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Abstract

Background: Gene expression is controlled by proximal promoters and distal regulatory elements such as enhancers.
While the activity of some promoters can be invariant across tissues, enhancers tend to be highly tissue-specific.

Results: We compiled sets of tissue-specific promoters based on gene expression profiles of 79 human tissues and cell
types. Putative transcription factor binding sites within each set of sequences were used to train a support vector machine
classifier capable of distinguishing tissue-specific promoters from control sequences. We obtained reliable classifiers for
92% of the tissues, with an area under the receiver operating characteristic curve between 60% (for subthalamic nucleus
promoters) and 98% (for heart promoters). We next used these classifiers to identify tissue-specific enhancers, scanning
distal non-coding sequences in the loci of the 200 most highly and lowly expressed genes. Thirty percent of reliable
classifiers produced consistent enhancer predictions, with significantly higher densities in the loci of the most highly
expressed compared to lowly expressed genes. Liver enhancer predictions were assessed in vivo using the
hydrodynamic tail vein injection assay. Fifty-eight percent of the predictions yielded significant enhancer activity
in the mouse liver, whereas a control set of five sequences was completely negative.

Conclusions: We conclude that promoters of tissue-specific genes often contain unambiguous tissue-specific

signatures that can be learned and used for the de novo prediction of enhancers.

Background

A fundamental question in biology is how cells and tissues
differentiate and maintain their identity from essentially
the same genome. Wide variation in spatial, temporal
and condition-dependent expression patterns of more
than 20,000 genes in the human genome [1] is required
for the establishment and maintenance of different cell
fates and environmental responses. Tissue-specific genes
are often implicated in distinct developmental and meta-
bolic pathways and therefore may constitute good candi-
dates for biomarkers or drug targets.

The control of gene transcription is mediated by tran-
scription factors (TFs), which interact in a sequence-
specific manner with DNA motifs, known as TF binding
sites. The promoter is frequently divided into a basal
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core, covering approximately 100 bp upstream of the
transcription start site (TSS), and a proximal promoter,
which extends up to a few hundred base pairs and typic-
ally contains multiple TF binding sites [2,3]. In addition
to promoters, other cis-regulatory sequences, such as en-
hancers, are specifically bound by TFs and are central
players in the control of transcription in multicellular
eukaryotes. The regulation of promoters by distal enhancers
involves DNA looping or scanning and/or higher-order
conformation changes in chromatin [4-6], resulting in
an increase in the local concentration of TFs in the
vicinity of a promoter and the initiation or enhancement
of transcription. It has been long recognized that prox-
imal promoters and enhancers are functionally similar,
and virtually undistinguishable from each other (see, for
example, [7,8]).

Both enhancers and promoters have been shown to
contain DNA motifs for specific TFs, depending on their
tissue-specific activities (for example, [8-10]). In par-
ticular, CpG-depleted promoters are enriched with DNA
motifs [11], suggesting a distinct regulatory mechanism
from CpG-rich promoters. The transcription complex
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LDBI1, which involves GATA1, GATA2, TAL1, LMO?2,
and RUNX1, and has been extensively studied in the
context of the differentiation of erythroid cells, illuminates
this distinction. Whereas LDB1 binds mostly within CpG-
depleted promoters, it only binds downstream of CpG-
rich promoters, often within the first intron of their target
gene [12]. Additional evidence suggests that such DNA
motifs representing putative TF binding sites are pre-
dictive of promoter activity, including tissue-specific
expression of their target gene (for example, [13,14]). In
addition, DNA motif enrichment analyses have shown
that DNA motifs are highly predictive of enhancer
activity [15-18].

Unlike promoters, enhancers can act over very long
distances. Based on the relative location of conserved
non-coding elements (CNEs) in the human genome, early
estimates suggested that a large number of enhancers
are more than 250 kilobases (kb) away from their target
gene [19]. For example, a conserved enhancer of Shh
that is associated with polydactyly is located 1 megabase
(Mb) upstream of Shh, within an intron of another gene
[20]. Furthermore, similar approaches have determined
that the regulatory elements controlling the transcrip-
tion of SOX9 are scattered over 1 Mb upstream of its
TSS [21,22]. More recently, genome-wide chromatin
interaction analyses have confirmed that such long-
range interactions are indeed widespread, providing
evidence that the vast majority of enhancers target genes
other than their nearest genes [23,24]. Because of their
genomic distribution and poorly characterized sequence
features, enhancers have been difficult to identify. Only
the advent of high-throughput sequencing technologies
has led to large-scale screens for regulatory sequences
that are now starting to reveal complete regulatory
networks and signal transduction pathways in higher
eukaryotes [25]. Such screens, however, represent a snap-
shot of a single cell type and set of conditions, and conclu-
sions cannot, therefore, be easily generalized.

Previous studies have focused on identifying sequence
features in either promoters or enhancers, and con-
structing models that describe these genomic elements,
individually. Here, we show how the presence and/or
absence of motifs in the promoter regions of genes with
tissue-specific expression profiles can be used to reliably
identify distal enhancers with analogous tissue-specific
activity. Predicted enhancers are highly enriched in the
loci of concordantly expressed genes (for instance, in
the case of predicted liver enhancers, they are five-fold
more abundant in the loci of most highly expressed liver
genes than in the loci of lowly expressed liver genes),
and overlap significantly with chromatin signatures pre-
dictive of enhancer activity. Experimental validation in
mice supports the high accuracy of the presented method
in predicting tissue-specific enhancers. With the advent of
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new technologies and the resulting deluge of expression
data, approaches exploiting sequence features shared be-
tween promoters and enhancers hold great promise to
understanding the cis-regulatory code encrypted in the
genomes of higher organisms.

Results and discussion

Promoters of tissue-specific genes contain tissue-specific
signatures

Although most promoters drive basal levels of transcrip-
tion ubiquitously, some promoters are capable of control-
ling transcription in a tissue- and/or temporal-specific
manner [26-29]. Genes controlled by these types of pro-
moters are expressed in specific tissues and develop-
mental stages, and may be induced by endogenous or
exogenous factors. Here, we set out to systematically
test whether promoters of genes that exhibit a particular
expression profile in a given tissue contain sequence sig-
natures that confer tissue-specificity and separate them
from ubiquitous promoters. For this purpose, we collected
the promoter regions (from 25 kb upstream to 0.5 kb
downstream of the TSS; see Materials and methods) of
the top 200 highly expressed genes in 79 different tis-
sues and cell types [30] (see Materials and methods). As
negative controls, we selected the promoters of the
200 least expressed genes in the same set of tissues.
Although expression breadth was not considered in the
construction of such gene sets, most of the genes in the
sets are only expressed at high (or low) levels in the tissue
of interest. Even if some genes are expressed across several
tissues at high or low levels, the sets are highly non-
overlapping (Supplementary notes in Additional file 1).
Thus, while the individual genes in a given set are not
strictly tissue-specific, the set itself is.

