and will greatly aid manual selection of the
fusion events of interest for further research. SOAPfuse
can distinguish specific features of RNA-Seq data, such as
insert size and read length, so it still works well even when
a single sample includes different types of paired-end
RNA-Seq data.

Results
Evaluation of performance and sensitivity of SOAPfuse
To assess the performance and sensitivity of SOAPfuse, we
applied SOAPfuse to paired-end RNA-Seq datasets from
two previous studies: dataset A, consisting of six melanoma
samples and one chronic myelogenous leukemia sample, in
which 15 confirmed fusions were detected [19]; and dataset
B from four breast cancer cell lines with 27 validated
fusions [20]. According to Sanger sequences, we

characterized these fusion transcripts using release 59 of
the Ensembl annotation database [28], including gene sym-
bols, chromosome locations and exact genomic coordi-
nates of junction sites (Additional file 1). To compare
SOAPfuse with other published software (Additional file
2), we also run deFuse [22], TopHat-Fusion [23], Fusion-
Hunter [24], SnowShoes-FTD [25] and chimerascan [26]
on both RNA-Seq datasets. FusionSeq [21] and FusionMap
[27] were abandoned due to computational limitations
(Additional file 3). We examined different parameters for
each tool to obtain higher sensitivity with lower consump-
tion of computational resources (Additional file 3). For a
given fusion event, the distance between a junction site
identified by these tools and the real one as determined by
previous reports should be less than 10 bp, or the fusion
event was considered as not detected. Figure 2 shows
the computing resources (CPU time and memory usage)
and sensitivity for SOAPfuse and the other five methods
(Additional file 4).
For dataset A, which contains approximately 111 million
paired-end reads, SOAPfuse consumed the least CPU
time (approximately 5.2 hours) and the second least
memory (approximately 7.1 Gigabytes) to complete the
data analysis (including the alignment of reads against
reference), and was able to detect all 15 fusion events.
DeFuse and FusionHunter detected comparable numbers
of known fusion events (12 to 13 of the 15 fusions), but
took 82.1 and 21.3 CUP hours, respectively, at least four
times as much as SOAPfuse (Additional file 5). The com-
putational resource cost of SnowShoes-FTD was compar-
able with SOAPfuse, but SnowShoes-FTD identified only
8 of 15 events. The remaining two tools, chimerascan
and TopHat-Fusion, detected four confirmed fusion
events but used significantly more CPU hours or memory
usage. For dataset B containing approximately 55 million
paired-end reads, SOAPfuse detected 26 of the 27
reported fusion events with 4.1 CPU hours and 6.3 Giga-
bytes memory. The other five tools were able to identify
comparable numbers of reported fusions (15 to 21) and
cost at least 6.4 hours CPU time. One fusion event,
NFS1-PREX1, was missed by all methods, including
SOAPfuse (Additional file 3).
The process of data analysis for all six tools included

two stages: read alignment then detection of fusion
events. For both datasets, SOAPfuse, SnowShoes-FTD,
and chimerascan consumed less memory than the other
three tools. Chimerascan used less memory than SOAP-
fuse because it used Bowtie [29], which required less
memory than SOAP2 [30] in SOAPfuse, to align reads.
The memory usage of the other tools (deFuse, Fusion-
Hunter, and TopHat-Fusion) were almost two to three
times that of SOAPfuse. They reached maximum mem-
ory usage at the fusion detection stage, but not at the
read alignment stage, which suggests there may still be
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room for algorithm improvement for fusion detection.
SOAPfuse uses several optimized algorithms to reduce
memory consumption with low cost to computation
speed. For the two datasets, SOAPfuse expended less
CPU time and memory than most of the other five tools,
and reached the highest detection sensitivity, with almost
all reported fusion events rediscovered (41 of 42), show-
ing its superior performance and high sensitivity.

Estimate of the false negative and false positive rates by
simulated datasets
To estimate the false negative (FN) and false positive
(FP) rates of fusion detection by SOAPfuse, we applied
SOAPfuse to a simulated RNA-Seq dataset. We used
the short-read simulator provided by MAQ [31] to gen-
erate paired-end RNA-Seq reads from 150 simulated
fusions with nine different expression levels (5- to 200-
fold; Additional files 3 and 6). We mixed simulated
reads with the RNA-Seq dataset (approximately 19 mil-
lion paired-end reads) from human embryonic stem
cells, which was also used as background data by
FusionMap [27]. Chimerascan, FusionHunter and Snow-
Shoes-FTD only detected fusion events with junction
sites at the exon boundaries. Their performances could
not be evaluated because some simulated fusion events
harbored junction sites in the middle of exons. We
tested deFuse, TopHat-Fusion and SOAPfuse on simu-
lated paired-end reads. Several strategies were applied to
fairly compare the performance of these tools (Addi-
tional file 3). In total, 149 (99%) of the 150 fusion events
were rediscovered, and 142 (94%) were detected by at
least two tools, indicating our simulation was reason-
able. To be conservative, the performance comparison
was based on the 142 events that were supported by at
least two algorithms (Figure 3; Additional file 7).
As expected, FN rates decreased with increasing expres-
sion levels of fusion transcripts (Figure 3a). SOAPfuse

