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Abstract

Background: Changes in environmental conditions lead to expression variation that manifest at the level of gene
regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it
remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed
and utilized by cells transitioning through a key developmental event.

Results: Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors
in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically
measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points,
and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This
reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and
negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both
the pro- and anti-differentiation pathways.

Conclusions: Compared to averaged cell populations, temporal single-cell expression profiling provides a much
more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our
approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.
Background
Genetically identical cells exposed to the same environ-
mental factors can elicit significant variation in gene
expression and phenotype [1]. This variability is sourced to
stochasticity in transcription where noise in the expression
of one gene is propagated to affect the noisiness of expres-
sion in a downstream gene. Noise propagation has been
studied extensively where the authors examined sources
of noise in a synthetic transcription cascade [2-5]. Such
findings provide a solid understanding of noise in an
artificially simple setting; however, there is clearly a need
to develop experimental and data analysis techniques that
permit the study of stochasticity in more complex regula-
tory systems, particular in endogenous gene networks.
Recently, the transcriptional regulatory network (TRN)

of differentiating THP-1 cells has been characterized by
* Correspondence: jay.shin@gsc.riken.jp
1RIKEN Center for Life Science Technologies, Division of Genomic
Technologies, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama 230-0045, Japan
2RIKEN Omics Science Center, Yokohama 230-0045, Japan
Full list of author information is available at the end of the article

© 2013 Kouno et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
integration of motif activity profiling, chromatin immuno-
precipiation (ChIP) experiments, and by means of a RNAi
perturbation matrix [6-8]. These studies demonstrated
how the TRN is controlled by multiple regulators that
exert their effects through the coordinated action of
combinatorial transcription factors to elicit gene expres-
sion and cellular differentiation [9,10]. The architecture of
the THP-1 regulatory network therefore allows cells to
deal with the proper transmission of expression signals or
take advantage of noise to modulate expression and thus
function. However, these approaches revealed a snapshot
of the THP-1 regulatory network while the endogenous
gene networks are highly dynamic [1,11]. Therefore,
expression profiling of single cells as they undergo cellular
differentiation may provide clearer insights into the intri-
cate dynamics of expression noise and its transmission to
modulate gene expression.
During stem cell differentiation, the dynamic expression

in space and time of key regulatory genes govern lineage
specification of progenitor cells [11]. In this context,
expression noise in transcription factors (TFs) might play
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an important role in regulating genes involved in develop-
ment, stem cell maintenance and differentiation, and cell
reprogramming [12-15]. The recent advancements in
single-cell polymerase chain reaction (PCR) technology
allow one to profile and analyze multiple genes in single
cells and thereby provide the means to dissect cellular
heterogeneity in various cellular systems. For instance,
the multiplex single-cell expression analysis was used to
measure cellular heterogeneity in rare populations isolated
from different developmental stages [16-18], in cancer
tissues [19,20], and cell reprogramming [15,21,22]. With
these technical challenges surrounding multiplexed single-
cell assays largely resolved, what remains to be explored is
how gene expression noise is propagated and used within
a defined network.
Therefore, this study describes the temporal dynamics

of the THP-1 network in the context of single cells under-
going cellular differentiation. Key emphasis is given to
stochastic effects of gene expression that can contribute
to the regulation of cellular differentiation. Furthermore we
establish modular structures of the THP-1 co-expression
network and describe the dynamics of regulatory pathways
in the context of RNAi-perturbations and transcription
factor binding site predictions. The analysis identifies
novel inter-dependent regulatory pathways between the
transcriptional modules and further identifies a pivotal gene
that modulates the maintenance and the differentiation of
THP-1 cells.