To assess the role of promoters in determining tissue-
specific expression, we trained a support vector machine
(SVM) for each of the 79 tissues. More precisely, to dis-
criminate between promoters of most highly expressed
and inhibited genes in each tissue, the classifiers relied
on in silico occurrences of TF binding sites within their
evolutionary conserved regions (see Materials and methods;
Supplementary notes in Additional file 1). We evaluated
the models’ ability to accurately predict expression using
the area under the receiver operating characteristic curve
(AUC) in a five-fold cross-validation framework. Most
models (73/79) can reliably distinguish promoters of genes
most highly expressed in a given tissue from those of lowly
expressed genes by identifying TFs associated with these
tissues with median AUC values between 0.60 and 1.00
(Figure 1A). To be specific, for half of the models (39/79),
we obtained median AUC values higher than 0.8. Moreover,
when we tested a model trained on a particular tissue
on the promoters of genes expressed in another tissue,
we obtained relatively high AUC values mainly for
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Figure 1 DNA motifs in human promoters predict tissue-specific expression. (A) Area under the receiver operating characteristic (ROC)
curve for 79 models trained and tested on promoters of genes highly expressed in 79 different tissues. The AUC is an overall summary of diagnostic
accuracy. AUC equals 0.5 when the ROC curve corresponds to random chance and 1.0 for perfect accuracy. Reliable models (with median AUC >0.6)
are displayed in red, while unreliable models (with median AUC <0.6) are displayed in gray. Models were evaluated in a five-fold cross-validation
setting. (B) Motifs with the greatest predictive power for the liver model. The weights w of the motifs (see Materials and methods) are given in
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weight of the motif with the lowest negative predictive power (signs are preserved; see Materials and methods). The names of the features are listed
near the baseline of the graph. For comparison, we include weights w for the same motif in the lung, caudate nucleus, thymus models (in different
shades of gray). Similarities among the genes that were used to train the models - which reflect functional relatedness among tissues - explain
similarities in the predictive power of the motif. Thus, 15% of genes that are highly expressed in liver are also highly expressed in lung, while

related tissues (Figure S1 in Additional file 1), confirm-
ing that the models rely on tissue-specific motifs. We
even obtained high AUC values for models in which,
at first glance, we could not detect any significantly
enriched motifs, such as for BM-CD71+ early erythroid
cells. This result suggests the existence of different subsets
of promoters, with characteristic sequence features.
Modest performance is likely explained by lack of se-
quence features and/or relatively high heterogeneity of
the promoters in the training set of the model. Thus,
our models performed well even in the presence of a
relatively large fraction of promoters overlapping CpG
islands, but yielded higher AUC values when trained on

CpG-poor promoters (with the mean fraction of pro-
moters overlapping CpG islands being 0.58 for reliable
models, as compared with 0.67 for unreliable models;
Figure S2 in Additional file 1; Pearson’s r*=0.1 with
P-value =0.001). Since genes expressed in the brain
are strongly associated with CpG islands [31,32], many
of the models yielding low AUC values involved brain
tissues. The performance of the models is also negatively
correlated with the fraction of promoters enriched in
TATA-box motifs (with the mean fraction of promoters
containing TATA boxes being 0.49 for reliable models, as
compared with 0.57 for unreliable models; Figure S3 in
Additional file 1; r* = 0.4, P-value = 2.8 x 10™""). Additionally,
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promoters of most highly expressed genes in reliable
models are less conserved at the TSS compared to those
in poor models (with average percentage of sequence
identity between human and mouse of 0.63 for reliable
models, as compared with 0.70 for unreliable models;
Figure S4 in Additional file 1; r* = 0.4, P-value = 4.4 x 10°).
The genes regulated by these promoters exhibit similar
conservation trends. This result suggests that extensive
use of promoters with tissue-specific activity could have
arisen as a means to facilitate the acquisition of novel
gene functions.

We next observed that many of the most highly pre-
dictive motifs for tissue-specific gene expression (that is,
those with the largest positive weights; see Materials and
methods) for reliable models are known to be involved
in the regulation of the corresponding tissue. For in-
stance, motifs with the highest predictive power (among
the top 2%) for the liver model included binding sites for
HNF4A, PPARA, NR1H3, and NR2F2 (Additional file 2),
which are among TFs that have been experimentally
shown to control hepatic function and development
[33-36]. This analysis is limited in that TFs may recognize
similar binding sites and in that motif databases are par-
tially redundant. Thus, establishing the identity of the TF
that may be binding to particular motifs is not trivial.
However, taken as a whole, these observations suggest that
our model specifically captures key regulators of the liver
transcriptional network (Figure 1B). Also, as expected,
binding sites for the same TFs characterize models for
tissues with similar gene expression profiles. For example,
most brain tissues share binding sites for members of the
Hox and Pax families of TFs (Additional file 3), confirm-
ing the correlation between motifs with high predictive
power and tissue-specific regulation.

In summary, the strong predictive value of the motifs
identified in promoter regions confirms that they are
highly associated with tissue-specific gene expression, and
substantiates the involvement of promoters in the regula-
tion of tissue-specific expression.

Promoter signatures identify tissue-specific enhancers

We next assessed whether the models describing tissue-
specific promoter activity could be exploited to discover
enhancers. For this purpose, we applied each of the 73
reliable models trained on promoter regions to predict
enhancers in the loci of genes that were among the 200
most highly or lowly expressed in the corresponding
tissue (see Materials and methods). We evaluated only
evolutionarily conserved non-coding sequences across
the human and mouse genomes located at least 2.5 kb
upstream and 0.5 kb downstream of the nearest TSS
(see Materials and methods). Recent studies suggest
that only about 50% are conserved in mammals, the re-
mainder constituting lineage-specific elements (for example,
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[37-41]). This fraction, however, is expected to depend
on the particular tissue where the enhancers are active.
On the other hand, only 10% of the genomic sequence is
conserved between mammals. This makes conservation
an effective filter for enhancer identification. Indeed, inte-
grating sequence analysis with comparative genomics has
been shown to reveal important subsets of enhancers (for
example, [17,18,42,43]). While restricting the analysis to
conserved sequences implies a reduction in sensitivity,
we considered this filter essential to increase the specifi-
city of our approach. While tissue-specific enhancers
often regulate gene expression over longer distances,
they tend to be enriched near genes that are expressed
and functional in the tissue of interest [40,44,45]. Hence,
differences in the enrichment of candidate tissue-specific
enhancers between the loci of genes most highly and lowly
expressed in the corresponding tissue could be used as an
indicator of whether the predicted enhancers do indeed
drive tissue-specific expression.

In 78% of tissues, our enhancer predictions are enriched
in the loci of the 200 most highly expressed genes as com-
pared to lowly expressed genes (P-values <0.05, Fisher’s
exact test; Figure 2A; see Materials and methods for
details). The most pronounced enrichment in physiolo-
gically normal tissue was observed in heart, lung, and
liver, with fold differences of at least 4.5. Moreover, for
44% of the tissues, we also found predictions in a sig-
nificantly larger fraction of loci of most highly expressed
genes as compared to loci of lowly expressed genes. For
instance, we observed candidate liver enhancers in the
60% of the loci of most highly expressed genes, but only
in 43% of the loci of lowly expressed genes (P-value = 0.01,
computed with Fisher’s exact test; Figure S5 in Additional
file 1). Finally, for 26% of the tissues the scores of the
candidate enhancers were significantly greater in the loci
of most highly expressed genes as compared with those
in the loci of lowly expressed genes (P-value <0.05,
Wilcoxon rank-sum test; Figure S6 in Additional file 1),
suggesting that increasing the stringency of the prediction
threshold would result in even stronger associations. In
total, enhancer predictions in the loci of most highly
expressed genes differed significantly from their counter-
parts in the loci of lowly expressed genes for 85% of the
tissues examined according to at least one of the above-
mentioned criteria, with 14% (10) of the tissues exhibiting
significant differences according to all of them (Table 1;
Additional file 3).