and deFuse achieved the lowest FN rates at 5% with
fusion transcript expression levels of 30-fold or greater.
TopHat-Fusion had higher FN rates, especially at low
fusion transcript expression levels (5- to 20-fold). For
the FP rate (Figure 3b), only SOAPfuse achieved <5% at
different fusion transcript expression levels, while
deFuse and TopHat-Fusion had higher FP rates at lower
fusion transcript expression levels.
Generally, lower FN rates and lower FP rates are con-

tradictory for detection of fusions; however, SOAPfuse
and deFuse are good at reducing FN and FP rates dur-
ing fusion transcript identification. SOAPfuse missed
three simulated fusions, which are detected by both
deFuse and TopHat-Fusion (Figure 3c), revealing a
weakness in analysis of homologous gene sequences and
short fusion transcripts of long genes (Additional file 3).
In summary, SOAPfuse showed optimal performance
with low FN and FP rates at different expression levels
of fusion transcripts.

Application to bladder cancer cell lines
We next applied SOAPfuse to two bladder cancer cell
lines, 5637 and T24. We performed high-throughput
RNA-Seq, using Illumina HiSeq sequencing technology,
on mRNA from both cell lines and acquired more than
30 million paired-end reads for each (Table 1; see Mate-
rials and methods). SOAPfuse identified a total of 16
fusion transcripts, all of which are intrachromosomal
and fused at the exon boundaries. We designed primers
for RT-PCR experimental validation of all predicted
fusions, and Sanger sequencing of the amplicons con-
firmed 15 (94%) events, of which 6 were detected in
both cell lines (Figure 4a; Table 2; Additional file 8).
Detailed analysis showed that several confirmed fusion
events (Table 2) might be consequences of chromoso-
mal rearrangements. For example, the HADHB-RBKS
fusion transcript (Figure 4b) fuses two genes from
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different DNA strands, indicating a potential inversion
(Figure S1a in Additional file 9). Furthermore, some
fusions implied possible intrachromosomal translocations
(Figure S1b in Additional file 9), such as CIRH1A-

TMCO7, PSMD8-SIPA1L3, and TIAM1-ATP5O (Figure
4c-e). Intrachromosomal translocations as a mechanism
to create fusions were also found in ovarian carcinoma
[32] and glioblastoma [33]. To our knowledge, all the

Table 1 RNA-Seq data from two bladder cancer cell lines

Sample ID Read type Insert size Read length Number of paired-end reads

5637 Paired end 200 90 32,228,742

T24 Paired end 200 90 36,830,100
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(a) RT-PCR amplifications of validated fusions in two bladder cancer cell lines

(b) HADHB - RBKS in sample 5637 (d) PSMD8 - SIPA1L3 in sample 5637

(c) CIRH1A - TMCO7 in sample 5637 (e) TIAM1 - ATP5O in sample 5637

Figure 4 Confirmed fusions in two bladder cancer cell lines. (a) RT-PCR amplifications of confirmed fusions in two bladder cancer cell lines.
Marker (M), positive (b-actin) and negative (ddH2O) controls are also shown. Fusion events in red are detected in both cell lines. For fusions that
have multiple RT-PCR products, genuine amplicons of a fusion transcript are boxed in yellow. One fusion, SNAP23-LRRC57, reported by deFuse, is
further discussed in the text. (b-e) Fusion events that indicate potential chromosomal rearrangements, including potential inversion (b) and
intrachromosomal translocations (c-e), are shown. Blue segments are upstream genes, and downstream genes are in orange. Gene symbols are
followed with their DNA strands. Exons around the junction sites are drawn with a double slash indicating exons that are not shown. The start
positions of upstream genes and end positions of downstream genes are noted with a colon separating chromosomal location and reference
genome coordinate. The span-reads and junc-reads from RNA-Seq are shown over and under the junction sequences, respectively. Sanger
sequencing of junction sequences are displayed under the junction sites.
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confirmed fusion events have not been reported by pre-
vious studies on bladder cancer, indicating their potential
significance for further research.
We also used deFuse to reanalyze this dataset and