Results
Single-cell profiling of THP-1 differentiation
Since our aim was to observe temporal variation of the
THP-1 network during the differentiation process, we
stimulated the THP-1 cells with phorbol 12-myristate
13-acetate (PMA) and manually picked 40 individual
cells at eight distinct time points (0 h, 1 h, 6 h, 12 h, 24 h,
48 h, 72 h, and 96 h). This experiment was performed
three independent times, resulting in a total of 120 single-
cell expression profiles for each time point (Figure 1A).
The endogenous control expressions in three experiments
were validated and normalized for subsequent analyses
(Additional file 1: Figures S1 and S2, Materials and
Methods).
The human THP-1 myeloid monocytic leukemia cell

line is an ideal model to study the temporal dynamics of
single-cells because: (1) the cells in suspension undergo
differentiation into a mature monocyte/macrophage-like
phenotype upon simulation with PMA [6,23-25]; (2)
the gene regulatory networks of differentiating THP-1
cells have been previously established (Additional file 1:
Figure S3) [6,8]; and (3) the cells were sub-cloned for their
ability to differentiate relatively homogeneously in response
to PMA (Figure 1B) [6]. Thus applying micropipette
technique together with microfluidic technologies we
performed multiplexed PCR from single cells, allowing
the simultaneous profiling 45 TFs represented in the
THP-1 network (Additional file 2: Table S1).
THP-1 cells are dynamically regulated during
differentiation
In order to obtain a global perspective on noise in the
cell population, single-cell expression profiles for all 45
TFs were reduced to a visualizable space using multiple
dimension scaling (MDS) (Figure 2A). In inspecting
the structure of MDS-reduced expression data, several
important features that correlate with physiological
characteristics of the cells can readily be discerned.
The spatial progression throughout the differentiation,
largely explained by the first axis, is a reflection of
post-PMA stimulation in THP-1 cells. The MDS plot
revealed wide scattering of individual cells that orderly
shifted with time, suggesting that cellular heterogeneity
is not random but tightly controlled. To further support
this notion, the centroid projection of each time point
revealed four distinct stages of the monocyte/macro-
phage differentiation: native, early-response, transition,
and completion (Figure 2B). The early-response stage is
clearly separated from the rest of the centroids, largely
explained by the second MDS axis. Interestingly, the cell
population coherently transits from 6 h to 24 h and
suddenly shifts into a steady (that is, less variable) state,
a period when the cells adhere to the dish and completes
differentiation [6].
To further explore the control of cellular heterogeneity

during monocyte/macrophage differentiation, we per-
formed principal component analysis (PCA) and mea-
sured the coefficient of dispersion (COD) for the first
three components at each time point (Figure 2C). The
dispersion of the first component, which explained
29.7% of the cellular noise, steadily increased through-
out the time course and peaked at 24 h post induction.
This activation was then followed by rapid reduction and
stability until 96 h post induction. Key pro-differentiation
TFs such as PPARG and MAFB attributed mostly to
the first component, while anti-differentiation factors
such as IRF8 and MYB were the antithesis of this
noise pattern. Moreover, the dispersion of the second
component (10.9% variability explained) revealed a signifi-
cant noise in the first hour while the third component
(7.4%) revealed two transient dispersions separated at
time point 24 h, a period when the cells adhere to
the dish. This particular noise pattern substantiates
the regulation of SNAIL superfamily of transcriptional
repressors, SNAI1 and SNAI3, which regulate the
changes in gene expression patterns that underlie com-
ponents of the extracellular matrix, cell migration, and
cell adhesion [26].