Fold enrichment between the proportions of enhancer
predictions in the loci of the 200 most highly and lowly
expressed genes is strongly correlated with the accuracy
of the promoter models (Figure 2B). Promoter models
that performed only modestly, such as those based on
brain tissues (AUC <0.70), had limited success in predict-
ing enhancers locus-wide (with fold enrichments reaching
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at most 1.3), while well-performing promoter models
(AUC =20.90), such as those for heart, liver, kidney, and
lung, achieved greater fold enrichments of at least 2.8 (for
kidney). We also observed slightly higher fold enrichments
between the proportions of enhancer predictions in the

loci of most highly and lowly expressed genes when the
difference in GC content between the former and the
latter was relatively large (log2 ratio of 0.13 as compared
to -0.01 for lower fold enrichments between the propor-
tions of enhancer predictions in the loci of highly and
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Table 1 Tissues for which the promoter models produce the most robust sets of predictions for enhancers

Tissue Number of enhancer predictions Fraction of loci with enhancer predictions Prediction scores  AUC
Fold enrichment P-value Fold enrichment P-value P-value
Adrenal gland 2.70 139%107° 113 492x107 264% 107 083
Colorectal adenocarcinoma 463 1.79%10"° 1.25 212%107 411x10°8 085
Heart 778 121x10°7 131 282x10™ 219% 10" 093
Kidney 276 184x 107" 134 107 x10° 148 %107 089
Liver 469 499%x 107 140 475%10™ 9.08% 107 092
Lung 653 122x107°%° 1.50 960x10® 3.11x10° 091
Placenta 2.99 418x10% 128 413%x10™ 576%10™ 083
Prefrontal cortex 123 227%x107° 121 347%10° 271%107 066
Spinal cord 150 827 %1078 115 239%10™ 138x107 0.72
Tongue 192 317x10% 1.10 385x107 482%10° 078

Only promoter-based models yielding AUC greater than 0.6 were considered in this analysis. The performance of each model in predicting enhancers was
assessed by the significance of the difference between the relative number of enhancer predictions in the loci of highly expressed and lowly expressed genes with
respect to the total number of scanned sequences, the significance of the difference between the fraction of loci of highly and lowly expressed genes comprising
enhancer predictions, and the significance of the difference between the scores of enhancer predictions in predictions in the loci of highly and lowly expressed
genes (see Materials and methods). P-values were computed using Fisher’s exact test and Wilcoxon rank-sum test.

lowly expressed genes, P-value = 3.2 x 107!, Wilcoxon
rank-sum test), suggesting a role for the GC content in
the control of tissue-specific expression.

In general, enhancers predicted in the loci of the 200
most highly expressed genes in a given tissue were found
to overlap extensively with experimental and computa-
tional enhancer marks characteristic of functional regu-
latory regions. For instance, candidate tissue-specific
enhancers were found to be significantly enriched
(P-value <0.05, Fisher’s exact test) in binding sites for
TFs within regulatory networks that are known to be
important in the respective tissues, such as MYC and
NFKBI in heart, and HNF4A and SP1 in liver [46-49]
(data not shown). The combined collection of enhancers
predicted in the loci of the 200 most highly expressed
genes in each of the tissues considered significantly
overlap with ORegAnno, a manually curated collection
of regulatory sequences [50], featuring a two-fold en-
richment (P-value <0.001, computed based on 1,000
randomized sequences genome-wide). Also, our enhancer
predictions are enriched for specific epigenetic histone
marks generally associated with distal transcriptional
regulation, as suggested by 41% of predicted enhancers
overlapping ChromHMM predictions for strong and weak
enhancers (1.5-fold enrichment, P-value <0.001, computed
based on 1,000 randomized sequences genome-wide [51]).
In addition, our predictions are significantly associated
with the enhancer chromatin signature H3K4mel (1.3-
fold enrichment, P-value <0.001, computed based on
1,000 randomized sequences genome-wide) and DNase I
hypersensitive sites (DHSs) in different human cell lines,
with a total of 42% of predicted enhancers overlapping
1% of the DHSs (1.6-fold enrichment, P-value <0.001,

computed based on 1,000 randomized sequences genome-
wide). In particular, liver enhancer predictions extensively
overlap with different enhancer marks, such as p300 bind-
ing, chromatin marks, and DHSs (Figure S7 in Additional
file 1). For example, 29% of liver enhancer predictions
overlap chromatin marks and ChromHMM enhancer pre-
dictions for the HepG2 hepatocellular carcinoma cell line,
providing additional evidence for the tissue-specificity
of the activity of the predicted enhancers (Figures 2C,D;
Figure S8 in Additional file 1). Substantial overlap is
also observed for other classifiers with DHSs (Figure S9
in Additional file 1). Finally, we found that enhancer
predictions are significantly enriched in matching p300
embryonic brain, limb, and heart enhancers (2.5-fold
enrichment, P-value <0.001, computed based on 1,000
randomized sequences genome-wide, [45,52]).

Taken together, these observations are consistent with
our promoter-based models being able to predict enhancers
that drive specific expression of neighboring genes in
different tissues.

Experimental assays validate tissue-specific activity of
promoter-based enhancer predictions

The most reliable evidence for the accuracy of our
promoter-based models in predicting tissue-specific en-
hancers is the experimental verification of their regula-
tory activity in vivo. Substantiated by the consistent
results from the computational analysis, we chose to
validate a subset of liver enhancer predictions in the loci
of highly expressed liver genes using a mouse liver re-
porter assay [53,54]. We selected, as described in detail
below, 12 out of the total of approximately 400 regions
with predicted liver enhancer activity (Table 2) and 5
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Table 2 In vivo assay of 12 liver enhancer predictions in mouse

ID Coordinates [hg18] Score Location Activity Chromatin state®
E1 Chr16:30009197-30009301 3.07 Intronic (TBX6) Yes No
E7 Chr10:82023332-82023434 260 Intergenic (3' UTR of MATTA) No Yes
E2 Chr17:69962796-6996289%4 221 Intergenic (4.5 kb downstream of GPRC5C) No No
E8 Chr1:31679030-31679149 1.94 Intronic (SERINC2) Yes Yes
E12 Chr3:134934911-134935091 1.81 Intronic (TF) Yes Yes
E4 Chr11:72138832-72139119 1.83 Intronic (ARAP1) Yes No
E5 Chr17:69957921-69958023 1.30 Intergenic (3' UTR of GPRC5C) Yes No
E10 Chr17:69951076-69951329 157 Intronic (GPRC5C) Yes Yes
E3 Chr11:72162942-72163179 147 Intronic (STARD10) No No
E9 Chr11:72168912-72169046 1.33 Intronic (STARD10) No Yes
EN Chr11:72166225-72166509 1.36 Intronic (STARD10) Yes Yes
E6 Chr17:17439720-17439913 1.04 Intergenic (4 kb upstream of PEMT) No No

®Overlaps with 'strong enhancer' Chromatin State Segmentation by HMM from Broad Institute, MIT, and MGH in HepG2 cell lines. Enhancer predictions for which

we observed in vivo activity in mouse liver are highlighted in bold.