identified 11 fusions, of which 10 (91%) events were
able to be confirmed by RT-PCR experiments. Nine of
the ten confirmed events were also detected by SOAP-
fuse (Table S10 in Additional file 8) and the remaining
fusion transcript (SNAP23-LRRC57; Figure 4a) was
missed by SOAPfuse. Sanger sequencing shows that
exon 5 of SNAP23 is fused to the antisense sequence of
exon 4 of LRRC57. This implies that deFuse has a some-
what different definition of a fusion compared to SOAP-
fuse (Figure 5a; Additional file 3). The distance between
the junction sites in SNAP23 and LRRC57 is approxi-
mately 30 kbp, which is always allowed by the alternative
splicing. We speculated the fusion predicted by deFuse
might be an alternative splicing event in the upstream
gene, SNAP23. So we checked the latest version of the
Ensembl annotation database (release 69) and found a
transcript sequence (SNAP23-017) of gene SNAP23
in which the antisense sequences of exon 4 in LRRC57
has been annotated as a new exon in the SNAP23 gene
(Figure 5b). Based on this discovery, we believe the
SNAP23-LRRC57 fusion event reported by deFuse is an
alternative splicing event in SNAP23.

Discussion
We have developed a new method called SOAPfuse to
aid in fusion transcript discovery from paired-end RNA-
Seq data. Comparing SOAPfuse with other tools on two

previously published datasets, one simulated dataset and
two bladder cancer cell line datasets, we authenticated
superior performance and high sensitivity of SOAPfuse.
By evaluating the program on a simulated dataset,
SOAPfuse showed a low FP rate (5%) at different
expression levels of fusion transcripts and it also
achieved a low FN rate of 5% when the expression levels
of fusion transcripts were greater than 30-fold. Using
the bladder cancer cell line datasets, we demonstrated
with RT-PCR-validated fusions that SOAPfuse has sub-
stantially high accuracy (15 of 16, 94%) and we also
identified several novel fusion transcripts that may be
derived from chromosomal rearrangements.
In the simulated dataset, SOAPfuse missed three fusion

transcripts. The program had some difficulties detecting
fusion transcripts from gene pairs having highly similar
sequences, and fusion transcripts involving short tran-
scripts of long genes. However, preliminary solutions have
been applied to remedy these shortcomings successfully
(Additional file 3), and will be included in future versions
of SOAPfuse. After analyzing the characteristics of the
fusion events, we found that several novel fusion tran-
scripts detected in the bladder cancer cell lines were more
likely to be derived from chromosomal rearrangements of
the DNA. Whole genome sequencing will be helpful for
determining whether the fusion transcripts are from geno-
mic DNA variations and if the breakpoints can be
detected. We have started to develop a new algorithm to
detect chromosomal rearrangements that can generate
predicted fusion transcripts from whole genome sequen-
cing data based on the results from SOAPfuse. It will be

Table 2 Confirmed fusion events from two bladder cancer cell lines

Sample
ID

Fusion genes
(5’-3’)

Chromosome
(5’-3’)

5’
position

3’
position

Fusion reads
(span/junc)

Detected in both
cell lines

Potential chromosomal
rearrangement

5637 BDKRB2-BDKRB1 14-14 96703518 96728989 2/3 Yes No

5637 CIRH1A-TMCO7 16-16 69184807 69117388 20/20 Yes Yes

5637 CLN6-CALML4 15-15 68521840 68489966 4/4 Yes No

5637 GATSL1-GTF2I 7-7 74867229 74143124 3/15 No Yes

5637 HADHB-RBKS 2-2 26502983 28070964 12/10 Yes Yes

5637 POLA2-
CDC42EP2

11-11 65063461 65088015 3/5 No No

5637 PSMD8-SIPA1L3 19-19 38871639 38673159 5/5 Yes Yes

5637 TIAM1-ATP5O 21-21 32537279 35276325 9/21 Yes Yes

T24 BDKRB2-BDKRB1 14-14 96703518 96728989 3/3 Yes No

T24 CIRH1A-TMCO7 16-16 69184807 69117388 19/24 Yes Yes

T24 CLN6-CALML4 15-15 68521840 68489966 6/5 Yes No

T24 CTBS-GNG5 1-1 85028940 84967653 3/6 No No

T24 HADHB-RBKS 2-2 26502983 28070964 6/7 Yes Yes

T24 PSMD8-SIPA1L3 19-19 38871639 38673159 6/5 Yes Yes

T24 TIAM1-ATP5O 21-21 32537279 35276325 8/28 Yes Yes

All information is based on release 59 of the Ensembl hg19 annotation database. Six fusions were detected in both bladder cell lines, and five events may be
derived from potential chromosomal rearrangements on the genome. For Fusion reads (span/junc), numbers of span-reads and junc-reads are separated by a
slash.
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complementary to SOAPfuse for performing genome ana-
lysis of fusions with tools like CREST [34]. We will con-
tinuously refine SOAPfuse and update it on our official
website.