Figure 1 THP-1 differentiation process. (A) THP-1 cells are stimulated with PMA to induce monocyte/macrophage differentiation 1 day after
medium change (mc). Single cells are manually picked at eight defined time points on three independent occasions (n = 120 per each time
point). A total of 960 single cells were pre-amplified and profiled against 45 THP1 TFs. (B) Suspended THP-1 cells undergo differentiation upon
PMA stimulation and a large majority (>95%) of cells adhere to the dish 96 h post induction with PMA. Scale bar = 50 μm.
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Expression variability during THP-1 differentiation
In order to gain greater insights into the contribution
towards cellular variation from individual TFs, we analyzed
temporal changes in: (1) the number of cells expressing the
transcripts; (2) differential TF expression; and (3) noise
strength. We observed dramatic changes in the proportion
of single cells expressing the transcript throughout the
time course (Figure 3A). While 16 out of 45 TFs revealed
ubiquitous transcript detection, 11 TFs exhibited ‘promoter
activation’ where the sparsely expressed population ei-
ther gradually or rapidly increased the percentage of
positive cells throughout differentiation. Conversely,
seven TFs showed reduction in the percentage of cells
during differentiation.
Figure 2 Temporal dynamics of THP-1 differentiation. (A) The multi-dim
shifts in a time-dependent manner throughout the differentiation. (B) T
populations throughout the time course, shifting from native, early-resp
(COD) of three principal components (PC) and their variations shows dis
and the associated TFs (blue TFs = positive contribution, red TFs = negat
While the proportions of detected cells were temporally
changing, the mean expressions of detected cells were also
changing, but at a different rate. To explore such differen-
tial modes of transcription, we analyzed the changes in cell
numbers and their mean expressions between adjacent
time points. Two distinct rates for transcript control were
identified: (1) differential mean expression of detected
cells across two time points, which describes the rate
of promoter enhancement per hour; and (2) differential
cell numbers across two time points, which describes the
rate of promoter activation per hour, where the inducing
signal enforced nothing-to-all response on the promoter.
Based on this analysis, the PPARG-promoter was enhanced
prior to the activation (Figure 3B). The changes in cell
ensional scaling (MDS) analysis reveals heterogeneous but population
he centroids of each time point reveal temporal dynamics of cell
onse, transition, to completion. (C) The coefficient of dispersion
tinct expression variation patterns throughout the time course
ive contribution).



Figure 3 Cell detection and expression dynamics throughout the time series. (A) A systematic quantification of cells detected above
threshold (relative expression >0.5) reveals five distinct clusters of cellular dynamics based on k-means clustering analysis (k = 5): activated,
deactivated, transient, variable, and ubiquitous. (B) The ‘swarm-bee’ plots of ETS1 and PPARG reveal dynamic changes in cell number, transcript
expression, and expression variation for each time point (rainbow). The changes in cell numbers and mean expression between every pairs of
adjacent time points were calculated to explore differential modes of transcription: promoter-activation rate (blue line) and promoter-enhancement
rate (purple line). (C) Density plots, based on Kernel Density Estimate (Gaussian) of ETS1 and PPARG, reveal the smooth distribution of single-cell
expression across the time series, allowing population shift comparisons of the expression level across all time points.
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numbers between 0 h and 1 h was small in comparison to
the difference in the mean expression in the same time
period, which was >1.8-fold per h. This phenomenon
suggests that PPARG was readily transcribed from already
activated promoters upon PMA induction. However in
the subsequent time frame (1 h and 6 h), we observed a
significant increase in promoter activation (+5.8% per h)
while the difference in expression only increased slightly
when compared to the previous period. This suggests a
prolonged delay in promoter activation possibly via epi-
genetic modification or essential expression of co-factors.
In case of ETS1, the overall augmentation in gene expres-
sion was largely contributed by promoter activation from
the onset of differentiation. These dynamic effects based
on single-cell analysis indicate differential regulation of TF
activation and TF enhancement on the promoter itself and
explain the precise transcriptional regulation throughout
the differentiation (Figure 3C).
Temporal dynamics of noise during differentiation
We then observed temporal dynamics in expression noise
throughout the time series. At each time point, cell-to-cell
variability was measured based on the expression variation
across single cells divided by the mean expression. This
relative noise of individual TFs as a function of time
revealed strikingly temporal dynamics of transcription
control (Figure 4A). It has been previously reported
that expression noise can result from fluctuations of TFs
upstream of the target gene in TRN [27-29]. Although
synthetic circuits can be engineered to operate in isola-
tion, gene circuits in nature are highly interconnected
[1,11]. Based on the previously established THP-1 network
[8], we calculated activating edge ratios (the number of
downstream target genes divided by the number of
upstream genes) in order to allocate the topological
placement for each TF in the THP-1 network. The demar-
cations for each node were determined so that any TF
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Figure 4 Propagation of noise strength in respect to the THP-1 network. (A) A heat map cluster representing scaled noise-strength for each
TF across the time course (scaled z-score: red = noisy, blue = less noisy). Each TF is color-coded based on the topological layers of the THP-1
network (dark blue = upstream, white =midstream, dark red = downstream). (B) Noise projections of selected TFs and the mean noise strength
for each topological layer (grey).
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with no upstream genes or edge ratio >4 were classified
as ‘upstream’, and nodes with edge ratio <0.5, or has
twice as many upstream genes as downstream genes,
were classified as ‘downstream’. Any nodes falling in
between these two ratios were classified as ‘midstream’
TFs (Additional file 1: Figure S3). Remarkably, downstream
TFs revealed greater temporal noise throughout the
differentiation whereas upstream TFs exhibited relatively
low noise changes (P value <0.001). PPARG, MAFB, and
BCL6, which belonged to the downstream layer, were
among the top TFs with the increasing noise over time
(Figure 4B). On the other hand, RUNX1, EKL1, and
SMAD4, the upstream regulators of the THP-1 network,
revealed relatively low variation throughout the differenti-
ation. Interestingly, the midstream TFs revealed sporadic
noise patterns where the average noise remained relatively
still, possibly permitting the buffering of gene expression
noise during the differentiation. This suggests that minor
variations at the top of the network can propagate
downwards to induce exponential variation to affect
the TFs at the bottom of the network in the process of
cellular differentiation.