regions with no predicted activity as controls (Table 3)
for functional testing. Importantly, we tried to ensure
that the enhancer predictions tested were not signifi-
cantly different from the whole set of predictions, and
chose controls exclusively based on their score. Thus,
differences between enhancer predictions and controls
observed for other sequence properties simply reflect
an association between high scores and the existence
of functional constraints, rather than bias in the selec-
tion of the sequences. Liver enhancer predictions se-
lected for validation had an average score of 1.79, and
were distributed across the complete range of scores
(Figure S10A in Additional file 1). Additionally, liver
enhancer predictions selected for validation are located at
an average distance to the nearest TSS of 7.3 kb, and are
not significantly different from the entire set of liver en-
hancer predictions (Figure S10B in Additional file 1).
Also, liver predictions selected for validation did not
exhibit statistically significant differences in the level of
evolutionary constraint compared to the entire set of liver
predictions, with an average phastCons score [55,56] of
0.38 (Figure S10C in Additional file 1). Finally, while
half of the regions with predicted liver enhancer activity

were selected randomly, the remaining half was selected
randomly among those predictions overlapping with
strong enhancer predictions by ChromHMM in HepG2
cell lines [51]. Controls were selected randomly among
sequences that had scores in the bottom half of the
score distribution for the full set of scanned sequences,
had an average score of -1.70, were located 27.5 kb away
from the nearest TSS, and had an average phastCons
score of 0.37. Each liver enhancer prediction and control
was cloned upstream of a minimal promoter element and
the luciferase reporter gene (pGL4.23; Promega). Each
construct was then injected using the hydrodynamic tail
vein injection assay into at least three different mice,
and liver enhancer activity was assayed after 24 h by
measuring luciferase levels (see Materials and methods).

We observed statistically significant enhancer activity
for 7/12 (58%) enhancer predictions compared to empty-
vector-injected mice, with no significant difference de-
pending on how predictions were selected (two-tailed
Fisher’s exact test). The significant increase in luciferase
activity driven by liver enhancer predictions ranged from
2.0- to 6.4-fold relative to the empty vector. By compari-
son, 0/5 of the controls activated the luciferase reporter

Table 3 In vivo assay of regions with no predicted regulatory activity (controls)

ID Coordinates [hg18] Score Location Activity
@ Chr15:56263227-56263340 -2.22 Intronic (AQP9) No
2 Chr6:26030369-26030485 -2.03 Intronic (SLC17A2) No
a3 Chr22:19494975-19495083 -1.26 Intronic (PI4KA) No
C4 Chr5:138482622-138482789 -1.67 Intronic (SILT) No
C5 Chr9:96485498-96485627 -132 Intergenic (50 kbp upstream of FBPT and C9orf3) No
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(false discovery rate adjusted q < 0.05; Figure 3, Tables 1
and 2; Additional file 4). These data confirm that a large
fraction of our liver enhancer predictions function as
enhancers in vivo, regulating expression in the liver.

Promoter-based models have the potential of shedding
light on the human regulatory landscape

We applied each of the 73 reliable models trained on
promoter regions to the entire sequence of the human
genome. We scanned approximately 1,200,000 non-
promoter CNEs across the human and mouse genomes
for enhancer signatures (see Materials and methods).
No model generated more than 160,000 enhancer pre-
dictions, with an average of approximately 51,000. We
observed substantial overlap among enhancer predictions
for related tissues (Figure S11 in Additional file 1), in
part reflecting the resemblance between promoter-based
models of tissues with similar gene expression profiles,
but also indicating the existence of shared regulatory path-
ways. Thus, from all sequences scanned, approximately
900,000 (73%) were considered enhancer predictions for
at least one of the models, with an average of approxi-
mately 12,000 non-redundant enhancer predictions per
tissue, consistent with current ChIP-seq findings [29].
Although we estimate the false positive rate at approxi-
mately 5% based on the number of enhancer predictions
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Figure 3 Experimental validation of liver enhancer predictions
using the hydrodynamic tail vein enhancer assay. On each
injection day, we also injected an empty pGL4.23[luc2] vector and a
known liver enhancer of the ApoE gene as negative and positive
controls, respectively. At least three mice were injected per construct.
Statistical significance was tested using Student’s t-test followed by
multiple testing adjustment with Benjamini-Hochberg’s method. The
asterisks indicate statistical significance to control at adjusted

P-value <0.05.
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in the loci of lowly expressed genes, a caveat of our ap-
proach is that local differences in the composition of
the human genome could result in overall higher false
positive rates. Also, consistent with the literature (for
example, [57]), we found that most loci in the genome
contain more than one enhancer. Indeed, without con-
sidering redundancy among predictions, we predict an
average of four enhancers per locus per model, with the
exact number depending on the tissue (Figure S12 in
Additional file 1).

We then analyzed the distribution of enhancer predic-
tions across the genome relative to genes. From all se-
quences that were classified as enhancer predictions by
at least one of the models, 55% mapped within intronic
regions, 43% mapped within intergenic regions, and the
remaining 2% to UTRs. The trend is consistent for all
tissues, in that the proportion of intronic enhancer
predictions is always greater than that of intergenic
predictions. Overall, tissue-specific enhancer predictions
tend to be located closer to TSSs, and in particular,
near TSSs of highly expressed genes in matching tis-
sues. For example, there was more than 3-fold enrich-
ment in liver enhancer predictions within 100 kb of the
TSS of the 200 most highly expressed genes in the liver
(P-value <0.001, computed based on 1,000 randomized
sequences genome-wide), a number that increased to
4-fold enrichment within 10 kb of the TSS (P-value <0.001,
computed based on 1,000 randomized sequences genome-
wide). Furthermore, stronger enhancer predictions are
closer to TSSs than weaker predictions, with, for in-
stance, the strongest 1% of liver enhancer predictions
being located 40 kb away from the nearest TSS as com-
pared to 73 kb for the complete set of liver enhancer
predictions. These results are in agreement with the
literature, and suggest that the functional relevance of
a genomic region depends on its position relative to
the TSS [58]. Our enhancer predictions are enriched
near genes annotated with relevant gene ontology terms.
For example, we found more than five-fold enrichment
in liver enhancer predictions within the loci of genes
associated with ‘positive regulation of hepatic stellate
cell activation’, ‘liver development’, and ‘positive regula-
tion of hepatocyte differentiation’ (P-values <0.05, Fisher’s
exact test), as well as enrichment for genes with critical
liver functions, such as ‘positive regulation of cholesterol
metabolic process’ (P-value = 2.7 x 101, Fisher’s exact
test), ‘triglyceride lipase activity’ (P-value =6.0x 10°%,
Fisher’s exact test), and sucrose, maltose, and trehalose
metabolic processes (all P-values <0.05, Fisher’s exact test).

Although all our tissue-specific enhancer predictions
were selected from conserved non-coding sequences across
the human and mouse genomes, they exhibit different
levels of conservation according to their phastCons scores
(Figure S13 in Additional file 1). For example, liver and
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heart enhancer predictions in the loci of highly expressed
genes are significantly more conserved than the sequences
used as basis for making predictions (0.41 versus 0.34, and
0.43 versus 0.37, with P-values 1.1 x 10%* and 5.6 x 10,
respectively, calculated using the Wilcoxon rank-sum
test). For models that did not perform well in terms of
their fold enrichment between the proportion of enhancer
predictions in the loci of highly and lowly expressed genes
(for example, skin and fetal brain), we observed signifi-
cantly less constrained predictions. We observed similar
trends when we applied our promoter-based classifiers
to investigate unconstrained sequences (see Supplementary
notes in Additional file 1).