Conclusions
Here we present an optimized publicly available metho-
dology for identifying novel fusion transcripts from
RNA-Seq data. Our results suggest that SOAPfuse
achieves better performance than other published tools
and it produces a highly accurate list of fusion events in
a time-efficient manner. Furthermore, it provides pre-
dicted junction sequences and schematic diagrams of
fusion events, which are helpful to analyze detected
fusions. Overall, SOAPfuse is a useful method that will
enable other research groups to make discoveries from
their own RNA-Seq data collections.

Materials and methods
Outline of the general approach
SOAPfuse seeks two types of reads (span-reads and junc-
reads; Figure 1a) to identify fusion transcripts. Paired-end
reads that map to two different genes (a gene pair) are
defined as span-reads, and reads covering the junction
sites are called junc-reads. Span-reads are used to identify
candidate gene pairs, and junc-reads are used to charac-
terize the exact junction sites at single base resolution.
Duplicate span-reads and junc-reads are removed before
calculating the number of supporting reads (Figure 6a).
SOAPfuse contains nine steps in its pipeline (Additional

file 10), and can be divided into four parts (Figure 1b): (i)
read alignment (steps S01 to S03); (ii) identifying candi-
date gene pairs (steps S04 and S05); (iii) detection of pre-
dicted fusions (steps S06 and S07); and (iv) filtering
fusions (steps S08 and S09). A detailed description of the
algorithm is in Additional file 3.

Read alignment
SOAPfuse initially aligns paired-end reads against the
human reference genome sequence (hg19) using SOAP2
[30] (SOAP-2.21; step S01 in Additional file 10). We
divided the reads into three types according to the read
alignment results: PE-S01, SE-S01 and UM-S01, where PE
stands for paired-end mapped result, SE for single-end
mapped result, and UM for unmapped read. PE-S01 reads
indicate the paired-end reads mapping to the genome with
the proper insert sizes (<10,000 bp). SE-S01 contains
paired-end reads in which only one of two ends mapped
to the reference genome, and paired-end reads indicating
a fragment with an abnormal insert size or mapped orien-
tation. All unmapped reads are saved in UM-S01 with a
FASTA format. PE-S01 is used to evaluate insert size
(Additional file 3). SOAPfuse then aligns UM-S01 reads
against annotated transcripts (Ensembl release; step S02 in
Additional file 10) and generates SE-S02 and UM-S02. To
filter unmapped reads caused by small indels, UM-S02
reads are realigned to annotated transcripts using BWA
[35] (BWA-0.5.9; maximum number of gap extensions is
5), and the remaining unmapped reads are called filtered-
unmapped (FUM).

CTAAACCGCATAGAAGaAGGCTTGGACCAAATAAATAAGGACATGAGAGAGACAGAGAAGACTTTAACAGAACTCAACAAATGCTGTGGCCTTTGTGTCTGCCCATGTAATAG GCGAAGAATTTTAAGGCGTGGACAGCAAGATATCTTCACTGAGATCTGAGATCTAAACCGCATAGAAGaAGGCTTGGACCAAATAAATAAGGACATGAGAGAGACAGAGAAGACTTTAACAGAACTCAACAAATGCTGTGGCCTTTGTGTCTGCCCATGTAATAGC GCGAAGAATTTTAAGGCGTGGACAGCAAGATATCTTCACTGAGATCTGAGATT
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Figure 5 Analysis of SNAP23-LRRC57 reported by deFuse. (a) SNAP23-LRRC57 analysis based on release 59 of the Ensembl annotation
database. Sanger sequencing of RT-PCR amplicons of the SNAP23-LRRC57 fusion event reported by deFuse is shown. The upstream gene
(LRRC57) is in blue, and the downstream part is in orange. Gene symbols are followed with their DNA strands. The downstream fusion part is the
antisense strand sequence of exon 4 of LRRC57. (b) In the latest release (release 69) of the Ensembl annotation database, the downstream part
of the SNAP23-LRRC57 fusion is annotated as part of exon 4 of SNAP23-017, one of the SNAP23 transcripts. The fusion SNAP23-LRRC57 reported
by deFuse is in fact an alternative splicing event in gene SNAP23.
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Iteratively trimming and realigning reads
The latest protocols for NGS RNA-Seq library preparation
can generate paired-end reads with an insert size shorter
than the total length of both reads (with the 3’ ends of
both reads overlapped). The paired-end reads with over-
lapped 3’ ends may come from the junction regions con-
taining the junction sites and these paired-end reads are
not mapped to the reference if the overlapped regions
cover the junction sites. These reads are components of
FUM generated in step S02 (Additional file 10) and cannot
become span-reads, which will reduce the capability of
fusion detection. SOAPfuse estimates whether the number
of these paired-end reads with overlapped 3’ ends exceeds
the threshold (20% of total reads by default). If yes, or the
user enables a trimming operation accessible in the config-
uration file, SOAPfuse will iteratively trim and realign
FUM reads to annotated transcripts (Figure 7; step S03 in