Dynamic rewiring of co-expression network during
differentiation
We then asked whether transcriptional relationships could
be inferred from TFs with similar variation or noise
patterns. At each time point, pairwise correlations were
computed for 45 THP-1 TFs across 120 single cells from
which we identified co-expressed modules of genes that
were likely to be functionally co-regulated. Heat map
representations of the topological overlap matrix for
time point 0 h, 1 h, 24 h, and 96 h post-PMA induction
demonstrate how these modules adopt different expression
states during the time course (Figure 5A). The quantifica-
tion of correlative edges revealed the highest number of
interactions at time point 24 h post induction while the
negatively correlated edges were greatest at time point
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0 h (P value <0.05, Figure 5B). The differential numbers of
regulatory edges indicate dynamic interplay of transcription
factors to modulate differentiation, especially at time
points 1 h and 24 h post PMA induction, whereas, the
negative regulators of differentiation maintained the THP-1
steady state prior to differentiation (0 h). Moreover, the
gene-network representations across the time series
illustrate dynamic rewiring of transcription factors to
establish time-specific network modules (Figure 5C,
Additional file 1: Figure S4 for all time points).
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Exploration of gene co-expression network modules
Expression noise is mediated by factors that bind at
upstream promoter elements or influence the binding
of other molecules to cis-regulatory elements within or
near the promoter [11]. To describe the impact of expres-
sion noise at distinct levels of network organization and
their temporal regulation, we analyzed: (1) differential
expression analysis; (2) RNAi-perturbation matrix [7,8];
and (3) the transcription factor binding motif analysis [6].
Transcriptional modules are defined by a set of transcrip-
tion factors that are strongly correlated with one another
[30,31]. Based on this notion, the co-expression network
analysis at 24 h revealed two transcriptional modules
(Figure 6A). The averaged expression and variation of
TFs depicted in each module revealed that module 2
remained steadily low while the variation increased
time-dependently. Interestingly, the averaged expression
of module 1 collectively increased >2-fold during the
differentiation while the variation was vacillating through-
out the time series (Figure 6B). It is a commonly held
idea that negative-feedback provides a noise-reduction
mechanism [1,11,32,33]. This seems to suggest that
TFs in module 1 are likely to be involved in negative
feedback which has a destabilizing effect, and result in
dampened or enhanced expression patterns during the
monocyte differentiation.
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To better understand the inter-dependencies between
the two network modules, we integrated the previously
reported RNAi-based perturbation matrix [8]. The same
45 TFs described in this study were systematically knocked
down in THP-1 cells and the differential expressions of the
same 45 genes were quantified. The integration allowed
us to enumerate the number of regulatory edges that were
either upstream or downstream for each transcription
factor (Additional file 1: Figure S3B). By directly incorp-
orating this information, we revealed that the total number
of target genes were significantly larger than the total
number of targeting genes for module 1, whereas the
opposite was true for module 2 (Figure 6C). This difference
in the edge ratios further supports the notion that module
1 is regulated by external factors to illicit differentiation.
The higher number of target genes in respect to targeted
genes in module 2 suggests that TFs depicted in module 2
lie higher in the hierarchical structure of the monocyte
transcriptional regulatory network and may act as a master
modulator of monocyte/macrophage maintenance [11].
The level of noise might also be directly impacted by