In summary, our results indicate the existence of largely
disjoint sets of tissue-specific regulatory sequences located
in the neighborhood of their potential target genes. They
also confirm an important role for evolutionarily con-
strained sequences, in that 73% of sequences conserved
across mammals exhibit regulatory potential. Finally,
consistent with previous studies, they support a role for
both promoters and enhancers in determining spatio-
temporal patterns of gene expression.

Conclusions

By analyzing the sequence of promoters of tissue-specific
genes, we confirmed that tissue-specific promoters and
enhancers share TF binding motifs within the loci of their
cognate genes. Moreover, we observed that regulatory in-
formation in the promoters of tissue-specific genes is pre-
dictive of the enhancers targeting these genes. For 73/79
tissues, we could reliably distinguish between highly and
lowly expressed genes based exclusively on the presence
or absence of putative motifs (AUC 260%). Although
similar cut-offs have been recently employed (for ex-
ample, [18,59]), we recognize that the half of the models
exhibiting modest performances (AUC <80%) might have
limited predictive value. It is, however, important to note
that the reported AUCs represent the lower bound of
the classifier accuracy due to the fact that the strength
of the tissue-specificity enhancer signal is expected to
vary among the promoters of tissue-specific genes. Pro-
moters containing only weak signals will inherently de-
flate the classification AUC estimates. To further address
the performance of the classifiers at predicting tissue-
specific enhancers, we introduced a panel of independent
computational and experimental tests, which ultimately
validated our analysis. Many of the TFs binding to the
motifs that are identified as relevant to each of these
models are known to play a fundamental role in the
development or maintenance of normal function of
the corresponding tissues. We showed that the motifs
found in promoter regions can be used to predict en-
hancers with matching tissue-specificity. The accuracy of
our tissue-specific enhancer predictions by promoter-
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based models is supported by a highly significant associ-
ation of enhancer predictions with the genes most
highly expressed in a given tissue, and by a significant
overlap of predictions with experimentally identified
tissue-specific enhancers.

More importantly, 58% (7/12) of liver enhancer pre-
dictions generated by the promoter-based model drove
luciferase expression in the liver following hydro-
dynamic tail vein injection in mice, whereas none of the
five negative controls did.

Six of the seven validated liver enhancers were located
within introns (for the genes TBX6, SERINC2, TE, ARAPI,
STARDI10, and GPRC5C), while the remaining prediction
was in the immediate vicinity of GPRC5C. These genes
have been previously reported as moderately to highly
expressed in liver and gallbladder [60]. For example,
although the specific function of GPRC5C is unknown,
the gene is highly expressed in the liver and has been
suggested to play a role in signaling events when induced
by retinoic acid [61]. In addition to other motifs, liver
enhancer predictions that exhibited luciferase activity
contained predicted binding sites for 5 to 11 out of 27
known liver TFs (Additional file 5). Although each of the
critical liver TFs PPARA, PPARG, NR2F2, and HNF4A
had binding sites in 6/7 (86%) sequences, no single TF
had a binding site in all 7 sequences that exhibited lucif-
erase activity, highlighting the ability of our method to
model flexible regulatory sequence encryptions. In turn,
each of the 7 sequences included binding sites for at
least 2 of these 4 TFs, and 4/7 (57%) for all 4. The 5 liver
enhancer predictions that exhibited no significant lucif-
erase activity contained binding sites for 4 to 8 out of 27
known liver TFs. HNF4A had binding sites in all 5 se-
quences, PPARA and NR2F2 had binding sites in 4/5
(80%) sequences, and PPARG in 3/5 (60%). With one
exception, each of the sequences included binding sites
for at least 2 of these 4 TFs, and 3/5 (60%) for all 4. For
comparison, 87% of all sequences scored by the liver
promoter-based model contained 1 to 18 out of 27 known
liver TFs. HNF4A had binding sites in 28% of the se-
quences. Only 11% of the sequences had binding sites
for at least two TFs among PPARA, PPARG, NR2F2,
and HNF4A, and 7% for all four TFs. Despite limitations
in the accuracy of the TF binding site predictions and
despite the fact that many motifs may be nonfunctional
[62], our results suggest that particular combinations of
TFs, rather than single TFs, are necessary to establish
liver transcription. In addition, the function of assayed
sequences may be subject to activation or inhibition by
additional cis- and trans-regulatory elements. For example,
enhancer activity might be induced by hormones or drugs
under particular conditions [63] or depend on neighbor-
ing functional elements that are absent in the construct
used for the experiment. This and other phenomena
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could produce false-negative observations in the reporter
assays. In any case, the experimental data presented here
provide independent and robust validation of the enhan-
cer predictions obtained with the promoter-based models,
and lend further support for the hypothesis that the speci-
ficity of interactions between enhancers and promoters
is at least partly due to the binding of tissue-specific TFs.
Our models predict multiple tissue-specific enhancers
per locus and per tissue, as well as multiple tissues or do-
mains of activity for most enhancers. This redundancy,
which has long been reported (for example, [64-66]), may
serve to increase the robustness of the regulatory network
[67]. Furthermore, it is likely that apparently redundant
enhancers activate gene expression in different cell types
and/or under different developmental stages or conditions
[68-71]. The genomic distribution of enhancers is also
likely to vary depending on the function of their target
genes. For example, the loci of transcription factors and
developmental genes are known to contain particularly
high densities of CNEs, many of which act as distal en-
hancers [72-77]. More recently, advances in technical
approaches, such as chromosome conformation capture
and its derivatives, have confirmed these findings inde-
pendent of sequence conservation [24,78]. We observed
that relatively long loci, such as those of genes expressed
in brain tissues, featured more enhancer predictions per
locus compared to short loci. However, some compact
loci, such as those of genes highly expressed in liver, lung,
and heart, contained a relatively large number of enhancer
predictions, providing evidence for a particular need for
fine-tuning the expression level in these tissues. Further-
more, the level of conservation of enhancer sequences is
likely to depend, as other studies suggests (for example,
[79,80]), on their particularly activity, although we found
that, for all models, a large proportion of the enhancer
predictions is likely to be conserved across mammals.
Finally, our results add further evidence for a signifi-
cant role of both promoters and enhancers in determin-
ing tissue specificity. This role is supported by several
examples from the literature [14,81,82]. Different enhancer-
promoter preferences would provide an additional level
of transcriptional control, assisting in establishing the
favorable interactions, for instance, between enhancers
and their cognate promoters when they are distant, or
between enhancers and their cognate promoters within
a gene cluster. The intimate coordination of promoters
and enhancers in regulating tissue-specific transcription
has immediate practical consequences. It makes it pos-
sible to describe the complex regulatory landscape of
higher eukaryotes, and eventually identify regulatory
elements located hundreds of kilobases away from their
target gene, based solely on the analysis of proximal regula-
tory elements. DNA microarrays and, more recently, RNA-
seq are currently being used to profile the transcriptomes
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of a diverse range of cell/tissue types, conditions, and spe-
cies. As more expression data become available, particu-
larly in the context of large projects such as ENCODE
[83] and the 1000 Genome Project [84], it is our belief that
the application of approaches such as the one we are
proposing here will result in important new insights and
improve our understanding of transcriptional regulation.
Such projects are also generating a wealth of epigenetics
information that can be easily integrated with our models
to reveal genomic signatures controlling transcription.