Additional file 10). The length of reads after trimming
should be at least 30 nucleotides (default parameter in
SOAPfuse). The trimmed reads that are able to be mapped
to annotated transcripts are stored in SE-S03 (Additional
file 3). Two steps were used to finish the trimming and
realigning operation: first, FUM reads were progressively
trimmed off five bases from the 3’-end and mapped to
annotated transcripts again until a match was found; sec-
ond, using the same strategy, we trimmed the remaining
FUM reads from the 5’-end. All mapped paired-end reads
from these two steps were merged together (step S04 in
Additional file 10).

Identifying candidate gene pairs
From all discordantly aligned reads, SOAPfuse seeks
span-reads to support candidate gene pairs (step S05 in
Additional file 10). Both the span-reads that mapped
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Figure 6 Basic filtering of candidate gene pairs in SOAPfuse. (a) Duplicated span-reads and junc-reads are removed before calculating the
number of supporting reads and only one duplicated read is retained. (b) Genes C and D are adjacent, and they share two exons: exon 4 and
exon 5 from Gene C overlap with exon 1 and exon 2 of Gene D, respectively. Span-reads from the overlapped exons are excluded by SOAPfuse.
(c) Gene pair M and N has regions with homogenous/similar sequences and reads from these regions are filtered out.
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uniquely to the reference (human genome and annotated
transcripts) and the trimmed reads that have multiple
hits were used to detect the candidate gene pairs. The
maximum hits for each span-read is a parameter in the
configuration file. To ensure accurate detection of the
fusion gene pairs, SOAPfuse imposes several filters on
the predicted candidate gene pair list (Additional file 3),
such as excluding gene pairs from the same gene families
and pairs with overlapped or homogenous exon regions
(Figure 6b).

Determining the upstream and downstream genes in the
fusion events
After obtaining the candidate gene pairs, the upstream and
the downstream genes of the fusion were determined
based on the information from span-read alignment
against the reference. In the process of paired-end sequen-
cing, the fragments are sequenced from bilateral edges to
the middle part: one end starts from the 3’ end of the frag-
ment, while the other end starts from the 3’ end of the
complementary base-pairing sequence of the fragment
(Figure 8a). This information is used to define the up- and
downstream genes in a fusion transcript.
A span-read (paired-end reads ‘a’ and ‘b’) supports a

candidate gene pair (Gene A and Gene B). According to
the serial number (‘1’ or ‘2’) and mapped orientation (‘+’
or ‘-’) of paired-end reads (read ‘a’ and ‘b’), there are 16
combinations, but only 4 are rational. These four combi-
nations support two types of fusions in which the
upstream and downstream genes are different (Additional
file 11. Table S12). The judgment rule is: the gene aligned
by reads in the plus orientation must be the upstream
gene. Here, we presume that read ‘a’ maps to Gene A and

read ‘b’ maps to Gene B (Figure 8b,c). In Figure 8b, read ‘a’
aligns to Gene A (annotated transcripts) in the plus orien-
tation, so Gene A must be the upstream gene; while in
Figure 8c, read ‘b’ aligns to Gene B in the plus orientation,
so Gene B must be the upstream gene. According to this
rule, SOAPfuse defines the upstream and downstream
genes in fusion events.

Obtaining the fused regions
Before we defined the fused regions in which the junction
sites may located, we obtained a non-redundant tran-
script sequence from transcript(s) of each annotated gene
(Additional file 3). Two methods were used to define the
fused regions in gene pairs. In the first method, SOAP-
fuse bisects each FUM read, and generates two isometric
segments, each called a half-unmapped read (HUM read;
step S06 in Additional file 10). HUM reads are aligned
against candidate gene pairs with SOAP2. A genuine
junction read (junc-read) should have at least one HUM
read that does not cover the junction site and could map
to one gene of the pair. Based on the mapped HUM read,
SOAPfuse extends one HUM read length from the
mapped position in non-redundant transcripts to define
the fused region wherein the junction site might be
located (Figure 9a). For HUM reads with multiple hits, all
locations of the hits are taken into account. Original
reads of mapped HUM reads are called as useful
unmapped reads (UUM read).
SOAPfuse also uses span-reads to detect the fused