other factors such as the sequences of the promoter itself.
To further exploit the regulatory promoter elements of the
modules, we analyzed the over-representation of predicted
transcription factor binding sites occurring in the proximal
promoter regions of module 1 factors. Considering all
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potential binding sites for module 2, the motif analysis
revealed a significant enrichment of AP1 (JUN) bind-
ing sites in the proximal promoter regions of module 1
(P value = 0.017; Figure 6D). Indeed almost all but
KLF10 in module 1 exhibited AP1 binding site in the
proximal promoter. No significant motifs were found
when the analysis was reversed to predict binding sites
in module 2.

Functional characterization of MYB as a network hinge
Stochastiticity in gene expression was originally hypothe-
sized to be harmful to cells as it represents an irregularity
or lack of stability of gene expression levels [1]. More
recently, however, there has been speculation that
stochasticity has a constructive role in development and
cellular differentiation in higher organisms [34,35]. To
uncover the modular basis for stochasticity during THP-1
differentiation, we aggregated both the positive and
negative networks at 24 h and also at 96 h post induction
(Figure 7A). Prominently at 24 h, the same two modules
observed in Figure 6 were separated by negatively corre-
lated edges anchored by a key inhibitor of cellular differ-
entiation, MYB. MYB is a proto-oncogene protein which
consists of a central transcriptional activation domain and
a C-terminal domain involved in transcriptional repression
[36]. The combined co-expression network demonstrates
both active and suppressive role of MYB and suggests
the gene as a regulatory hinge that is essential to both
monocyte maintenance and differentiation. To confirm
this, we suppressed the MYB transcript in THP-1 cells in
the absence of PMA. Notably within the first 48 h, siRNA
transfected THP-1 cells adhered to the dish, indicative
of monocyte/macrophage differentiation (Figure 7B).
Moreover, the conventional qRT-PCR expression analysis
using bulk mRNA of MYB suppressed THP-1 cells revealed
increased expression of pro-differentiation genes such as
MAFB, EGR2, and PPARG as compared to control siRNA
(Figure 7C).
To further elucidate the transcriptional control of

MYB, we performed MYB siRNA transfection followed
by single-cell gene expression analysis. As expected, MYB
expression was downregulated, but interestingly, the broad
MYB expression in the control group was lost in the MYB
siRNA transfected group (that is, high noise to less noise)
(Figure 7D). In contrast, STAT1 shifted from low noise
strength to high noise strength upon MYB suppression,
revealing dynamic regulation of MYB, not only in the gene
expression but also in the expression heterogeneity
required for cellular differentiation. Additional transcription
factors such as BCL6 revealed a shift in expression modality
(from bi-modal to uni-modal), while MAFB revealed a
population shift in expression distribution (uni-modal
to uni-modal) upon MYB suppression. Taken together,
oligo transfections followed by single-cell gene expression
profiling revealed, for the first time, a highly dynamic
regulation of transcription expression and noise patterns,
which would not have been possible with bulk culture
mRNA expression profiling.