Materials and methods

Gene annotation and expression data

GNF Novartis Gene Expression Atlas version 2 [30] was
extracted from the gnfAtlas2 table and mapped to the
RefSeq [85] genes using the knownToGnfAtlas2 and kgXref
tables (all tables are available in the UCSC Genome
Browser database [86]). Thereby, we obtained expres-
sion profiles in 79 tissues (721 B lymphoblasts, BM-
CD105+ endothelial, BM-CD33+ myeloid, BM-CD34+,
BM-CD71+ early erythroid, PB-BDCA4+ dentritic cells,
PB-CD14+ monocytes, PB-CD19+ B cells, PB-CD4+ T
cells, PB-CD56+ natural killer (NK) cells, PB-CD8+ T
cells, adipocyte, adrenal cortex, adrenal gland, amygdala,
appendix, atrioventricular node, bone marrow, bronchial
epithelial cells, cardiac myocytes, caudate nucleus, cere-
bellum, cerebellum peduncles, ciliary ganglion, cingulate
cortex, colorectal adenocarcinoma, dorsal root ganglion,
fetal brain, fetal liver, fetal lung, fetal thyroid, globus
pallidus, heart, hypothalamus, kidney, leukemia chronic
myelogenous (k562), leukemia lymphoblastic (molt4),
leukemia promyelocytic (hl60), liver, lung, lymph node,
lymphoma Burkitts Daudi, lymphoma Burkitts Raji,
medulla oblongata, occipital lobe, olfactory bulb, ovary,
pancreas, pancreatic islets, parietal lobe, pituitary gland,
placenta, pons, prefrontal cortex, prostate, salivary gland,
skeletal muscle, skin, smooth muscle, spinal cord, subtha-
lamic nucleus, superior cervical ganglion, temporal lobe,
testis Leydig cell, testis, testis germ cell, testis interstitial,
testis seminiferous tubule, thalamus, thymus, thyroid,
tongue, tonsil, trachea, trigeminal ganglion, uterus, uterus
corpus, whole blood, whole brain) for 13,977 human
genes. Overall, 5,023 genes were considered 'most highly
expressed' in at least one of the 79 tissues. Additionally,
6,531 genes were least expressed in these tissues.

Locus definition

In order to define gene loci, we first clustered together
all overlapping transcripts in the refGene.txt and known-
Gene.txt tables (available in the UCSC Genome Browser
database [86]), and then assigned the closest half of the
intergenic sequence separating two genes to each of the
corresponding gene loci. Although the genes that are
closest to the enhancers are reasonable target genes, there
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are many known cases of enhancers located in introns
of genes that are not their targets, as well as enhancers
several kilobases away from their targets, with unrelated
genes in between. Current integrative approaches result
only in modest improvement in enhancer-target gene
associations (for example, [87]), often requiring non-
available data. Recently, a method based on Hi-C has
been introduced to identify genome-wide functional do-
mains based on higher-order chromatin interactions [5].
However, comparisons between alternative methods are
limited because of the lack of an appropriate reference
or gold standard.

Promoter annotation and definition for promoter modeling
Promoter regions were defined as encompassing a 3 kb
region (2.5 kb upstream and 0.5 kb downstream of the TSS),
relative to 5° TSSs of all transcripts annotated in RefSeq
[85]. Although the total length is arbitrary, it intends to span
both the core and proximal promoter regions. In most
cases, the signal that turned out to be relevant for the
models was detected within 500 bp of the TSS (Figure S14
in Additional file 1).

Gene expression values for each of the promoters of
the most highly and least expressed genes in each of the
79 tissues considered were extracted from [88]. Probe IDs
were converted to UCSC Known Gene IDs using [89].
Subsequently, UCSC Known Gene IDs were converted
to gene symbols and RefSeq IDs using [90]. Expression
values for transcripts with the same gene symbol were
averaged together. The 200 most highly and least expressed
genes with different gene symbols were selected. TSSs of
all RefSeq IDs associated with those gene symbols were
then used to define 3 kb promoter regions.

Sequence conservation of promoter regions

Sequence identity of promoter regions was determined
based on genome-genome alignment of human and mouse
(from the net/chain track at UCSC [86]), using the hg18
and mm9 genome assembly, respectively.

Sequence conservation of coding regions

As an indicator of coding conservation across species we
used the proportion of orthologs of human genes found
in other eukaryotic species (HomoloGene Build 64 [91]).

Motif occurrences

Presence or absence of putative motifs was determined
scanning the sequence for 775 motifs in TRANSFAC [92]
and JASPAR [93-95] using MAST [96] with default
parameters.

Motif over-representation in promoter regions
Over-representation of 775 motifs representing TF bind-
ing sites in TRANSFAC and JASPAR among promoter
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regions of the 200 most highly expressed genes in each
of the 79 tissues considered was determined by comparing
the promoter regions of the 200 most highly expressed
genes to the promoters of the 200 least expressed genes
in the corresponding tissue. The entire length of the
promoter region (-2.5 kb to +0.5 kb with respect to the
TSS) was searched for motif occurrences with MAST.
The numbers of putative TF binding site occurrences
in each set of promoters were compared using the
Wilcoxon rank-sum test.

Transcription factors associated with transcription factor
binding sites

TF annotation for position-weight matrices (PWMs) was
obtained from TRANSFAC [92], JASPAR [93-95], and
the Broad Institute (MSigDB [97]).

CpG islands and TATA-box motifs

Annotation for CpG islands was obtained from the
'cpglslandExt’ UCSC track of the hgl8 assembly of the
human genome database [86]. Presence or absence of
TATA-box motifs in promoter regions was determined by
scanning the sequence for TATA-box motifs in TRANSFAC
[92] using MAST [96] with default parameters.

Separating promoters of most highly and lowly
expressed genes

Training data

The promoter regions (-2.5 kb to +0.5 kb with respect to
the TSS, based on RefSeq annotation [85]) of the 200 most
highly expressed genes (positive set) were compared to
the promoters of 200 genes with the lowest expression
(negative set) in each of the 79 considered tissues.

Sequence representation

Next, we converted the DNA sequence of each promoter
into a set of TF binding site feature vectors. We first
identified all CNEs (at least 70% sequence identity between
human and mouse [98]) within each promoter sequence.
Next, we ran the program MAST [96] with default pa-
rameters to identify motif occurrences in the CNEs match-
ing 775 known TF binding sites from the TRANSFAC [92]
and JASPAR [93-95] databases. With this information,
each CNE was then transformed into a 775-dimensional
TF binding site feature vector, where each feature corre-
sponds to the number of the corresponding TF binding
site occurrences in the sequence of the CNE. There
were 2.4 feature vectors (one per CNE) in a promoter,
on average.

For a given classifier, the training set contained as many
feature vectors as the number of CNEs found in the pro-
moters of the 200 most highly expressed genes (positive
set) plus the number of CNEs found in the promoters of
the 200 genes with the lowest expression (negative set).
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Because promoter regions may overlap, the sets included
only unique CNEs.

Classifiers
Linear SVMs [99] were used to find features relevant to
distinguish between the CNEs in promoters associated
with highly expressed genes (positive class) and those in
promoters associated with lowly expressed genes (negative
class). For each tissue, we trained a SVM on an average
of 553 feature vectors representing CNEs in the promoter
regions of highly expressed genes and 525 feature vectors
representing CNEs in the promoter regions of lowly
expressed genes. We optimized the weight of the positive
class wy by performing a grid search. The optimal value
A5
the number of signal sequences, and n is the number
of control sequences.