regions in candidate gene pairs (step S07-a in Additional
file 10). Span-reads, the paired-end reads supporting the
candidate fusion gene pairs, are derived from the fused
transcripts and the junction sites are often located in
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Figure 7 Trimming and realigning the paired-end reads in which both 3’ ends overlap each other. A junction sequence is shown with
the junction site noted by a yellow dot. The blue region is from Gene A, and orange is from Gene B. The paired-end read with overlapped 3’
ends (black thick line) cannot map to Gene A and Gene B, as reads cover the junction site. A series of trimmed reads (gray thick line) are
obtained by iteratively trimming 5 nucleotides (nts) each time from the 3’ ends until the reads could map to Gene A and Gene B. In this
example, end 1 of a paired-end read requires two cycles of trimming to achieve successful alignment, while end 2 needs five cycles.
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regions of the fused transcripts between both ends of
span-reads. For upstream and downstream genes, we can
extend one region with length equal to insert size (evalu-
ated in step S01) from the mapped position of each 3’
end span-read to estimate the fused region covering the
junction site (Figure 9b). Every gene pair is always sup-
ported by at least two span-reads, corresponding to sev-
eral fused regions that may have overlaps with each
other. We presumed that end 1 of a span-read mapped
to position MP1 in Gene A, and end 2 of the span-read
mapped to position MP2 in Gene B. The lengths of ends
1 and 2 of the span-reads are RL1 and RL2, respectively.
The average of insert sizes (INS) and their standard
deviation (SD) are evaluated in step S01. The fused
regions were estimated by the following intervals:
The intervals of fused regions for the upstream genes

are:

[MP1 + RL1 − FLB, MP1 + INS + 3 ∗ SD − RL2 + FLB − 1]

And the intervals of fused regions for the downstream
genes are:

[MP2 + RL2 − INS − 3 ∗ SD + RL1 − FLB , MP2 + FLB − 1]

In the above formula, a flanking region with length of
FLB was considered because sometimes a few bases
from the 3’ end of a span-read cover the junction sites
in the mismatch-allowed alignment.
SOAPfuse combined the fused regions determined by

the above two methods to detect the junction sites
using the partial exhaustion algorithm as described
below.

Construction of fusion junction sequence library with
partial exhaustion algorithm
To simplify the explanation of the algorithm, we call the
fused regions determined by the above two methods as
fused regions 1 and fused regions 2, respectively. Fused
region 1, defined by the mapped HUM reads, is a small
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Figure 8 Determining the upstream and downstream genes in fusion events. (a) A fragment of paired-end sequencing is shown with its
complementary fragment. Paired-end reads (reads ‘a’ and ‘b’) are shown with their sequencing direction (from 5’ to 3’, noted by arrows on
reads). Read ‘a’ is generated from the fragment itself, while read ‘b’ is from the complementary fragment. The sequencing orientation is from
bilateral edges to the middle of the fragment, so the paired-end reads are generated head-to-head. (b,c) Different classifications of span-read
(read ‘a’ and ‘b’) support different upstream and downstream genes. The gene aligned by reads in the plus orientation must be the upstream
gene. In (b), read ‘a’ aligns to Gene A in a plus orientation. Based on the paired-end sequencing shown in (a), Gene A must be the upstream
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region covering the junction sites with length smaller
than one NGS read. Fused region 2 is a large region
defined by the NGS library insert sizes, which are always
much longer than HUM reads. Generally, fused region 1
is more useful than fused region 2 to define the junction
sites.

However, not all mapped HUM reads are from genu-
ine junc-reads. Sometimes, one unmapped read from a
given gene does not map this gene as a result of more
mismatches than are allowed by SOAP2. Unmapped
reads like this are not junc-reads and after the bisection
into two HUM reads, one of the HUM reads could be
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Figure 9 Obtaining fused regions by two methods. A junction sequence in a fusion transcript from a gene pair, Gene A and Gene B, in blue
and orange, respectively, is shown. The junction site is displayed as yellow round dots on the fusion sequence. (a) Two unmapped reads
(candidate junc-reads) are shown around the fusion sequence. Each read is bisected into two isometric HUM reads: one HUM can map to one
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mapped to the original gene, which results in spurious
fused regions. Fused region 2 involves alignments of two
ends of a span-read simultaneously, which are also fil-
tered by several effective criteria (see the ‘Obtaining
candidate gene pairs’ section). SOAPfuse combined
fused regions 1 and 2 to efficiently define the junction
sites. SOAPfuse classifies fused region 2 into two types
of sub-regions: overlapped parts between fused regions
1 and 2 are called the credible-region, while the other
parts of fused region 2 are called the potential-region
(Figure 10a).
In order to build the fusion junction sequence library,