Discussion
Here we applied single-cell expression analysis to investi-
gate the population heterogeneity of THP-1 cells undergo-
ing differentiation. We characterized 45 previously defined
TFs associated with the THP-1 network in terms of
their cooperative relationships formed after application
of a differentiating agent. We showed that single-cell
expressions are noisy but are tightly controlled during
the differentiation, leading to both ‘noisy’ and ‘stable’ phases
based on the single-cell dispersion analysis. Moreover,
we revealed time specific co-expression modules that
are dynamic and cooperatively regulated by nearby modules
and confirmed MYB as a key modulator of THP1 main-
tenance and differentiation.
Coordinated and complex transcriptional responses gen-

erally involve multiple regulatory interactions organized
into gene circuits [1,6,11]. In such an organization, the
information sensed by upstream layer of circuits is relayed
to activate downstream layer [37]. Here, we revealed that
not only do these circuits modulate expression but also
noise may be transmitted through the network where
the midstream components buffer the noise to elicit
gene-specific activation in the network. Interestingly,
we revealed that suppression of MYB transcript in THP-1
not only led to cellular differentiation but also induced a
substantial increase in expression heterogeneity of STAT1,
a downstream transcription factor. Essentially, the inter-
connected gene circuits, or network modules, seems to
influence the sensitivity to noise. Furthermore, a DNA
motif with affinity for the TATA-box binding protein
(TBP) has been shown to contribute significantly to high
noise [38]. In this respect, the DNA motif with affinity
for AP1 was significantly enriched in network modules
demonstrating the temporal variations are not contributed
individually but via modules in a circuit.
Slow transitions between promoter states are known

to be particularly important in eukaryotic gene expression,
since the presence of nucleosomes that cause DNA to be
packed into units of chromatin generally make promoters
inaccessible to the transcriptional complex [39]. Mixed
populations and bimodal population distributions, which
were prevalent for most pro-differentiation TFs at time
point 0 h, might arise from slow promoter transition rates.
Interestingly, the differential promoter activation rates
revealed insights into transcript regulation where the
PPARG promoter was slow to transit into active states
possibly due to epigenetic regulation [40]. Moreover, the
temporal dynamics of single-cell expressions demonstrate
that PMA stimulation changes expression in which all



KLF10

EGR2

PPARG

MAFB
TRIM28

MYB
BCL6

SPI1

CEBPD
CEBPB

HOXA10JUN

KLF13

PRDM1

RXRB

IRF8

SNAI3

SP3

A

B
Control  siRNA MYB siRNA

C

24 hours

B
C

L6
E

G
R

2
K

LF
10

M
A

F
B

P
P

A
R

G
S

P
I1

C
E

B
P

B
C

E
B

P
D

H
O

X
A

10
JU

N
K

LF
13

M
Y

B
P

R
D

M
1

R
X

R
B

S
P

3
T

R
IM

28

0

2

4

6

Lo
g2

-r
at

io

Module1
Module2

4 6 8 10

0.0
0.1
0.2
0.3
0.4

K
D

E

BCL6

3.5 4.0 4.5 5.0 5.5 6.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

K
D

E

MYB

D

2 4 6 8 10 12

0.0
0.1
0.2
0.3
0.4

K
D

E

UHRF1

4 6 8 10

0.0
0.2
0.4
0.6
0.8

K
D

E

IRF8

4 6 8 10

0.0
0.1
0.2
0.3
0.4
0.5

K
D

E

MAFB

Relative expression

5 6 7 8 9 10

0.0
0.2
0.4
0.6
0.8
1.0

K
D

E

STAT1MYB KD
Control KD

KLF10

EGR2

PPARG

MAFB

BCL6
ETS1

CEBPD

LMO2
FLI1

NFYC

RUNX1

HOXA10 MYB

IRF8

STAT1

UHRF1

HOXA13

96 hours

Relative expression

Figure 7 The integration of co-expression networks reveals MYB as a pivotal driver of monocyte differentiation. (A) Pairing of positive
and negative co-expression networks at time points 24 h and also at 96 h reveals MYB as a pivotal driver (red arrow), hingeing two antagonistic
network modules. (B) siRNA mediated knockdown of MYB in THP-1 cells leads to cellular differentiation observed by cell adherence to the dish
after several washing steps. (C) Depletion of MYB in THP-1 cells induces expression of key pro-differentiation factors such as EGR2, MAFB, and
PPARG as compared to siRNA control. (D) MYB knockdown followed by single-cell gene expression analysis reveals various modes of gene
expression regulation and distribution (grey line = control (n = 43), brown line = MYB siRNA knockdown (n = 43), red bar = detection threshold
at 5). Scale bar = 50 μm.