A double-loop cross-validation was used to assess the
accuracy of the classifier. In each fold of the cross-
validation, we used four-fifths of the members of the
positive and negative classes to identify a 'consistent’ set
within the positive class. This strategy is aimed at iden-
tifying sequences that are consistent with each other,
in an effort to reduce the natural heterogeneity of the
promoter sets. More precisely, in each fold of the
cross-validation, for each promoter P in the positive
class in the four-fifths of the data that was used to
identify a consistent set, we trained a model excluding
all sequences associated with P. Subsequently, we used
that model to score each of the sequences associated
with P. Finally, among those sequences, we randomly
selected two positive-scoring ones to represent P in a
'consistent’ positive set. After repeating this for all pro-
moters in the positive class, we obtained a 'consistent’
positive set. This consistent positive set was used to-
gether with the remaining one-fifth of the members of
the negative class to train a final classifier. The accuracy
of this final classifier was evaluated using a standard
five-fold cross-validation. The entire procedure was re-
peated for each of the five cross-validation folds, and
the cross-validation was repeated five times. AUC was
used as criterion for optimality. This double-loop cross-
validation has been successfully applied to the enhancer
prediction problem in the past (for example, [17]).

Figure S15 in Additional file 1 illustrates the variation
of the size of the consistent positive set for the 79 tissues
considered. In our cross-validation framework, the con-
sistent positive set contained an average of 157 CNEs,
representing 35% of the training data. However, the size
of the consistent positive set depends on the particular
tissue, ranging from 39 (10%) to 269 (41%) CNEs for
PB-CD56+ NK cells and medulla oblongata, respectively.
For PB-CD56+ NK cells the consistent positive set also

was chosen from w; = Z—jy, where ye{%,%, 1
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contained the smallest fraction of CNEs, while the lar-
gest fraction was obtained for uterus corpus (51%).

Linear SVMs Training a linear SVM classifier is equiva-
lent to solving the following constrained optimization
problem [100]:

Given the training samples T = {(x;, yi)|xieRp, Vi€
{-1,1}}.,, find the values of w, b and §; that minimize

1 n
§WTW + ngl
i=1
satisfying the constraints

yi(WTxi —|—b)21—€i Vi=1,...,n

and

Eiz 0 Viz 1,...,n
The decision function of the classifier for an unknown
sample x is given by:
f(x) = sign(w'x + b)

The dual form of this problem can be described as
follows: Given the training samples T = {(x;,y;)|xi€RP,
y;e{-1,1}};,, find the values {a;}|_, that maximize

1 n n T
PRI P
i =1 j=1
satisfying the constraints
0<o<CVi=1,...,n

and

iaiyi =0.
i=1

Samples x; for which a; > 0 are called support vectors.
The vector w can be computed in terms of q; as:

n
w = E ;Y Xi
i=1

and, therefore, contains the weighted features of the
support vectors.

SVM parameter selection Linear SVMs have only one
parameter, C, which controls the trade-off between
errors on the training data and margin maximization.
We found that the performance of the Hb enhancer
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classifier was relatively stable with respect to changes
in C. We estimated C based on the training data as

-2
Xi ] . Misclassifications are penalized differently
i=1

depending on the class of sequences, proportionally to the

total number of sequences in each class.

Predictive power of the motifs

After obtaining a linear SVM model, the weight vector
w can be used to decide the relevance of each feature
[101]. The larger |w;|, the more important role of feature
j in the decision function. On these grounds, we used
the weights w; to assess the predictive power of each
motif.

Scaled SVM weights

To make motif weights comparable across different SVM
classifiers, we scaled them preserving their sign accord-
ing to:

Wi=Win .
- (1— S if wp <0
scaled w; = i ,
— if wj20
Wmﬂx
where

Winin = min{wj},if min{w/} <0
j j
0, otherwise
and
Winax = m;ax {wj},if mjax{wj} >0
0, otherwise

GC content of transcription factor binding sites

Sequence motifs representing motifs are usually encoded
as PWMs. A PWM is a matrix containing the relative
frequency of each of the four possible nucleotides at
each position of a motif, which are estimates of the cor-
responding probabilities.

To obtain the GC content of a motif, we calculated
and averaged the probability of observing G or C at each
position of the corresponding PWM.

In order to assess the contribution of the GC content
to the performance of the promoter-based enhancer
models, we trained 5 models using the aforementioned
strategy, each time replacing the original 775 PWMs
by an equally large collection of PWMs, in which the
nucleotide probabilities of each PWM have been ran-
domly permuted.
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Difference in GC content between two loci

Differences in GC content between loci of highly and
lowly expressed genes were expressed as the natural loga-
rithm of the ratio between the GC content of the loci of
highly expressed genes and the GC content of the loci
of lowly expressed genes.

Enhancer predictions

We applied our promoter-based models as genome-wide
predictors of human enhancers to both conserved and
non-conserved sequences. In particular, for a given tis-
sue, when we refer to predictions in the loci of the (200)
most highly and lowly expressed genes, we imply predic-
tions in the loci of the 200 genes with highest and lowest
expression levels whose promoters were used to train
the corresponding classifier.

Prediction of conserved enhancers

First, we selected CNEs with at least 70% identity across
the human and mouse genomes [98] located at least
2.5 kb upstream and 0.5 kb downstream of TSSs anno-
tated in refGene.txt and knownGene.txt tables (available
in the UCSC Genome Browser database [86]). Thus, we
scored approximately 1,200,000 CNEs across the human
genome, with an average length of 249 bp. In particular,
the loci of the 200 most highly expressed genes in any
of the 73 tissues considered comprised, on average, 85
CNEs, and comprised a total of 500,000 CNEs, while the
loci of the 200 genes with lowest expression in any of
the 73 tissues considered included an average of 108
and a total of 750,000, respectively.

Prediction of non-conserved enhancers

Second, we scanned the genome using a sliding window
approach. Windows overlapping the sequence 2.5 kb up-
stream and 0.5 kb downstream of the nearest TSS ac-
cording to the refGene.txt and knownGene.txt tables
(available in the UCSC Genome Browser database [86])
were excluded from further analysis. For the size of the
window, we chose the average length of the conserved
region between human and mouse [98], namely 230 bps.
The sliding window is shifted by 115 bps. A given se-
quence was considered an enhancer prediction (or enhan-
cer candidate) if its score was greater than s = min(0, 9),
where ¢ is the lowest score of the top 5% sequences scored
in the control loci.

Computational evaluation of genome-wide enhancer
predictions

Functional analysis

To assess whether these elements disproportionally occur
near genes with particular functions, we obtained the
Gene Ontology [102] (CVS version 1.2811, GOC Valid-
ation Date March 28, 2012) annotations of the closest
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neighboring UCSC known genes [103] for all non-coding
elements, and assigned those annotations to each elem-
ent. Gene-to-GO mapping was achieved by combining
the UCSC refGene.txt and knownGene.txt tables and
GOA [104] association table using UniProt IDs. P-values
were corrected for multiple testing using Bonferroni’s
method [105].