we covered fused region 2 from each gene pair with ‘tiles’
that are spaced one nucleotide apart and we finally gener-
ated the candidate fusion junction library by creating all
pair-wise connections between these tiles (Figure 10b). To
eliminate the false positives in the junction sequence
library, only the junction sequences in which at least one
of two junction sites in a gene pair is located in the cred-
ible-region were selected for further analysis. SOAPfuse
carried out this partial exhaustion algorithm to reduce the
size of the putative junction library and retain genuine
junction sequences as much as possible.

Detection of junction sites in fusion transcripts
To identify the junction sites of fusion transcripts, we
mapped the useful-unmapped-reads (UUM reads; see the
‘Obtaining the fused regions’ section) to the putative
fusion junction sequence library to seek the junction
reads (step S07-b in Additional file 10). We required that
a candidate fusion should be supported by multiple span-
reads, junction reads, and other criteria (step S08 in
Additional file 10; Additional file 3). To exclude FP
fusion events, we removed the initial candidate fusion
gene pairs that closed with each other and that had
homogenous/overlapping regions around the junction
sites (Figure 6c; step S09 in Additional file 10). SOAPfuse
not only reports high-confident fusions but also provides
the predicted junction sequences for further RT-PCR
experimental validations. SVG figures are also created,
showing the alignments of supporting reads on junction
sequences and expression level of gene pairs (for exam-
ple, Additional file 12).

Preparation of simulated datasets
Simulated RNA-Seq data were generated to evaluate the
FN and FP rate of SOAPfuse. We generated 150 simulated
fusion transcripts in two steps based on human annotated
genes. The first step involved randomly selecting candidate
gene pairs with several criteria, such as controlling the dis-
tance between paired genes and avoiding gene pairs from
gene families. The second step involved randomly select-
ing transcripts and junction sites at the exon edges or in
the middle of exons. Using the short-read simulator

provided by MAQ [31], we generated paired-end reads at
nine sequencing depth (5- to 200-fold) to simulate differ-
ent expression levels of fusion transcripts. Paired-end
reads from H1 human embryonic stem cells were used as
background data. Details of the simulation work can be
found in Additional file 3.

Total RNA preparation from bladder cancer cell lines
Two bladder cancer cell lines (5637 and T24) were pur-
chased from the American Type Culture Collection
(Manassas, VA, USA). They were cultured in RPMI
1640 medium (Invitrogen, Grand Island, NY, USA) con-
taining 10% fetal bovine serum (Sigma, Saint Louis, MO,
USA). Total RNAs were prepared using Trizol (Invitro-
gen) according to the manufacturer’s instructions. They
were treated with RNase-free DNase I to remove resi-
dual DNA. The quality of total RNAs was evaluated
using an Agilent 2100 Bioanalyser.

cDNA library construction for RNA-Seq
The cDNA libraries were constructed as described in
previous studies [36,37]. Briefly, beads (Invitrogen) with
oligo (dT) were used to isolate poly (A) mRNA from
total RNAs. To avoid priming bias in the process of
synthesizing cDNA, mRNA was fragmented before the
cDNA synthesis. Purified mRNA was then fragmented
in fragmentation buffer at an elevated temperature.
Using these short fragments as templates, random hex-
amer-primers were used to synthesize the first-strand
cDNA. The second-strand cDNA was synthesized using
buffer, dNTPs, RNase H and DNA polymerase I. Short
double-stranded cDNA fragments were purified with a
QIAquick PCR extraction kit (Qiagen, Hilden, Germany)
and then subjected to an end repair process and the addi-
tion of a single ‘adenine’ base. Next, the short fragments
were ligated to Illumina sequencing adaptors. cDNA
fragments of a selected size were gel-purified and ampli-
fied by PCR. In total, we constructed one paired-end
transcriptome library for each cell line, and sequenced
them on the Illumina HiSeq2000 platform. Both paired-
end libraries were sequenced to a 90-bp read length with
insert sizes ranging from 150 to 200 bp. RNA-Seq data
from the two bladder cancer cell lines has been sub-
mitted to the NCBI Sequence Read Archive (SRA) and
are available under accession number [SRA052960].