Kouno et al. Genome Biology 2013, 14:R118 Page 9 of 12
http://genomebiology.com/2013/14/10/R118
cells respond in proportion to the inducing signal or
changes the probability of a stochastic all-or-nothing
response in an individual cell.
The intrinsic stochasticity that regulates the biochemical

process of producing a single transcript is not the only
source of variability in gene expression. Factors such as
gene regulatory signals, the abundance of polymerases and
ribosomes, and the strength of their binding, availability
of TFs, and cell cycle can inevitably change cell size and
activity [41,42]. In the present study, extrinsic noise
from transcript abundance was normalized by means of
GAPDH expression (Additional file 1: Figure S2) where
ubiquitous myeloid-lineage specific TFs such as SPI1 and
GAPDH were highly correlated. Moreover, it is understood
that before initiating cell differentiation, PMA treatment
first induce inhibition of cell growth at G1-phase of the cell
cycle [43]. Therefore, the increased fluctuations in gene
expression during differentiation provide a mechanism for
distinct physiological states, and could therefore increase
the precision that is necessary for single-cell analysis.
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Conclusion
Taken together, the insights we have obtained in this
study are a consequence of analyzing a defined set of
transcription factors in parallel at the single-cell level
over the time series. It will also be of great interest to
integrate the information from correlated expressions with
other types of networks (for example, protein-protein
interactions). Our high throughput single-cell analysis
offers intriguing new insights into the mammalian gene
regulatory interaction, and the application of these methods
to other biological systems will further clarify the under-
lying molecular mechanism controlling cellular main-
tenance and differentiation.

Materials and methods
Cell culture and PMA stimulation
THP-1 cell line was sub-cloned by limiting dilution and
one clone was selected for ability to differentiated relatively
homogenously in response to PMA [6]. THP-1 cells were
cultured in RPMI1640 (Invitrogen), 10% FBS, penicillin/
streptomycin (Invitrogen), 10 mM HEPES, 1 mM Sodium
Pyruvate and 50 μM 2-mercaptoethanol at 37°C, and 5%
CO2. One day prior to PMA stimulation, fresh cultured
medium was replaced. THP-1 cells (2 × 105) were treated
with 30 ng/mL PMA (Sigma) over a time course of
96 h. To demonstrate that cells are differentiated into
monocytes, flow cytometric analysis with anti-human
CD14, CD45, and CD11B antibodies (all Biolegend)
were performed at eight time points post PMA induction
(Additional file 1: Figure S5).

Single-cell isolation and pre-amplification
Each single cell was isolated by hand-pipetting using
micro-dispenser (Drummond) under the phase contrast
microscope. Cells after 48 h PMA stimulation were treated
with 0.05% Trypsin/EDTA (Wako) for 20 min at 37°C to
detach the cells from the dish. All cells were washed
with PBS to remove any trace of medium or trypsin/
EDTA. Individually picked single cells were subjected
to pre-amplification mixture containing 0.2 mM dNTP,
1.6 mM MgSO4, 0.5 μM gene-specific primers, RNase
Free Water (Ambion), 0.6 U RNaseOUT (Invitrogen), and
SuperScript III RT/Platinum TaqMix. Pre-amplification
was performed at 55°C for 25 min and 95°C for 2 min
followed by 18 cycles of 95°C for 15 s and 60°C for 4 min.
After pre-amplification, cDNA was diluted 1:4 with RNase
Free Water and stored in −80°C until needed.