Fold enrichment of enhancer predictions in the loci of the
200 most highly expressed genes as compared to the loci of
lowly expressed genes

In order to account for differences in the length of the
loci, we did not directly compare the number of enhancer
predictions in the loci of the 200 most highly expressed
genes in a given tissue with the number of enhancer pre-
dictions in the loci of lowly expressed genes in that same
tissue, but the numbers of enhancer predictions divided
by the numbers of scanned sequences for loci of highly
and lowly expressed genes. Therefore, the fold enrich-
ments in Table 1 and Additional file 3 were computed as
the ratio of two proportions: (i) the total number of
enhancers predicted in the loci of the 200 most highly
expressed genes divided by the total number of sequences
scanned in the loci of highly expressed genes; and (ii) the
total number of enhancers predicted in the loci of lowly
expressed genes divided by the total number of sequences
scanned in the loci of lowly expressed genes. For the 73
tissues evaluated and focusing only on CNEs across the
human and mouse genomes, these proportions averaged
0.04 for loci of highly expressed genes, and 0.03 for loci of
lowly expressed genes. In the case of whole-loci predic-
tions, these proportions averaged 0.03 for loci of the 200
most highly expressed genes, and 0.02 for loci of lowly
expressed genes.

Fraction of loci comprising enhancer predictions

The fraction of loci comprising enhancer predictions
was defined as the number of loci in which at least one
of the scanned sequences was considered an enhancer
prediction divided by the total number of loci to which
we applied the classifier. Therefore, the fold enrichments
in Table 1 and Additional file 3 were computed as the
ratio of two ratios: (i) the total number of loci of highly
expressed genes comprising at least one enhancer pre-
diction each divided by the total number of loci of highly
expressed genes comprising at least one scanned sequence
each; and (ii) the total number of loci of lowly expressed
genes comprising at least one enhancer prediction each
divided by the total number of loci of lowly expressed
genes comprising at least one scanned sequence each.
Each of the latter ratios ranges between 0 (no loci com-
prising enhancer predictions) and 1 (all loci comprising
scanned sequences also comprise enhancer predictions).
For the 73 tissues evaluated and focusing only on CNEs
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across the human and mouse genomes, 59% of the loci
of highly expressed genes comprised at least one enhan-
cer prediction, while 52% of the loci of lowly expressed
genes did.

Overlap between predictions and different enhancer marks
Predictions resulting from the 73 reliable promoter-based
classifiers were combined into a set of non-redundant pre-
dictions and overlapped with different enhancer marks.
Additionally, when specifically stated, we report overlaps
with predictions for particular promoter-based classifiers -
for example, the classifier trained on liver promoters.

Overlap with p300 Genomic regions enriched for p300
in mouse forebrain, midbrain, limb, and heart tissues were
extracted from Additional files 3, 4 and 5 [45], and
mapped to the human genome (hgl8) using LiftOver
[106]. Genomic regions identified in forebrain, mid-
brain, limb, and heart were combined into one dataset.
Overlapping genomic regions were clustered together.

Overlap with DNase I hypersensitivity sites DNase I
hypersensitivity data (narrow peaks) for 86 human cell
lines from the ENCODE project [25,107] were downloaded
from the UCSC browser [108,109], converted to the hgl8
assembly using LiftOver [106], and combined into one
dataset. Overlapping genomic regions were clustered
together. This resulted in a total of 1,722,559 non-
overlapping regions with an average length of 253 bp.
We then computed the intersection between the set of
non-redundant enhancer predictions identified by any of
the 73 promoter-based models and this DNase I hypersen-
sitivity data dataset. Liver enhancer predictions, in particu-
lar, were also compared with DNase I hypersensitivity data
in HepG2. Predictions for enhancers in other tissues were
compared with DNase I hypersensitivity data in closely
related ENCODE tissues and cell lines (Figure S9 in
Additional file 1).

Overlap with histone modification marks Histone mark
data (H3K4mel, H3K27ac) for 11 human cell lines from
the ENCODE project [25,107] were downloaded from
the UCSC browser [108,110], converted to the hgl8
assembly using LiftOver [106], and combined into one
dataset. Overlapping genomic regions were clustered to-
gether. This resulted in a total of 189,889 non-overlapping
regions with an average length of 6,275 bp. We then com-
puted the intersection between the set of non-redundant
enhancer predictions identified by any of the 73 promoter-
based models and this histone mark dataset. Liver enhancer
predictions, in particular, were also compared with histone
marks in HepG2.
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Overlap with ChromHMM predictions Weak and strong
enhancers identified in nine human cell lines (HSMM,
GM12878, HUVEC, H1-hESC, K562, HepG2, NHEK,
HMEC, NHLF) using ChromHMM [51] were down-
loaded from the UCSC browser [108,111], converted to
the hgl8 assembly using LiftOver [106], and combined
into one dataset. Overlapping genomic regions were
clustered together. This resulted in a total of 399,500
non-overlapping regions with an average length of
1,504 bp. We then computed the intersection between
the set of non-redundant enhancer predictions identified by
any of the 73 promoter-based models and the ChromHMM
dataset. Liver enhancer predictions, in particular, were
also compared with ChromHMM enhancers in HepG2.

Conservation analysis

PhastCons conservation scores [56] were based on align-
ment of 28 vertebrate species and an 18 species placen-
tal mammal subset, respectively [55].

In vivo validation of liver enhancer predictions

Sequences selected for in vivo validation were PCR-
amplified using TopTaq (Qiagen, Hilden, Germany) from
human genomic DNA (Roche, Basel, Switzerland), puri-
fied using the QIAquick PCR purification kit (Qiagen) and
cloned into the pENTR-dTOPO vector (Life Technologies,
Carlsbad, CA, USA). Proper insertion and orientation was
confirmed by colony PCR, after which positive clones were
transferred into the pGL4.23[luc2] vector (Promega) using
the Gateway system (Life Technologies). Sequence and
orientation of the insert were re-verified by Sanger se-
quencing, and approximately 200 pg of endotoxin-free
plasmid DNA was isolated using the EndoFree Plasmid
Midi prep (Qiagen).

For the hydrodynamic tail vein assay, 10 pg of each
assayed sequence in pGL4.23[luc2] was injected along with
2 ug of pGL4.74[hRluc/TK] vector to correct for injection
efficiency, into at least three CD1 mice (Charles River
Laboratories, Wilmington, MA, USA) using the TransIT
EE hydrodynamic gene delivery system (Mirus Bio LCC,
Madison, WI, USA) according to the manufacturer’s
protocol. Negative (empty pGL4.23[luc2]) and positive
(ApoE liver enhancer [110,112]) controls (n=3 to 5)
were also injected at each injection date/experiment.
After 24 hours, livers were harvested and homogenized
in passive lysis buffer (Promega), followed by centrifuga-
tion at 4°C for 30 minutes at 14,000 rpm. Firefly and
Renilla luciferase activity in the supernatant (diluted
1:20) were measured on a Synergy 2 microplate reader
(BioTek Instruments, Winooski, VT, USA) in technical
replicates of four for each liver, using the Dual-Luciferase
reporter assay system (Promega). The ratios for firefly
luciferase:Renilla luciferase were determined and expressed
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as relative luciferase activity. All mouse work was approved
by the UCSF Institutional Animal Care and Use Committee.

Additional files

Additional file 1: Figures S1 to 15 and Supplementary notes.

Additional file 2: Table S1. A table listing the motif ranks for the
promoter-based models.

Additional file 3: Table S2. A table summarizing the performance of
the promoter-based models.

Additional file 4: Table S3. A summary of results obtained with the
hydrodynamic tail vein injection assay.

Additional file 5: Table S4. A list of transcription factors known to be
relevant for liver function.
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