Fusion validation by RT-PCR
The digested total RNAs from the bladder cancer cell lines
were reverse-transcribed to cDNA for validation using
reverse transcriptase (Invitrogen) and oligo-d(t) primers
(TaKaRa, Dalian, China). Then, fusion transcripts were
validated using RT-PCR amplification followed by Sanger
sequencing. For the RT-PCR amplification, the primers
were designed using Primer (version 5.0) and all primer
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sequences can be found in Table S11 in Additional file 8.
We carried out the RT-PCR amplifications using TaKaRa
Taq™ Hot Start Version and performed reactions in 20 μl
volumes with 2 μl of 10× PCR buffer (Mg2+ Plus), 2 μl of
dNTP mixture (each 2.5 mM), 2 μl of primers (each 10

μM), 0.5 μl of TaKaRa Taq HS (5 U/μl), 20 ng of cDNA
and up to 20 μl using ddH2O. The thermocycler program
used was the following: (i) 95°C for 4 minutes, (ii) 95°C for
40 seconds, (iii) 55°C to 62°C for 30 seconds, (iv) 72°C for
45 seconds, (v) steps 2 through 4 repeated 35 times, and
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should not be located in potential-regions at the same time.

Jia et al. Genome Biology 2013, 14:R12
http://genomebiology.com/content/14/2/R12

Page 13 of 15



(vi) 72°C for 10 minutes. The products of RT-PCR amplifi-
cation were analyzed on a 2% agarose gel to make sure
that no unexpected bands were amplified. The purified
RT-PCR products were sequenced in forward and reverse
directions with the ABI PRISM Big Dye Terminator Cycle
Sequencing Ready Reaction kit (version 3) and ABI
PRISM 3730 Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA). Chromatograms were generated by Chro-
mas (version 2.22), and then were analyzed by BLAT
(online genome alignment on the UCSC Genome Browser
[38].

Additional material

Additional file 1: Tables S1 - information on all known fusions from two
previous studies. Additional detailed information on the known fusions in
two previous studies (melanoma and breast cancer researches). All
information of fusions is based on release 59 of the Ensembl hg19
annotation database.

Additional file 2: Table S2 - software selected for evaluation of
performance and sensitivity.

Additional file 3: Supplementary notes.

Additional file 4: Table S3 - detailed information on performance
and fusion detection sensitivity of six tools. CPU time, maximum
memory usage and sensitivity of fusion detection for each tool are
shown. For the multiple process operations, CPU time has been
translated to single process usage.

Additional file 5: Table S4 - detection screen of six tools on two
previous study datasets.

Additional file 6: Tables S5, S6 and S7. Table S5: detailed information on
simulated RNA-Seq reads. Table S6: list of 150 simulated fusion events.
Table S7: number of fusion-supporting reads for each fusion event.

Additional file 7: Tables S8 and S9. Table S8: TP and FP rates of
SOAPfuse, deFuse and TopHat-Fusion based on simulated datasets. Table
S9: detailed information on the simulated fusion events detected by
SOAPfuse, deFuse and TopHat-Fusion.

Additional file 8: Tables S10 and S11. Table S10: fusion transcripts
detected by SOAPfuse and deFuse in two bladder cancer cell lines. Table
S11: primers and Sanger sequences of confirmed fusions in two bladder
cancer cell lines.

Additional file 9: Figure S1 - models of fusion transcripts generated by
genome rearrangement. (a) Fusion transcript created by genomic
inversion of Gene A and Gene B, which are from different DNA strands.
(b) Fusion transcript formed by genomic translocation in which Gene C
and Gene D are from the same DNA strand and are far from each other.

Additional file 10: Figure S2 - schematic diagrams of nine steps in the
SOAPfuse pipeline. The SOAPfuse algorithm consists of nine steps (from
S01 to S09) and details of each step are in the Materials and methods or
Additional file 3.

Additional file 11: Table S12 - sixteen combination of span-read. There
are sixteen combinations based on serial numbers of reads and their
mapped orientations, but only four combinations are rational, supporting
two types of fusions in which the upstream and downstream genes are
different.

Additional file 12: Figure S3 - schematic diagrams of fusion event RECK-
ALX3. (a) Alignment of supporting reads against the predicted junction
sequence. The upstream part of the junction sequence is in green, and
the downstream part is in red. Span-reads are displayed above the
predicted junction sequence with the colored dotted line linking paired-
end reads. Junc-reads are shown below the junction sequence. (b,c)
Expression analysis of the exons in RECK and ALX3 by RNA-Seq read
coverage. Transcripts of RECK and ALX3 are shown below the
coordinates. The junction site is shown as a red round dot and a green

arrow indicates the transcript orientation in the genome sequence. The
region covered by the red line is the region mapped by supporting
reads. In this case, we found that the expression levels of RECK and ALX3
exons at bilateral sides of junction sites are significantly different. The
exons involved in the fusion transcript are expressed more highly than
other ones.
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