Real-Time PCR
Real-Time PCR was carried out by the BioMark™ Dynamic
Arrays of Fluidigm. 1× FastStart Universal Probe Master
(ROX), 1× GE Sample Loading Reagent, and each of
diluted pre-amplified cDNA was prepared. And 5 μL assay
mix containing 2.5 μM primer mix, 1.3 μM UPL probe,
1× Assay Loading Reagent, and RNase Free Water was
prepared. An IFC controller was used to prime the fluidics
array with control line and then with samples and assay
mixes. After loading, the array was placed in the BioMark
Instrument for PCR at 95°C for 10 min, followed by
40 cycles at 95°C for 15 s, 70°C for 5 s, and 60°C for 1 min.

Single-cell gene expression analysis
Amplification curves derived from the Fluidigm Data
Collection Software were filtered using a threshold of
0.65 and Ct threshold mode was set to global. From the
initial 1,041 single cells profiled, single cells expressing >2
standard deviations from mean GAPDH expression and
mean SPI1 expression were deemed unviable and thus
omitted from further downstream analyses. Thereafter,
120 single cells from each time point were randomly
selected and fixed for the analyses (120 single cells × 8
time points = 960 single cells). Expression Ct values >36
were set to 40. Then, the relative gene expression was
calculated by subtracting Ctgene by CtGADPH followed by
inverse to make the data more intuitive. The inverse-
normalized value of 36 is 0.5 (or 5), a cutoff used to
determined transcript-positive and -negative single cells
(Additional file 1: Figure S1). All of the normalized Ct
values are available in Additional file 3.
Multiple dimension scaling (MDS; Pearson correlated)

and principal component analysis (PCA) were performed
in R [44]. COD was calculated by median absolute variation
divided by median. Hierarchical clustering and co-expres-
sion matrix between pairs of TFs were tested with Spear-
man rank correlation (false discovery rate <0.05). Gene
regulatory circuits were illustrated using the RedeR [45]
package in R Bioconductor.
For DNA motif analysis, we downloaded the transcrip-

tion factor binding site predictions previously calculated
as part of the FANTOM4 project [6] using motifs stored
in the SwissRegulon database [46,47]. For each promoter,
we summed the posterior probabilities of the binding sites
predicted for each motif to obtain, for each promoter,
its a posteriori number of binding sites of the given
motif. Assuming that for a given number of motif across
promoters follows a Poisson distribution, we calculated
the tail probability of the a posteriori number of binding
sites for the promoters located at the 5′ end of the genes
of interest. In practice, we found that the variance of the
distribution was slightly lower than its mean, implying
that the true distribution is under-dispersed compared
to the Poisson distribution, and hence the P values we
calculated are conservative.

siRNA transfection and RT-PCR analysis
Reverse transfection of 1 × 106 THP-1 cells in each 60-mm
cell culture dish was performed with 20 nM of stealth
negative control RNA, MYB siRNA (GCCGCAGCCAUU
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CAGAGACACUAUA) in Opti-MEM and Lipofectamine
2000 (Invitrogen), according to the manufacturer’s instruc-
tions. Forty-eight hours post transfection, either single
cells or total RNA from bulk culture were extracted.
Oligo-transfected single cells were profiled using the
aforementioned methods. As regards to bulk samples, total
RNA was isolated using miRNAeasy kit (Qiagen) according
to manufacturer’s instructions. Reverse transcription
of total RNA was achieved with PrimeScript™ reserve
transcriptase (Takara) and random hexamers in according
with the manufacturer’s protocol GAPDH mRNA was used
as a control for data normalization. PCR amplification was
performed on ABI PRISM® 7500 (Applied Biosystems). For
amplification, SYBR Premix EX Taq™ II (Takara) was used
as instructed in the manual. Changes of gene expression
were determined using the 2-ΔΔCt method [48].

Additional files

Additional file 1: Supplementary information of Figures S1-S5.

Additional file 2: Table S1. List of THP1 network genes and primers
sequences with associated UPL probes for specificity.

Additional file 3: Normalized single-cell gene expression dataset
(120 single cells × 8 time points).
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